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Abstract

I review several basic aspects of a relation between geometrically
distinct but nevertheless physically equivalent compactified string the-
ories. This T -duality, which is a consequence of the extended nature
of strings, challenges the traditional notion of length. First, I consider
the theory of a closed bosonic string on a circle and point at the in-
variance of its spectrum under inversion of the radius. The one-loop
partition function and higher-order contributions are also shown to be
invariant, so that T -duality can be considered as a symmetry of the
interacting theory. I explain a surprising phenomenon of symmetry
enhancement for a special value of the compactification radius. I fi-
nally turn on to toroidal (Narain) compactification and apply it to the
case of heterotic string theories.
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1 String on a circle

Compared to the case of point particles, the analysis of the theory of a closed
bosonic string on a manifold with one circular dimension presents a novelty,
namely the possibility for the string to wind a number w of times around the
compact dimension of radius R (say the twenty-fifth) :

X25(σ + 2π) = X25(σ) + 2πRw. (1)

This new feature will lead to the appearance of an original symmetry of the
theory, called T -duality.1

The most straightforward way to illustrate T -duality is to look at the
mass spectrum of this string on a circle [1]. In terms of complex coordinate
z ≡ σ1 + iσ2 and z̄ ≡ σ1 − iσ2, the Euclidean action reads

S =
1

2πα′

∫
d2z∂Xµ∂̄Xµ, (2)

where ∂ ≡ ∂z = (∂1 − i∂2)/2 and ∂̄ ≡ ∂z̄ = (∂1 + i∂2)/2. The equation of
motion is

∂̄∂Xµ(z, z̄) = 0, (3)

1 This name comes from the custom of denoting by T the massless complex scalar
whose VEV is associated with the compactification size R and the antisymmetric tensor
B as T = R2/α′ + iB (see below).
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which implies that ∂Xµ is holomorphic and ∂̄Xµ antiholomorphic. They thus
admit Laurent expansions, whose coefficients read

αµm =

(
2

α′

)1/2 ∮
dz

2π
zm∂Xµ(z), (4)

α̃µm = −
(

2

α′

)1/2 ∮
dz̄

2π
z̄m∂̄Xµ(z̄). (5)

The total Noether momentum along the periodic dimension is quantized in
units of the inverse radius

p25 =
n

R
=

1

2πα′

∮
(dz∂X25 − dz̄∂̄X25) = (2α′)−1/2(α25

0 + α̃25
0 ), (6)

with n an arbitrary integer. The total change in the X25 coordinate while
going once around the winded string is

2πRw =

∮
(dz∂X25 + dz̄∂̄X25) = 2π(α′/2)1/2(α25

0 − α̃25
0 ) (7)

Equations (6) and (7) are solved as(
2

α′

)1/2

α25
0 =

n

R
+
Rw

α′
≡ p25

L , (8)

(
2

α′

)1/2

α̃25
0 =

n

R
− Rw

α′
≡ p25

R . (9)

The Virasoro generators are given by

L0 =
1

2
α0 · α0 +

∞∑
n=1

α−n · αn ≡
α′

4

(
pµpµ + (p25

L )2
)

+N (10)

L̃0 =
1

2
α̃0 · α̃0 +

∞∑
n=1

α̃−n · α̃n ≡
α′

4

(
pµpµ + (p25

R )2
)

+ Ñ (11)

where the dot product involves all of the twenty-six dimensions, whereas
the indices µ only ranges over non-compact dimensions. In particular, pµpµ
gives (minus) the mass-squared M2 observed after compactification. From
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Figure 1: Spectra of a string on circles of various radii. Circles smaller than
Rmin = α′1/2 are T -dual to larger circles.

the physical states conditions L0−1|φ〉 = 0 = L̃0−1|φ〉, we can then extract
the mass formula

M2 =
n2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2), (12)

and the level-matching condition

Ñ −N = nw. (13)

Notice that in the decompactification limit R → ∞ the winding states be-
come infinitely heavy while the momentum excitations become infinitesimal
and generate a continuum (see figure 1). Conversely, as R → 0 the momen-
tum excitations decouple while the winding states form a continuum. The
two limits thus present identical spectra !

