Gen Relativ Gravit (2009) 41:581-660
DOI 10.1007/s10714-009-0760-7

GOLDEN OLDIE

Republication of: Relativistic cosmology

George F. R. Ellis

Published online: 30 January 2009
© Springer Science+Business Media, LLC 2009

An editorial note to this paper and a biography can be found via doi:10.1007/s10714-009-0759-0.

Original paper: G. F. R. Ellis: Relativistic cosmology, In: Sachs, R.K. (ed.) Proceedings of the
International School of Physics “Enrico Fermi”, Course 47: General relativity and cosmology,
pp. 104-182. Academic Press, New York and London (1971). Reprinted with the kind permission
of Elsevier Ltd, the current owner of the Academic Press copyright, and of the author.

Editorial responsibility: A. Krasinski, e-mail: akr@camk.edu.pl.

G. F. R. Ellis (X))

Mathematics Department, University of Cape Town,
Rondebosch 7701, Cape Town, South Africa
e-mail: George.Ellis@uct.ac.za

@ Springer


http://dx.doi.org/10.1007/s10714-009-0759-0

582 G. F. R. Ellis

Relativistic Cosmology.

G. F. R. Eru1s

Department of Applied Mathematics and Theoretical Physics
University of Cambridge - Cambridge

1. — Introduction.

The aim of cosmology is to determine the large-scale structure of the physical
universe. '

One rather vague assumption is at the basis of virtually all present-day
work on the subject. We shall call this (following Bonp1[1]) the Copernican
Principle. It is the assumption:-

« We do not occupy a privileged position in space-time ». We may apply
this to two different kinds of experiment. First, considering laboratory experi-
ments, we may interpret the principle as implying that local physical laws
are the same everywhere in the universe. Secondly, considering astronomical
observations, we may assume that our view of the universe is not a preferred
picture. (We can, if we wish, proceed without this second assumption; the result
is to obtain, beside the picture of the universe discussed in Sect. 7, more general
situations which can be regarded as rather unlikely models of the universe.)

The over-all picture we observe is well known (see BoNDI [1], McVITTIE [2]):
on a moderately large scale (» 3-108 light years) the distribution of clusters
of galaxies is approximately isotropic about us. The general motion is an over-
all expansion, random velocities relative to this general motion being rather
small. Thus we are able to determine an average velocity vector which rep-
resents to a good approximation the over-all motion of matter in our «local »
vicinity ; the Copernican principle then suggests that we can assume the existence
of such a vector at each point of space-time. The principle will also be taken
to imply that corresponding to the very nearly isotropic distribution of mat-
ter and background radiation about us, any observer moving with the average
velocity vector will see a very nearly isotropic distribution of matter and ra-
diation on his celestial sphere.
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Republication of: Relativistic cosmology 583

Our aim will be to determine a cosmological model which will correctly’
predict the results of astronomical observations, and whose ‘behaviour is
determined by those physical laws which describe the behaviour of matter
on scales up to those of clusters of galaxies. To find such laws, we remember
that within the solar system the dominant long-range force is gravity. (We
shall assume over-all electrical neutrality of heavenly bodies.) Accepting
(with some reservations until the consequences of Dicke’s solar oblateness meas-
urements are completely understood) that general relativity is the best theory
of gravitation available for phenomena up to the scale of the solar system, we
shall extrapolate by assuming it is also, to a good approximation, the law valid
for gravity acting on scales about that of clusters of galaxies. If this eventually
proves to lead to predictions inconsistent with observations, we may have
to modify or abandon general relativity; however we would like to avoid ad hoc
modifications introduced solely for cosmological convenience! In these lec-
tures we shall therefore assume that general relativity is valid. (The alterna-
tive theories so far proposed may be studied by much the same methods as
will be used here to study the conventional theory.)

On this view, the geometry of space-time will be determined by its energy
content. We may describe the matter and radiation content of the universe
in two convenient ways: by using a particle distribution function (as diseus-
sed in Ehlers’ lectures) or by using a fluid approximation. It is the latter
course (first introduced by EinsTmIN in 1917 [3], and followed in nearly all
the classical cosmological discussions) we follow in these lectures: a continuum
approximation is used, and the average velocity vector may be thought of
as representing the velocity of fluid « particles », which are in this casc clusters
of galaxies.

In Sect. 2-5, we shall obtain dynamical relations valid in any cosmological
model, and illustrate these relations by applying them to some particular
cosmological models. There is a very close parallel between fluid dynamics
in Newtonian theory and in general relativity, and we shall emphasize this by
giving corresponding relations in parallel. The basis of this close correspondence
is that the fluid equations we shall use are based on relative motion. Correspond-
ing to the applications we have in mind, the Newtonian fluid will always be
a self-gravitating fluid.

In Sect. 6, we shall derive observational relations valid for any cosmological
model and give as an illustration of the methods used, their application to the
standard isotropic cosmological models. (The optical relations valid in special
relativity are a special case of these observational relations.)

In Sect. 7, we shall present a broad over-all picture of the observable uni-
verse, on the basis of recent observations. This over-all picture serves as a
background for more detailed observational discussions.

Conventions used are as follows:
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in general relativity,

arbitrary coordinates x* (Latin let-
ters run from 1 to 4) are used in the
4-dimensional space-time with metric
tensor g, (signature (— 4+ + +)).
A semi-colon (;) denotes the cov-

in Newtonian theory,

unless otherwise stated, fixed cur-
vilinear co-ordinates z” (Greek letters
run from 1 to 3) and a natural time
co-ordinate ¢ is used in the (3+1)-
dimensional space-time. A comma (,)

denotes the covariant derivative with
respect to the flat 3-space metric
h,, (signature (+ + +));so0h,, ,=0.

ariant derivative with respect to
the metric gu; 80 ga;e = 0.

