
COST REDUCTION VIA COMMON ONBOARD SOFTWARE

John A. Rohr
Jet Propulsion Laboratory
Pasadena, California USA

John.A.Rohr@Jpl. Nasa.Gov
(818) 354-4096

March 26, 1995

The Jet Propulsion Laboratory has been tmildinc, Iaunchin/;, and operating deep-

space probes for more than 30 years. Initial JPL, probes were sent to the moon in the

1960’s. Subsequent probes flew past nearby planets Mercury, Venus, and Mars. In
the 1970’s, two Viking probes landed cm Mars and two Voyager spacecraft began

their journey to the edge of the Solar System. In the 1980’s and 1990’s, other probes
have been sent toward the Sun, planets, and outer space to increase our scientific

knowledge of the Solar System.

Each space mission requires an cmboard commanding and sequencing capability to
direct the spacecraft through various actions to accomplish the scientific and

engineering tasks required by the mission objectives. Early JPI, spacecraft used
programmable sequencers. These devices were hard-wired logic machines which

could accept specific parameters. The first special-purpose computing capability

consisted of a computer with a limited memory of 128 words and a set of 16 special-

purpose, two-address instructions. The same computer was later enhanced by

expanding the memory to 512 words. All onboard commanding and sequencing

was accomplished within these constraints.

The first]1’1. spacecraft to have a general-purpose computer were the Viking Orbiter

spacecraft. These spacecraft carried two identical computers which implemented the

Computer Command Subsystem. Each computer had a 4,096-word memory and a

set of 64 instructions, a few of which were dedicated to operating the custom input-
output units which were included. Also onboard were dual telemetry computers

and dual attitude control computers. Computers almost identical to the Viking

(1-biter computers are used on the Voyager spacecraft.

b

The software used for commanding and sequencing onboard the Viking and

Voyager spacecraft utilizes an onboard interpreter driven by a set of tables generated
by ground software. The tables implement a language called Virtual Machine

Language (VM1.). This language is used to program the spacecraft to accomplish the
scientific and engineering tasks required by the mission objectives. VML is a very
efficient language. All of the tables required for commanding and sequencing the

spacecraft fit in about 2000 words in each computer memory. These words are
reloaded as required from the ground.

The Galileo spacecraft utilizes a Command and

distributed set of six RCA 1802 computers.
architecture from that of Viking and Voyager.

Data System which is based on a

This is a significantly different
The total amount of memory is

approximately 500,000 words. The commandi]lg and sequencing language for

Galileo is very different from that of Viking and Voyager, but it is also called VML
(for Virtual Machine l.,anguage). The Galileo VML implements all the capabilities

required for commanding and sequencing onboard the C;ali]eo spacecraft.

The Cassini spacecraft is using an IBM 1750A ((;VSC) for its onboard computing
capability. This is yet another architecture and yet another, different VML has been
invented for the mission. other missions have also used VML’s which were

different from those of previous missions.

The design and use of a different VML for each]1’1., mission has been expensive both
in terms of the design and implementation effort for the language and in terms of

the effort required to develop a ground system to support the language. Even
though different hardware has been used, many of the functions required onboard
are the same. in the future, multiple missions shtmld be able to share one common
language for cmboard commanding and sequencing.

A study has been recently completed at JI’L which investigated the use of a
commercial language to provide a common language which could be used on
multiple JPL missions. Related work at JPl, facilitates building a unique database of
spacecraft commands for each mission. A prototype effort is currently underway to

demonstrate the feasibility of using a commercially available language for

commanding]1]1, spacecraft. The prototype will implement command generation
and execution from the beginning of command sequence generation in ground

,! ●

software through execution onboard a simulated spacecraft. Two different
languages and a single database of spacecraft commands wrill be demonstrated to
show that the concept is feasible independent of implementation in any specific

language.

The use of a common language for onboard commanding and sequencing should
reduce the cost of developing ground software for new missions. JPL has invested a
considerable effort over recent years to develop a multimission ground system. The

use of a common language cmboard for multiple missions would further help to
reduce costs by eliminating the need to develop software to support new onboard
languages. Software developed to support a ctn-nmon onboard language would

require only minimal modification, if any, from mission {0 mission. Also, all
personnel would know the common onboard language and would be able to work
on multiple missions or transition from one mission to another without needing to
learn another onboard language.

The use of a commercial language as the cornmo] 1 onboard language would relieve
JPL of the necessity of developing and supporting a language, but some adaptation of
both the JPL multimission software and the commercial language itself may be
required for all components to work together effectively in the JPI, operations

environment. By using a commercial language, JP1. could take advantage of
capabilities in the language not available in the various VM1 ,’s now being used and
JPL could share experience gained during over 30 years of space exploration.

The current schedule for the prototype development calls for a demonstration in

August, 1995. By that time, some of the issues involved in using a commercial
language as a common onboard language and issues involved in its integration into
the]1’1. multimission operations environment should have been addressed. An up-

to-date report will be made at the workshop. Experience with the development of

the prototype and the implementation of {he two commercial languages as well as
the common database of commands will be discussed. Lessons learned and ideas for
possible future work will be presented.