In fact, the mass formula (12) is invariant under the T -duality transfor-
mation

R→ R′ =
α′

R
, n↔ w. (14)
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A string winding around a circle of large radius therefore produces the same
mass spectrum as a string winding around a circle of small radius. In the
following sections, we will show that T -duality actually is a symmetry of the
full interacting theory, so that large and small radii are equivalent in every
respect.

An important implication of T -duality is the existence of a minimum
radius of order of the Planck scale, given by the self-dual radius

Rmin =
√
α′. (15)

The argument presented in this section for a periodic dimension also holds
for any circle in space-time. One is thus driven to the conclusion that
“small circles don’t exist” [2]. The impossibility to compress a circle below
the Planck length is maybe not so surprising given that the fundamental—
structureless—objects of the theory are one-dimensional. Length scales much
smaller than the string scale simply cannot be probed [3].

This duality strongly suggests that the traditional manifold conception
of space-time is not applicable at the Planck length, but should rather be
considered as an ‘emergent’ notion, only approximately valid at much larger
length-scales [4].

2 One-loop partition function

The one-loop partition function of a closed string can be expressed as the
path integral on a torus with no vertex operators [1]. The coordinates on the
worldsheet are subject to the following identifications :

(σ1, σ2) ∼= (σ1 + 2π, σ2) ∼= (σ1 + 2πτ1, σ2 + 2πτ2), (16)

with modular parameter τ ≡ τ1 + iτ2. Tori related by transformations of the
modular group SL(2,Z) are equivalent. Any modular transformation

τ → aτ + b

cτ + d
, (17)

where a, b, c, d are integers satisfying ad − bc = 1, can be generated by the
transformations T : τ → τ + 1 and S : τ → −1/τ . The space of conformally
inequivalent tori can thus be restricted to the fundamental region

− 1/2 ≤ τ1 ≤ 1/2, τ2 ≥ 0, |τ | ≥ 1. (18)
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One can think of the path integral on a torus as formed by a field theory
on a circle that has been evolved for Euclidean time 2πτ2, translated in σ1

by 2πτ1, and identified with the initial circle. The generator of translations
along σ2 is the Hamiltonian H = L0+L̃0−(c+c̃)/24 (with the central charges
c and c̃ given by the number d of transverse oscillators), while the momentum
operator P = L0 − L̃0 generates translations along σ1. The identifications
of the ends of the cylinder thus formed is realized by taking the trace. The
one-loop partition function then reads

Z1(τ) = Tr [exp(−2πτ2H + 2πiτ1P )] (19)

= (qq̄)−d/24Tr
(
qL0 q̄L̃0

)
, (20)

with q ≡ exp(2πiτ). The trace splits into a sum (or integral) over momenta p
and a sum over the occupation numbers N and Ñ , following the decomposi-
tions (10) and (11) of the Virasoro generators into zero modes and oscillator
sums :

Z1(τ) =
∑
p

exp
[
−πτ2(α2

0 + α̃2
0) + iπτ1(α2

0 − α̃2
0)
]

(qq̄)−d/24trNq
∑∞

n=1 α−n·αntrÑ q̄
∑∞

n=1 α̃−n·α̃n . (21)

The traces over the Fock space are easily computed if one writes them in a
basis over all possible multiparticle states [5]. For example, in one dimension
with the basis |0〉, α−n|0〉, (α−n)2|0〉 and so on, the first trace becomes (for
one dimension)

trNq
∑∞

n=1 α−nαn =
∞∏
n=1

(1 + qn + q2n + · · · ) =
∞∏
n=1

(1− qn)−1, (22)

and similarly for the right-moving sector. The second line of (21) then gives
for each set of oscillators a contribution |η(τ)|−2, where the Dedekind eta
function is defined as

η(τ) ≡ q1/24

∞∏
n=1

(1− qn). (23)

The first line of (21) has to be treated separately for compact and non-
compact dimensions. For a non-compact dimension, α2

0 + α̃2
0 = α′p2 whereas
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α2
0 − α̃2