Square brackets denote skew-symmetrization and round brackets denote
symmetrization (SCHOUTEN [4]), 80 Ty = 4 (Lo + ),

S[abe] = % (Sabc + Scub + Sbca - Sacb - Sbac_ Sdm) .

The general-relativity notation and units we use are the same as those used
by EHLERS in this volume; in particular, note that we use units in which the
speed of light is unity. As a notational convenience, we shall often use the
general-relativity name of a quantity to refer to its Newtonian analogue as well.

This article is a revised and corrected version of lectures given at Varenna.
It presupposes a knowledge of the basic ideas and observations of cosmology
(see for example BonbDI [1], RINDLER [5]). It should be supplemented by
review articles written from other view-points, such as those by HECKMANN and
ScHUCKING [6, 7], ZEL'DOVICH [8], DAVIDSON and NARLIKAR [9], RINDLER [10],
ScriUcKING [11] and SANDAGE [12]; it is intended to be complementary to
the articles by EHLERS and ScraMa in this volume. I should like to thank
S. W. HaAwkING, J. EELERS and M. A. H. MacCarruM for many useful
discussions, M. A. H. MacCALLuM for assistance in preparing these notes,
and M. STRANGLEMAN for patiently and carefully typing them.

2. — Kinematical quantities.

2'1. The velocity vector field. — We assume the existence of a unique vector
field representing the average velocity of matter (or of some particular com-
ponent of matter) at each point of space-time. Thus there is defined,

in general relativity: in Newtontan theory:

the normalized 4-velocity field u°; so the 3-velocity

(2.1) U ut=—1. .
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To express these vectors in simple form we use

normalized comoving co-ordinates Lagrangian co-ordinates (y”, ?),
@ s),

defined locally as follows. In some arbitrarily chosen space-section (in Newtonian
theory, one of the natural space sections) of space-time, label the fluid particles
by co-ordinates y”. At all later times, label the same particles by the same co-
ordinate values, so that the fluid flow lines in space-time are the curves
{y” = const}. Determine the time co-ordinate by measuring proper time, from
the initial space section, along the flow lines. In terms of these co-ordinates,
the velocity vector takes the form

us £ 9%, . | VA0 .
In terms of

general co-ordinates a°, co-ordinates (2, t), where #” are fixed

curvilinear co-ordinates,

the velocity vectors are given by

_da

=
ds yO=const

ut =

dae l
ds yV=const

21.1. The projection tensor.

A {341} splitting of space-time into {space -- time} is

determined at each point by wue. given and absolute. The Euclidean
The tensor metric tensor

. h
(2.2) hap: = Gap + oty 4

is, at each point, a projection ten- is given in local orthonormal axes by

sor into the rest space of an ob- f)

server moving with 4-velocity we. "

These tensors are 3-dimensional projection tensors:

hou =0, hehd=h', heo=3. | kb’ =h°
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586 G. F. R. Ellis

By (2.2), the expression for ds? in general relativity is:
ds?: = g, do* dz® = h,, do*da® — (u,dzo)?;

an observer at the space-time point z* moving with 4-velocity e assigns to
the event z° -+ dz* a spatial separation (h,dz*dz?)}, and a time separation
|#odze| from himself. Note that the 3-planes defined in each tangent space
by ke do mot in general mesh together to form 3-surfaces in space-time; the
condition that they do so is given in Subsect. 4'4.1.

2'1.2. Volume elements. Effective volume elements in the instan-
taneous rest spaces of the co-moving observers are given by

ﬂobcd“d | ﬂpvd
where the totally-skew pseudotensors 7 are defined by

noed = qlavea  puase — ( g)~+ = g s = (p)H, 4

’

g:=det (ga) - h:=det(h,,) .

(In terms of an orthonormal frame, these are the alternating quantities
eabcd, 8””.)

The identities
’7md’1-m =_—4! 6‘[0 5} 5,c (5'.41 , I naﬂynlm = 3! 6“,‘6", 5710 ,

and the further identities obtained from these by contracting pairs of indices,
are frequently useful in proving formulae given in the sequel. (The — sign in
the general-relativity case appears because the determinant g is negative.)

2'2. Time derivatives. — We write the effective time derivative of a tensor 7,
measured by an observer moving with the standard velocity, as 7. Thus

(2.3)  Tggi=Tow (2.3)  T35:=0T55/ot +
%...8 8
is the covariant derivative along the + 150"

article ines. .
P world lLines is the convective derivative for mo-

tion with the fluid.
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2'3. The acceleration vector. — We can represent the combined effects of
gravitational and inertial forces on the fluid by the vectors

(2.4) W= ue b (2.4') a, =@)+ o,
the « acceleration vector », which is where @ is the gravitational poten-
spacelike as (2.1) implies #*u, = 0. tial (force = — grad @).

In co-moving co-ordinates, we find
4 09

a
00 Ay = oz’

VA

Note that even in Newtonian theory, we are unable to separate the gravita-
tional and inertial parts of @, invariantly if the density of matter does not
go to zero at infinity; see the discussions of HECKMANN and SCHUCKING [13],
BonDI [1], TRAUTMANN [14], and references cited there.

2'4. Relative motion of neighbouring particles.

2'4.1. The relative position vector. Consider the world-lines of
neighbouring particles 0 and @, labelled by co-moving co-ordinates y” and
y” + 3y” respectively. The vector X° with components given in co-moving co-
ordinates by X’ 3y” (and in general relativity, X°==0) joins these same
two world-lines at all times; we therefore call it a connecting vector.

Using general co-ordinates in general relativity, this vector has components
X = (8x°/0y”) 8y”. If we calculate X°, we find

Xo — Xe,ub = {0(0x°/dy” 8y®)[0x® + I'%,(dx°/Oy” 8y”)} 'aaﬁ; =

= {0(0xz°/0s)[dz° + I Ox®[Os} gTj’ dy” = ue, X0,
since 022°/dy”ds = 0%a°[0sly” and I, = I',. ’

(Geometrically, this is the statement and that the Lie derivative of X with
respect to u vanishes.) A similar calculation shows that in Newtonian theory,
X, =0, »X“ Thus a connecting vector obeys the differential equation

(2.5) Xo=uqp X°. | (2.5 X, = v, , X"

In general, a connecting vector will not (in general relativity) lie in the rest
space of an observer moving with 4-velocity u®. We obtain the relative position
vector X$ of G with respect to O, by projecting the connecting vector X, into
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588 G. F. R. Ellis

the rest-frame of O:
X, =h2X,. X, =htX, =X,
2'4.2. Relative velocity. The relative velocity vector Ve of G with

respect to 0 is defined to be the spatial part of the observed rate-of-change of
the relative position vector:

(26)  Ve=he(X), (2.6)  VR=RX),
80 SO

Vo= hey(Xehd),aul . VH= (X¥)°.

Since X° obeys the eq. (2.5), it follows (*) that

(2.7a) Ve=09,X 0, (2.7a') VE=o* X7,
where where
(2.70)  Val= hh Uy (2.70') Dy s = Vs

in each case, the relative velocity vector of a neighbouring particle is related
to the relative position vector of that particle by a linear transformation,
and the tensor determining that transformation is the spatial gradient of the
velocity vector.

To examine this relation further, we split v,, into its symmetric and skew-
symmetric parts:

(28) Vap = 0ub + Wap 4 (28,) vyv = opv + wyv ’
where where
oab = 6(ab) ] Wap = Wiap) y 6;" = 0(;47) bl wyv = w[pv] )
80
0“1&” =0= w,bub y

(") The essential properties of the covariant derivative are that it i) is linear,
ii) obeys Leibniz’ rule, and iii) preserves the metric, irrespective of whether indices
are up or down. For example,

(t Tab + ,gab);a = i Tab;a + f;cgab H
(8"X,)o=8%,X,+8"X,, We occasionally need the expressions involving the
Christoffel symbols I'%,,, for example in deriving (2.5), (2.5') and in proving the relations

1 9 —_
= = T \/ ka .
v 5 (Vil®)

adbed Hro a

Y .-=0=7) o0
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and the symmetric part into its trace and its trace-free part:

(2.9) 0u> = Ga» + 46has , 2.9y 6,=o0,+16n,,
where where
0% =0, 80 Oay = O(ap) s ¥, =0, 800,=0y,,,
Opu*=0 and 60=us,. and 0 =9, .

The quantities we have defined determine the first derivatives of the velocity
vector completely:

(2.10) oy = Wap + 0w + 30ha — (2.10a) v,, =w, +o0,+ 16k, ,

T | (2.100) Bvjot=a,—v,, 0 —D,.

We now split the relative position vector X, of G relative to 0 into a rela-
tive distance 81 and a direction n°; then X = n°3l where n,n®=1, so (3l)* =
= h* X, X, (and n°u, =0 in general relativity).

Equating the right-hand sides of (2.6) and (2.7), we now find that the rate-
of-change of relative distance is

@.
(31)

(2.11) = Bumen® = gy nen + 36,

in both cases, and that the rate-of-change of direction is
(2.12) k()" = (0 + 0 — (0cannd) h) my .

These two equations are equivalent to (2.7).

Applying these equations to a cosmological model (2.11) is a generalized
Hubble law allowing for possible anisotropic expansion; it is valid for distances
large enough to ensure random velocities are small compared with velocities
associated with the average motion of matter, but small enough for the Hub-
ble relation to be linear and also for the change in distance of the galaxies to
be relatively small during the time of light travel between the galaxies and
the observer. Thus we might expect its range of validity to be roughly from
50 to 500 Mpc. Relation (2.12), which we might expect to be valid for roughly
the same length scales, gives the rate-of-change of direction of neighbouring
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590 G. F. R. Ellis

fluid elements with respect to

a Fermi-propagated basis of ortho- a nonrotating basis of orthonormal
normal vectors: vectors:
(2.13) k()" =0 (2.13) (e,)"=0
for each basis vector e, for each basis vector e,
ee, =1, eu=0. e e’ =1.

Thus this relation gives the rate-of-change of position in the sky of neigh-
bouring clusters of galaxies with respect to axes at rest in a local inertial rest
frame (a rest frame determined by gyroscopes or other modern refinements
of Newton’s bucket experiment). [Detailed discussions showing that (2.13)
corresponds to a dynamically nonrotating set of axes may be found in SYNGE [15]
and TRAUTMANN [16].]

2'5. The kinematic quantities. — It is probably easiest to understand the
implications of (2.11), (2.12) by considering how a sphere of fluid particles
changes during the elapse of a small increment in proper time, choosing 0 at
the centre of the sphere. The results are indicated in Fig. 1.

O O O

71\1

b) c)

Fig. 1. — During a small time interval, a) the action of 6 alone transforms a fluid sphere
to a similar sphere of different volume but with the same orientation. &) The action
of a,, alone distorts the sphere, leaving its volume constant and the directions of the
principal axes of shear unchanged. ¢) The action of w, alone is to give a rigid rotation
leaving one direction (the axis of rotation) fixed. As time progresses the directions of
the principal axes of shear and of the axis of rotation will, in general, change.