0 = 0. The momenta form a continuum so that the sum turns into an
integral, bringing a factor of space-time volume V :∑

k

exp
[
−πτ2α

′p2
]
→ V

∫
dp

2π
exp

[
−πτ2α

′p2
]

= V (4π2α′τ2)−1/2. (24)

For the periodic dimension X25, the left- and right-momenta are quantized
as in (8) and (9), so the momentum sum is replaced by a sum over n and w.
The total contribution from the compact dimension to the partition function
is then given by

Z25
1 (τ) = |η(τ)|−2

∞∑
n,w=−∞

exp

[
−πτ2

(
α′n2

R2
+
w2R2

α′

)
+ 2πiτ1nw

]
. (25)

This expression is manifestly invariant under the T -duality transformation
(14). This implies that T -duality is a symmetry of the free string theory.

For the consistency of the theory, the partition function must be invari-
ant under modular transformations [6]. The contribution from the non-

compact dimensions goes as τ
−1/2
2 |η(τ)|−2. Using the following properties

of the Dedekind function [1] :

η(τ + 1) = exp(iπ12)η(τ), (26)

η(−1/τ) = (−iτ)1/2η(τ), (27)

we see that it is invariant under τ → τ +1 as well as under τ → −1/τ (which
sends τ2 to τ2/|τ |2), and thus invariant under the full modular group.

Modular invariance of the contribution (25) from the compact dimension
can be made explicit by using the Poisson resummation formula [1]

∞∑
n=−∞

exp
(
−πan2 + 2πibn

)
= a−1/2

∞∑
m=−∞

exp

[
−π(m− b)2

a

]
(28)

to rewrite

Z25(τ) = R(α′τ2)−1/2|η(τ)|−2

∞∑
m,w=−∞

exp

(
−πR

2|m− wτ |2

α′τ2

)
. (29)

The coefficient in front of the sum has just been shown to be modular in-
variant. The sum is also invariant under τ → τ + 1 and τ → −1/τ if we
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redefine the dummy summation variables as m → m + w, and m → −w,
w → m, respectively (note that such a shift is allowed because sum is finite,
given that τ2 ≥ 0 in the fundamental region).

The partition function (29) can be interpreted as a sum over topologically
distinct sectors labeled by m and w, which correspond to non-trivial closed
curves on the toric world-sheet winding around the compact direction :

X25(σ1 + 2π, σ2) = X25(σ1, σ2) + 2πRw, (30)

X25(σ1 + 2πτ1, σ
2 + 2πτ2) = X25(σ1, σ2) + 2πRm. (31)

In the next section we generalize this construction to the case of higher-genus
world-sheets.

3 Higher genus contributions

Interacting string theory involves a summation over worldsheets of different
topologies. In this section we show, following [7] and [8], that the T -duality
symmetry extends to the higher-genus contributions to the partition function
as well. This will confirm the claim that a small compactification radius is
completely equivalent to a very large one (at least perturbatively).

Each non-trivial closed curve on a multiloop torus can wrap around the
compact direction. The possibles windings (30) and (31) of X25 thus gener-
alizes on a compact Riemann surface Σ of genus g to∮

ai

dX25 = 2πRwi,

∮
bi

dX25 = 2πRmi, (32)

where ai and bi (with i = 1, . . . , g) are cycles defining a canonical homology
basis. We can write a general solution dX25 = λiωi + λ̄iω̄i in terms of a
normalized basis of holomorphic (1, 0)-forms ωi ≡ ωidz on the surface Σ,
with ∮

ai

ωj = δij,

∮
bi

ωj = τij. (33)

The complex period matrix τij is symmetric and has positive imaginary part
[9]. The periods are then expressed as

λi + λ̄i = 2πRwi, τijλ
j + τ̄ijλ̄

j = 2πRmi, (34)
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which solves to
λi = −iπR(mj − wkτ̄kj)(Imτij)−1. (35)

The term concerning the periodic coordinate in the action (2) can be ex-
pressed as

S25 =
1

4πα′

∫
Σ

dX25 ∧ ? dX25, (36)

where the star indicates the Hodge dual, acting on the complex coordinates
as ? dz = −idz and ? dz̄ = idz̄. Using that [9]∫