@ Springer



Republication of: Relativistic cosmology 591

2'5.1. Volume expansion. From (2.11) we see that 0,, the exzpansion
tensor, determines the rate-of-change of distance of neighbouring particles (in
our application, clusters of galaxies) in the fluid. The isotropic part of the ex-
pansion is determined by 6, the volume expansion. We may define a represen-
tative length ! by the equation

7
T

W) =

(2.14) ==0;

1 represents completely the volume behaviour of the fluid, and corresponds
to the radius function RE(¢) in the Robertson-Walker (homogeneous and iso-
“tropic) world models. From it we can at any time ¢ define the « Hubble
constant » H:=1"[l = 40, and the « Deceleration parameter » ¢:= — (I"*[l)(1/H?2).
If we plot the curve I(¢) which represents the direction-averaged rate-of-change
of distance of clusters of galaxies as a function of proper time, H is the slope of
this curve (units: [time]~) and ¢ represents the curvature of this curve (in di-
mensionless units; ¢ is positive if the expansion is slowing down).

2'5.2. Shear. The shear tensor ¢, determines the distortion arising in
the fluid flow, leaving the volume invariant. The directions of the principal
axes of shear (¢.e. of any eigenvector of the tensor o,) are unchanged by the
distortion, but all other directions are changed. The magnitude of o, is the
shear o, defined by o*= 3}0%0s; 62>0, and ¢ =0 <> 0, = 0.

2'5.3. Vorticity. The vorticity tensor w, determines a rigid rotation of
clusters of galaxies with respect to a local inertial rest frame. We may also
represent vorticity by the vorticity vector w,, where

(2.15) w°:= } 9?9 U,y <> (2.15") = %n’”’wm <
<> Wap = Navca W° us ’ <~ wyv = nyva o’ ’
SO WU, =0 = WUy, VW, =0. S0 wﬂ,w'=0.

The direction of this vector is the axis of the rotation of the matter, since if
we choose 7, in the direction of w, when vorticity alone is nonzero, we find
he(n,)" = 0; this direction is left invariant by the rotation. Its magnitude is
the vorticity w, where w:= (0°w,) = (3w®w.)}; as w. is spacelike, >0 and
w=0<w,=0<w,=0.

We may note that general-relativistic cosmological models are no more and
no less « anti-Machian » than Newtonian cosmological models, in the sense
that in both cases a local dynamical rest-frame is nonrotating with respect
to a direction average over fairly distant galaxies, if and only if w = 0.

8 — Rendiconti S.I.F. - XLVII.
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2'5.4. General motion. In a general fluid flow, both w and ¢ will be
nonzero. It is then not immediately obvious from (2.12), (except in the spe-
cial case in which the vorticity vector is a shear eigenvector), if there exists
any direction left invariant by the rotation. However we can show that such
a direction exists by the following general argument.

On a unit 2-sphere which represents the sky, mark the positions of neigh-
bouring fluid particles at some instant. Then mark on the sphere at the posi-
tion of each particle, an arrow representing the observed rate-of-change of
position of that particle. The set of all such arrows forms a vector field on the
2-sphere, and any vector field on a 2-sphere must have a fixed point; in this
case, the fixed point corresponding to a direction e, left invariant by the fluid
motion. Now (2.12) shows that — e, is also left invariant by the motion. Hence
if we can use a fluid approximation to represent the motion of clusters of
galaxies, there exists at least one direction in the sky such that the positions
in the sky of nearby clusters in that direction and in the opposite direction
are instantaneously fixed in a local inertial rest frame. (As the universe evolves
this direction itself will, in general, change.)

2'5.5. Kinematic quantities in the universe. Since w,, 0, and 6
determine the relative motion of galaxies in a cosmological model, we should
like to determine the values of these quantities in the observed universe. In
principle we can compare observations with the theoretical expressions (2.11)
and (2.12), (the left-hand side of (2.11) is observable in terms of red-shift and
brightness measurements, cf. Subsect. 8°2.1), to evaluate 6, w, and o, at the
present time ?,. The value 6, = 3H,= 3 X (1.3-10* y)-! is probably correct
to within a factor 2 (cf. the lectures in this volume by ScraAMA and BURBIDGE),
but we can only obtain rather poor limits on w, and o, from direct observations.
The condition that the systematic motion of galaxies is away from us in all
directions (there are no directions in which we see a systematic blue-shift effect
in galactic spectra) imposes the restriction o,< 46,. More detailed examina-
tion of the direct evidence gives us the limits

(2.16) wox30o, Goxiby

(ERIsTIAN and SAcHs [17]). We can obtain much better limits on w, and o,
by indirect arguments (see Subsect. 7°2).

2'5.6. Other applications. While we have been considering these
quantities primarily in a cosmological context, they can of course be defined
in other situations where the fluid approximation is valid in astrophysics. Thus
in a static (nonrotating) star model, we would have 6 = o6 =w = 0. In the
study of our own galaxy, where stars may be taken to constitute the fluid
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particles, observations indicate that 6 ~ 0 near us, while Oort’s constants 4
and B suffice (as the flow is approximately two-dimensional) to determine
the shear and vorticity respectively (FREEMAN [18]; VOLIJER [19]).

Further discussion of these concepts in Newtonian theory may be found,
for example, in SERRIN [20] and BATCHELOR [21]. A systematic development
in the general-relativistic case is given in Ehlers’ review article [22].

3. — Conservation of energy and momentum.