Σ

ωi ∧ ω̄j =

g∑
k=1

[∮
ak

ωi

∮
bk

ω̄j −
∮
bk

ωi

∮
ak

ω̄j

]
= −2iImτij, (37)

we derive the action concerning the (m,w) sector

S25
m,w =

πR2

α′
(m− wτ̄)(Imτ)−1(m− wτ). (38)

The contribution from the circular direction to the genus g partition function
can be written in a form similar to (25) (with an additional coefficient of R
due to the X25 zero mode [7])

Z25
g = R |η(τ)|−2

∞∑
m,w=−∞

exp(−S25
m,w) = R1−g|η(τ)|−2(detα′Imτ)1/2

∞∑
n,w=−∞

exp

[
−πImτ

(
α′n2

R2
+
w2R2

α′

)
+ 2πiReτ nw

]
, (39)

where we performed a Poisson resummation in matrix form [10]. From the
previous section we know that such an expression is modular invariant. Under
T -duality transformation (14) we find

Z25
g

(
α′

R

)
=

(
R2

α′

)g−1

Z25
g (R). (40)

The complete partition function is given by

Z(Φ, R) =
∞∑
g=0

eχΦZg(R), (41)
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where Φ is the (constant) dilaton and χ = 2 − 2g is the Euler number of a
Riemann surface of genus g. To verify its invariance, we need to know the
action of a T -duality transformation on the dilaton. The vacuum expectation
value of Φ sets the value of the gravitational coupling κ ∝ exp(−Φ). After di-
mensional reduction, the 25-dimensional coupling constant κ25 = (2πR)−1/2κ
must be invariant under T -duality, and so κ varies as

κ→ κ′ =
α′1/2

R
κ, (42)

which implies for the dilaton

Φ→ Φ′ = Φ +
1

2
ln

(
R2

α′

)
. (43)

This is just what is needed to make the complete partition function invariant.
In conclusion, T -duality can be considered as a genuine symmetry of the
(perturbative) interacting string theory.

4 Enhanced gauge symmetry

In standard Kaluza-Klein theory with point particles, the gauge symmetries
that are present in the compactified theory correspond to the isometries of
the compact dimension—for instance a U(1) gauge symmetry for a circu-
lar dimension. A striking feature of the theory of a string on a circle is
the appearance of non-Abelian symmetries at the fixed point of the duality
transformation (14) [11].

Let us examine the massless states in the spectrum (12) that satisfy the
level-matching condition (13). The states constructed by acting on the vac-
uum with one holomorphic and one anti-holomorphic oscillator and without
any momentum or winding are always massless :

N = Ñ = 1, n = w = 0 ⇒ M = 0. (44)

When the excitations are along the non-compact dimensions, the states
αµ−1α̃

ν
−1|0〉 correspond to the 25-dimensional graviton, the antisymmetric ten-

sor and the dilaton. When either the left- or the right-moving excitation lies
along the compact dimension, we obtain the vector states α25

−1α̃
µ
−1|0〉 and

αµ−1α̃
25
−1|0〉, arising from the 26-dimensional graviton and antisymmetric ten-

sor; these two massless vectors generate a U(1)L × U(1)R gauge symmetry.
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Finally, α25
−1α̃

25
−1|0〉 is a massless scalar. All those massless states are also

present in Kaluza-Klein compactification.
But there are further massless states for special value of the radius. The

states with non-vanishing winding number

N = 0, Ñ = 1, n = w = ±1, and N = 1, Ñ = 0, n = −w = ±1 (45)

correspond to four vector states and four scalars, all with mass

M =
α′ −R2

Rα′
. (46)

They are massless for the self-dual radius Rmin = α′1/2. At this special radius,
the four new massless vectors combine to the two that are present for any
radius to enhance the gauge symmetry to SU(2)L × SU(2)R. Moreover, the
states with

n = ±2, w = N = Ñ = 0, and w = ±2, n = N = Ñ = 0 (47)

correspond to four scalars that are also massless at the minimum radius.
Remarkably, as the radius moves away from the minimum value, a stringy
Higgs effect takes place : the additional gauge bosons ‘eat’ the four scalars
(47) and acquire a mass, which breaks the symmetry back to U(1)L×U(1)R.

The enhanced SU(2)L×SU(2)R symmetry can be exhibited by studying
the current algebra [1]. We focus on the holomorphic currents, since the
antiholomorphic ones behave in a similar way. The oscillator state αµ−1α̃

25
−1|0〉

is created by the operator

J3(z) = iα′−1/2∂X25
L , (48)

while the additional vector states from (45) are created by the operators

J±(z) = exp(±2iα′−1/2X25
L ). (49)

These operators obey the algebra

J+(z)J−(w) ∼ 1

(z − w)2
+

2

z − w
J3(w), (50)

J3(z)J±(w) ∼ α′−1

2(z − w)
J±(w). (51)
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If we define J±(z) ≡ (J1(z)± iJ2(z)), the algebra is rewritten as (setting α′

to 1/2)

J i(z)J j(w) ∼ δij

2(z − w)2
+ i

εijk

z − w
Jk(w). (52)

The holomorphic currents can be expanded as

J i(z) =
∞∑

m=−∞

J im
zm+1

, (53)

where the Laurent coefficients form an affine Kac-Moody SU(2) algebra with
level one : [

J im, J
j
n

]
=
m

2
δm+nδ

ij + εijkJkm+n. (54)

Notice that the J± operators (49) that create the two additional vector
states are single-valued under X25

L → X25
L +2πR only for the self-dual radius.

On the other hand, the J3 operator (48) is well-defined for any values of the
radius.

5 Narain compactification

We now generalize our analysis to the case of q dimensions compactified on
a torus T q :

Xm ∼= Xm + 2πR, with 26− q ≤ m ≤ 25. (55)

The spectrum of momenta (pmL , p
n
R) in the compact directions forms a lattice

Γ in a 2q-dimensional space, spanned by the momentum and winding exci-
tations (cf. (8) and (9)). We will work with dimensionless lattice momenta
l ≡ (lmL , l

n
R) = (α′/2)1/2)(pmL , p

n
R), and define the product ◦ with Lorentzian

signature (q, q) as l ◦ l′ ≡ lL · l′L − lR · l′R.
The requirement of modular invariance of the partition function (cf. (25))

ZΓ(τ) = |η(τ)|−2q
∑
l∈Γ

exp(πiτ l2L − πiτ̄ l2R) (56)

severely constrains the lattice Γ [12]. Under τ → τ + 1, ZΓ(τ) changes by a
phase exp(πi(l ◦ l)), so this implies that the lattice Γ must be even :

l ◦ l ∈ 2Z. (57)
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Invariance under τ → −1/τ can be analysed by making use of Poisson re-
summation ∑

l′∈Γ

δ(l − l′) = V −1
Γ

∑
l′′∈Γ∗

exp(2πil′′ ◦ l), (58)

which relates the lattice Γ to its dual Γ∗ (i.e. the set of all vectors whose
product with a vector of Γ gives an integer). Here VΓ is the volume of the
unit cell of the lattice Γ. Using this representation, the partition function
can be easily shown to obey the relation [1] :

ZΓ(τ) = V −1
Γ ZΓ∗(−1/τ). (59)

Modular invariance is thus respected if the lattice is self-dual :

Γ = Γ∗, (60)

in which case of course VΓ = V −1
Γ∗ = 1.

All even self-dual lattices can be obtain from one such lattice, say Γ0,
by O(q, q) transformation. However, physical quantities like the mass always
involve the products p2

L and p2
R and are thus invariant under the group O(q)×

O(q) that acts on the left- and right-moving momenta separately. The space
of inequivalent theories is then

O(q, q)/(O(q)×O(q)). (61)

The number of parameters in this coset space is dimO(q, q) − dimO(q) −
dimO(q) = q2. These parameters can be understood as the compact com-
ponents of the background fields [13]. Their number indeed matches the
number of freely adjustable parameters represented by the background met-
ric gmn and antisymmetric tensor Bmn : q(q + 1)/2 + q(q − 1)/2 = q2.