3'1. The average velocity. — We will take the average velocity vector to be
determined by the condition that it is the « baricentric» velocity. An ob-
server moving with an arbitrary 4-velocity can define from the rest-masses m,
and 3-velocities ¥, of particles he observes in a (3-) volume element dV, the
mass-current density vectors

1 1 , 1
(3.1) I = (Wpu%le-m*V*, Wp.r%lelmvg) ’ l (3‘1 ) J_ deAr%lum* V* ’

indv in d¥V in d¥

Then the average velocity vector is given by

defining it as the (space-time) di- first defining the density o of the
rection u¢ of J°: matter:
1
= T m., .
= Quai u’aua =—1. 9 dent%:le- N
in dV
Then p is the particle rest-mass den- Then the velocity v” is defined by
sity measured by an observer tra-
velling with 4-velocity ue. J" = pv”.

Conservation of particle rest-mass now implies the conservation equations
. a = 0 = a *
(3 2) (Qu );a 0 <~ 9 + 06 0 ’ (3.21) a_f + (Q’U'),, —_ 0<$

<>0+00=0,
which can be integrated, using (2.14), to give

(3.3) ol*=:M, M=0.
This is the equation of conservation of matter along the world-lines, implying

that the total rest mass f odV in any small comoving volume element V is
constant. v
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594 G. F. R. Ellis

There are two situations in which this discussion has to be modified in the
relativistic case. The first is the case of particles of zero rest mass (photons,
peutrinos, etc.) when the definition of u° proceeds as before (°) if we define J°
as the number-current density instead of the mass-current density (3.1); then
o is the particle number density, which is again conserved in general. The
second situation is that in which the fluid is far from thermal equilibrium (**),
in particular when nuclear reactions or pair production are taking place. The
¢ will not be conserved, so it will be appropriate to define u* (and a new cor-
responding conserved quantity p) from a baryon or charge current density,
instead of the mass-current .density used here.

A more thorough discussion of these alternatives, and of equations (3.1)-(3.3),
may be found in Ehlers’ lectures.

3'2. Conservation of energy and momentum. — In Newtonian theory, the mo-
mentum conservation equation is the Navier-Stokes equation

1
(Vv). = ¢.7_E(p.' + ﬂv”.y) 1]

where p is the isotropic pressure of matter and x,, is the (trace-free) anisotropic
pressure; we can rewrite this as

(3.4) ea, + (p,+m*,)=0.

The thermal balance eq. ((3.13') below) is deduced separately.

In general relativity, the energy-momentum tensor of matter can be split
up uniquely with respect to any timelike vector »* (and so in particular, with
respect to the average velocity vector u¢) to give

(3'5) -Taa = ,uua'“'b + (Qaub + “nQo) + phcb + Tlap y

where q,u*=0, n°% =0, 7,u*=0. Then u is the total (relativistic) energy
density of matter measured by u°; the specific internal energy density ¢ of the
fluid is defined by u = o(1 + ¢€). ¢, is the energy flux relative to «° (which
will represent processes such as diffusion and heat conduction), p is the iso-
tropic pressure, and n, is the anisotropic matter pressure (due to processes
such as viscosity).

(*) Providing the particles do not all move in precisely the same direction.
(**) If the material is too far from thermal equilibrium a fluid description may
be inappropriate (cf. STEWART [23]).
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The relativistic equations of conservation of energy and momentum are
(3.6) T, =0.

Using the decomposition (3.5) of T, and the decomposition of u,, given in
Sect. 2, we can rewrite egs. (3.6) as the equations

(3.7(1) fl+(/‘+P)6+ﬂ“0u+qa;a+q°aa=0,

(3.70)  (u+ P) W+ ha¥(P,e + 7p + 4e) + (02 + 0+ 3085 = 0

3'3. Equations of state. — We only get physics into the picture when we spe-
cify further the properties of T,,. We may do this by giving a prescription for
defining ¢ and T, (in Newtonian theory, g, p, ,, and the heat-flow vector g¢,)
from a particle distribution function which obeys suitable equations (c.f. Ehlers’
lectures); in the fluid approximation however, we do so by giving equations
restricting o, p, 4, ¢a and 7wa.

3'3.1. General restrictions. A general restriction one would nor-
mally put on the matter is that its energy density be positive. The restrictions
of this kind we shall require the fluid to obey are

(3.8a) g+ p>0,
(3.8") 0>0.

(3.8b) p+3p>0.

(These restrictions will be used in Sect. 3’4 and 51.1). One would not expect
(3.8') to be violated under any circumstances; (3.8a) and (3.8b) can only be
violated, assuming u is positive, if the pressure takes extremely large negative
values. Thus if x is 1 g/cm?, (3.8a), (3.8)) can only be violated if p <— 10" atm
(GeErOCH [24]).

Further qualitative restrictions one would usually impose are:

(3.9a): that the fluid should be stable against local mechanical instability;
and, in the relativistic case,

(3.9b): that the speed of sound should be less than the speed of light.

3'3.2. Phenomenological equations. To obtain detailed equations
of state, we compare one-component fluids in General relativity and in New-

@ Springer



596 G. F. R. Ellis

tonian theory, assuming the bulk viscosity is negligible. Defining
(3.10) ==,

0 v is the specific volume of the fluid (*), we assume there is an equation of
state of the form

(8.11) e =¢(p, v)

where ¢ is the specific internal energy density of the fluid. Then we can define
the temperature 7T(p,v) and the specific entropy S(p,v) by

(3.12) de+ pdv=Tads.
The equation of conservation of thermal energy is then
(3.13) T8 =— (Ma0® + ¢+ #ag’), | (313) T8 =—(n,0"+¢,),

[(3.13) is just (3.7a) rewritten in terms of the new variables], and we find that
the phenomenological equations

(3.14a) Ty = — AGap o (3.14a") n,,=—120,,

ur

(3.14b) g, = —xhA(T,» + Tity) (3.14b") g, =—=xT,,
are necessary if the rate of generation of entropy is never negative; further the
heat conduction coefficient »(p, v) and the viscosity coefficient A(p, v) must obey
the restrictions

x>0, A>0.

[A bulk viscosity coefficient would give a contribution — 76 to the pressure,
where 7 (>0) is the coefficient of bulk viscosity.] '

A more detailed discussion of the relativistic thermodynamics leading to
the identifications (3.14) may be found in Ehlers’ review paper [22] and refer-
ences cited there. We may note that the difference between the energy con-
servation eqs. (3.13), (3.13’) and the momentum conservation eqs. (3.4), (3.7b)
are special-relativistic in origin, arising partly from the inertia assigned by
special relativity to all forms of energy, and partly from the 3 + 1 splitting
of space-time given by h,.

(*) Volume per unit mass, per particle, or per baryon if J, is defined as the mass,
number or baryon-current density vector respectively.
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3'4. Perfect fluids. — A perfect fluid is characterized by negligible heat con-
duction and viscosity:

Ap=¢=0<x=1=0.
In this case

To = MUy + Phoy

and %, is uniquely defined as the timelike eigenvector of the Ricci tensor.
The momentum-conservation eqs. (3.4), (3.70) now show that the accele-
ration of the fluid is determined by the spatial pressure gradient:

_ kP

3.15 ue = .
(:19) u+p

(3.15") a, =2,
e

Conditions (3.8a), (3.8’) ensure that these equations are determinate, and that
the acceleration is always away from a high-pressure region towards a neigh-
bouring low-pressure region. In the relativistic theory, the inertial-mass den-
gity of the fluid is u + p; a given spatial pressure gradient is therefore rela-
tively less efficient in producing an acceleration in a general-relativistic fluid
than in a corresponding Newtonian fluid, the inertial-mass density being
enhanced by the contribution p 4 ¢p.
We may estimate that

(3.16a) Teaslo = 0 =~ galo » Plo=0
in any reasonable cosmological model, since the random velocities of galaxies
are small at the present time (*). Then it is' a plausible inference from the
Copernican principle, but does not necessarily follow, that
(3.16b) Lalo =~ 0; | (3.160") ao=~0;
i.e. that the acceleration of the velocity field representing th® average motion
of galaxies is negligible at the present time. We shall assume this is true.

For a perfect fluid, eq. (3.13) is:

8 = 0<> entropy is constant along the flow lines of the fluid.

Then (3.11), (3.12) show that there is only one independent thermodynamic

() Random galactic velocities of order 1000 km/s imply p/ec? ~10-5. If there is a
large flux of neutrinos or gravitational waves, these estimates could be seriously incorrect.
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variable along each world line; by (3.10), this can be chosen to be g. As the
change of p along a world-line is determined by (3.2), or equivalently by (3.3)
we see that

(3.17) the change of thermodynamic state along the flow lines
of a perfect fluid is determined (for a given equation of state)
by the average length I alone.

In the general-relativity case, the original form (3.7a) of (3.13) is
(3.18) p4 (p+p)8=0.

Restriction (3.8a) shows that compressing the fluid increases its energy density.

We may often assume an equation of state of the form p = p(u). Given
any such equation of state, restrictions (3.9a), (3.9b) are satisfied if 1>0p/ou>0
(Curmrs [25]; see also HARRISON, THORNE, WAEKANO and WHEELER [26]),
and (3.18) gives u as a function of I along the world lines of the fluid.

3'5. The matter and radiation content of the universe. — To obtain an idea
of the possible thermal histories of the universe, we represent the matter con-
tent of the universe by two main components.

3'5.1. Matter content. The matter content of the universe (galaxies
and a possible intergalactic gas) can plausibly be represented by a perfect
fluid (or mixture of perfect fluids with the same 4-velocity) with equations
of state

(3.19) p=ag’, T=pple,

determining the pressure » and temperature 7', where «, f,y are constants.
Then (3.2) shows that

__const __const
T opr ? = -2

govern the change of temperature and pressure along the world lines of the
fluid. For a monatomic gas, which is probably a good approximation at least
at the present time, y = § and so

1

(3‘20) Tmucr(x 'l—z

gives the change of temperature as the volume changes.
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For the relativistic case, the total energy density is the sum of the rest-
mass energy and the internal energy:

(TooPER [27]), eqs. (3.2) and (3.18) being automatically consistent for this
form of u. The restrictions (3.9) are satisfied if 2>y > 1. The change of u
along the world lines is clearly given by

_(eol)) (P B
e +(y—1)l”'

For recent times, we find that, to a good approximation (see (3.16) above)
p ~0 so that the energy-momentum tensor of matter in recent times is rep-
resented fairly well (for dynamical purposes) by regarding the matter as a
pressure-free fluid (« dust »), with

and

1
(3.21) PR

(This is the approximation first introduced by EINSTEIN [3].)

38'5.2. Radiation content. The radiation content of the universe con-
sists of many components, but the thermodynamically and dynamically do-
minant component appears to be the microwave radiation. We will accept
this radiation as being black-body radiation at a temperature of about 3°K
(this is its most probable interpretation; see Sciama’s lectures for a discus-
sion). We may represent this radiation as a perfect fluid with pressure p =
= }u (") and with the same 4-velocity as the matter. This is so at early stages
of the universe’s history because we would then expect (see next Section) the
radiation to be in collisional equilibrium with the matter in the universe (the
matter and radiation together can then be regarded as a 1-component fluid
with p ~ }u). At later stages the radiation propagates freely but may still
be regarded as a perfect fluid moving with the matter 4-velocity because it
is very nearly an isotropic radiation field with respect to that 4-velocity
(cf. discussion in Sect. 7).