In addition, there exits also some discrete subgroup of O(q, q) that takes
the lattice Γ0 into itself. This is the T -duality group O(q, q,Z). It includes
R → α′/R dualities on the q individual circles, linear redefinitions of the
axes that respect the periodicity, and discrete shifts of the antisymmetric
tensor background Bmn. The space of inequivalent lattices and inequivalent
backgrounds is finally given by

O(q, q,Z)\O(q, q)/(O(q)×O(q)). (62)
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6 Heterotic T -duality

In this section we consider the bosonic construction of heterotic string theory,
with 26 left-movers and 10 right-movers [12]. After toroidal compactifica-
tion of q dimensions, the dimensionless momenta in the compact directions
(lmL , l

n
R), with 26− q ≤ m ≤ 25 and 10− q ≤ n ≤ 9, take value in some lattice

Γ. In analogy to the case of the bosonic string, this lattice is constrained
by the requirement of modular invariance of the partition function to be an
even self-dual Lorentzian lattice of signature (q + 16, q).

Like in the bosonic case, the moduli space is a coset space

O(q + 16, q,Z)\O(q + 16, q)/(O(q + 16)×O(q)). (63)

The number of moduli after compactification on a torus T q (regardless of the
discrete symmetries) is q(q+ 16). They can again be given an interpretation
in terms of background fields [13]. To specify the vacuum states of the
compactified heterotic theory, one need to fix the background metric gmn and
the antisymmetric two-form Bmn, which together account for q2 parameters.
The new feature is the presence of Yang-Mills fields Am in the Lie algebra
of SO(32) or E8 × E8 that may have non-trivial global holonomies. These
correspond to non-trivial Wilson lines

Um = P exp

∮
γm

A · dx, (64)

where P indicates path-ordering, and the closed curves γm belong to the fun-
damental group of the torus π1(T q). This group being Abelian, the q Wilson
lines must commute and thus can be simultaneously put into the maximal
torus of the gauge group generated by exponentiating its Cartan subalgebra.
The choice of q elements of the sixteen-dimensional Cartan algebra involves
16q parameters. Adding all the parameters, we obtain q(q+ 16) as expected.

Note that such toroidal compactifications of the heterotic string do not
lead to realistic models because none of the supersymmetries is broken. They
result in N = 4 supersymmetry in four dimensions, which implies that the
fermions are necessarily in the adjoint of the gauge group, in disagreement
to what happens in the Standard Model.

As the coset space (63) is a general solution of the consistency conditions,
it must to be the same whether we consider the SO(32) or E8×E8 heterotic
strings. This points to the fact that the two heterotic theories are just distinct
limits of a single theory [13].
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Figure 2: Dynkin diagram for the Π17,1 lattice, with the nodes labeled to show
the embeddings of Γ8 ⊕ Γ8 and of Γ16 (italic).

It is actually possible to continuously interpolate between compactified
versions of the E8×E8 and SO(32) theories by turning on appropriate back-
ground fields and adjusting radii. A theorem by Hasse and Minkowski asserts
that in any dimensions 8k+2d there exist an even integer self-dual Lorentzian
lattice which is unique up to SO(8k + d, d) transformations; for Euclidean
signature, such lattices exist in dimensions 8k [10]. In 16 dimensions, there
is only the E8×E8 lattice Γ8⊕ Γ8 and the SO(32) lattice Γ16. If we append
to each of them the even two-dimensional Lorentzian lattice U , we get an
even self-dual Lorentzian lattice Π17,1 of signature (17, 1). According to the
uniqueness theorem, there must therefore be some SO(17, 1) transformation
that relates the Γ8 ⊕ Γ8 ⊕ U and Γ16 ⊕ U lattices. This transformation was
exhibited in [14]. Compactified versions of the two heterotic string theo-
ries, insofar as they are continuously related, may be thus be regarded from
a mathematical point of view as different ground states of the same theory.
From a physical point of view, however, the intermediate SO(17)-transformed
theories do not necessarily admit interpretations in terms of strings propagat-
ing in space-time. The natural notion of length eventually loses its validity
somewhere between the two situations.
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