(*) The stress-tensor of any fluid consisting of particles with zero rest mass is
Ty = Pekyaky Where k,, is null for each particle, so T° = 0; but from (3.5), this

particles

is the condition p = }u.
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With the condition p = %4, (3.18) shows that

1
(322) /urtdhuanm F’

Defining the radiation temperature as usual by the condition u = aT* (a 3
constant), we see that the radiation temperature obeys the law

(3.23) T raaration € %‘ .
We note that the radiation obeys the perfect gas equations of state (3.19)
with y = §.

We have no information as to the isotropy of neutrinos of cosmological
origin. These would be freely propagating at the present time. If they are now
moving isotropically, they also obey (3.23). If they move anisotropically, then
a fluid approximation is no longer adequate for the discussion (cf. MISNER [28]).

© 8'6. The thermal history of the universe. — So far, we have implicitly assumed
there is no effective interaction between the two fluids (the matter and the
radiation) in our cosmological model (or between different matter components).
This is a good approximation at the present time, but will be untrue at certain
earlier times. However we can obtain a good idea of the possible thermal
histories of the universe from the information already at our disposal; despite
the interactions, (3.17) is still approximately true (°).

Suppose that ! decreases, as we go backwards in time, continuously to zero.
Then the temperature of matter and radiation both rise indefinitely, according
to (3.20) and (3.23). However when the temperature is above about 3000 °K
(/1o <1/1000) the matter is ionized; Thomson scattering of the radiation and
free electrons puts the electrons and radiation into close thermal contact, so
the matter becomes an opaque plasma. The matter (the ions and electrons
are in close contact because of Coulomb forces) and radiation must both have
the same temperature for smaller values of I. Since the radiation (present
density about 10— g/cm?®) has a much greater thermal capacity than the
matter (present density between 10-%* and 10-%! g/cm?®), they both then
obey the radiation temperature law (3.23).

As the temperature increases, successive interaction processes become im-
portant: nuclear reactions are important from 108 to 10° °K; electron-positron
pair production and annihilation are important at ~ 6-10° °K, with cor-

(*) Essentially because we still have an equation of state approximately of the form
P =p(u) for the mixture.
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responding cooling and heating of the radiation gas; neutrino reactions become
so rapid when T >2-10' °K, that the plasma is then opaque to neutrinos.
At these temperatures, the baryons, electron-positron pairs, radiation and
neutrinos are in thermal equilibrium and form an ultra-relativistic perfect
gas obeying (3.23). At about 102 °K, large numbers of w- and w-meson pairs
are created and annihilated; known physics is a rather poor guide as to what
happens at these and higher temperatures.

With this information, we can draw a diagram (Fig. 2) showing the possible
thermal histories of the universe, by giving T as a function of the average
radius I. Corresponding to each function I(t), we obtain a thermal history from
Fig. 2; for example, if (as we go back in time) I goes to a minimum and then
increases again, 7' goes to a maximum and decreases. We can only find the

nucleosynthesis
—
pair jonized matter, radiation
10" production  radjation in  freely
equilibrium propagating

) with matter
conjecture
—

(«1/0)

r .
: radiation

LI IR R B B I B |

« [ neutrinos in neutrinos

[equilibrium freely
10 2 | with matter  propagating

-
o
T

10 0 : rneutv-inos(a1“ n
2 F T isotropic model)
10 : matt
0 “F
1 1 1 1 1 1 1 1 1 1 1 1 1
107 10" 107° 10° 10¢ w02 10
U,

Fig. 2. — Diagram of temperature T' as a function of average length I in a cosmological
model. The curve for neutrinos is only valid for isotropic world models; the rest of the
Figure will differ somewhat in anisotropic models, but remains essentially the same.

actual function I(!) in any particular cosmological model, and so the time
scales available for the various interactions and the actual thermal history
in that model, from the field equations. The details of Fig. 2 depend on these
time scales; if they were radically different from the time scales in the spheri-
cally symmetric models, the times available for equilibrium to be attained at
each stage of expansion would be different, and various aspects of the diagram
(such as the temperatures at which photons and neutrinos decouple from the
matter) might change significantly.

The assumptions we have made in obtaining this diagram will be valid at
nearly all times, and for any reasonable degree of inhomogeneity and anisotropy.
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However (as has been pointed out by MISNER [28, 29]) there are at least two
stages when irreversible processes certainly cannot be ignored: namely, when
the neutrinos decouple and when the photons decouple. At these stages the
matter behaves as a viscous fluid, and this might play an important role in
the process of galaxy formation. The accompanying viscous heating arising
(c.f. eq. (3.13)) from anisotropic fluid motion, would affect Fig. 2 at these
times. (We note that the role of bulk viscosity has not yet been clarified. It
may be important at some stages of the expansion of the universe, cf. a forth-
coming paper by ANDERSON and STEWART.)

The detailed form of this diagram depends critically on astrophysical pro-
cesses in the universe: in particular some arguments (see Sciama’s lectures)
suggest that an intergalactic gas might be reheated after its temperature had
cooled well below the radiation temperature, at about the time that galaxy
formation occurred in the universe. In this case the universe would again
be filled by a ionised plasma (at a temperature of about 10% °K) at recent
times. v

The thermal history of the universe (derived for the isotropic case) is discus-
sed in many articles, see for example DIckE, PEEBLES, RoLL and WILKIN-
SON [30], PEEBLES [31], ALPHER, GAMow and HERMANN [32], WAGONER,
FowrLER and HoYLE [33] and HARRISON [34]. The role of irreversible proces-
ses in an anisotropic universe is discussed by MISNER [28, 29].

4. — The field equations.

4'1. The curvature tensor. — In general relativity, the curvature of space-
time is represented by the Riemann curvature tensor Rg., which has the
symmetry properties

(41) R[ab][cd] = Ra&cd = Rcdnb ) Ra[bcd] =0.

This tensor (which has 20 independent components) can be algebraically se-
parated into the Ricci tensor R, defined by

(4.2) Rp:= R0,

and the Weyl tensor Cg.q (the « conformal curvature tensor ») defined by
4.3 ab - — JRab la b] B la 401
( . ) c cd-—R cd_2g[cRd1+ gg[cgdn

where the Ricei scalar R is R:.= R%, = R%,. It follows from (4.3) that the
Weyl tensor has all the Riemann tensor symmetries (4.1) and the additional
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property

Cc®,=0.
Thus we may think of R, (with 10 independent components) as the trace of
Rapes, and of C,.y (also with 10 independent components) as its trace-free
part ().

The quantity we may regard as corresponding to R, in Newtonian the-
ory is the second derivative @, of the gravitational potential @. This can
be separated algebraically into its trace €~ and its trace-free part E,:
(4.4) E,.=®,, —%h,o°,.

ury

4'1.1. The role of the field equations. The field equations, includ-
ing a cosmological constant /1, are (on choosing units suitably),

the Einstein equations: the Poisson equation:
(4.5) (R —3Rgas) + Agas = Tap <> (45') @7, +A=p/2 =
<> Ry = (Tas— 3 T9as) + AGs - <@’ =p/2—A.

In each case, the field equations determine the «trace» part of the gravi-
tational field a.lgebra;ica.lly at each point of space-time from the matter con-
tent at that point. .The « trace-free » part is related to the matter content
by differential equations (see (4.21), (4.22)) and is determined by these equa-
tions in conjunction with suitable boundary conditions, initial conditions,
kinematic conditions or symmetry requirements; we shall generically call
such restrictions « boundary conditions ».
In Newtonian theory, we have to drop the boundary condition

(4.6) @ >0 at oo

if we are to get any reasonable cosmological models at all (see BoNDI [1] and
references given there; this follows from (4.5’) and is closely related to the dif-
ficulty (Subsect. 2°3) in separating a, invariantly into gravitational and inertial
parts). In fact to get Newtonian analogues a) to many general-relativistic
cosmological models, and b) to the general-relativistic expression for gravita-
tional radiation reaction, we must also drop the condition

(4.7) E,—0 at oo,

(*) For further details of this decomposition, sce JorpDAN, EHLERS and KuUNDT [35].
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which might seem to be a suitable generalization of (4.6). (For a) see HECK-
MANN and ScHUCKING [36] and Sect. 5 below; for b) see the lectures by THORNE
in this volume.)

&2, The Ricci identities for the welocity vector. — In general relativity, arbi-
trary vector fields obey Ricci’s identity (which we may regard as defining
the curvature tensor). Applying this identity to the vector field e,

(4.8) Ugyac— Uaze;q = Repea ¥ -

The corresponding Newtonian identities are
(4.90) 2, ,)[et = (2v,/e)
(4.90) Vv = Vuow -
(In orthogonal curvilinear co-ordinates these are c¢®v,/ci{Ca* = C*v,[Ca* Ct,
02v,[ea” 8a” = 8%v,[0z° 0z").

Multiplying (4.8) by %* in the general-relativity case, we get

(Ua;e)” — Waze + Ua;a®% e + Rapegu®ud = 0.

Projecting and remembering (2.7b), this equation is
(4.10) Bat R0 ea)” — gty — Ra® 3 ¢ a + 00a0% + Roaucud=0.

In Newtonian theory operating on (2.10b) by , and using (4.9a), we find

E@Ct+ (0,,) 00 + 0,0, + P, =05

this can be rewritten
(4.11) ) — By + 0,0 + P, =0

Equations (4.10), (4.11) are propagation equations for v, along the flow
lines of the fluid; the similarity of these equations is essentially the similarity
of the « geodesic deviation equations» in Newtonian theory and in general
relativity (see PIRANI[37], pp. 260-269, for a clear account of this cor-
respondence).
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42.1. Raychaudhuri’s equation. Contracting eqs. (4.10), (4.11) we
obtain propagation equations for 6.

g (4.10), (3.5) and (4.5) implies h* X (4.11) and (4.5') implies

(4.12) 0°+ 462 —a°,, +2(0* —w?) + (4.12") 0°4346*—a”, + 2(c* —w?) +
+3p+3p)—4=0, +i0e—4=0,

which is Raychaudhuri’'s equation (RAYCHAUDHURI [38,39]). By (2.14),
0°+ 462 = 31""[l, so we can rewrite this equation in the form

(4.13) 31" [l = 2(w?—o?) + W0, — (4.13") 31l = 2(w?—0?) + a”, —
—3(u+3p)+ 4. —to+4.

This shows how the second derivative of the curve I(¢) is determined directly
at each space-time point by the matter density at that point, with the /A-term
acting as a constant repulsive force; rotation tends to hold the matter apart
(a8 we might expect, representing a «centrifugal » effect); a pure distortion
tends to pull the world-lines together; and acceleration affects the average
distance of the world lines through its divergence.

The main difference between the Newtonian and general-relativistic cases
lies in the fact that while the active gravitational mass density is ¢ in Newto-
nian mechanics, it i8 u + 3p = ¢ + ¢p + 3p in general relativity. It is this
additional pressure and internal energy contribution to the gravitational force
which is the major cause of the problem of gravitational collapse in general
relativity. Thus if we consider a static star model filled with a perfect fluid
and take A =0, (4.12) becomes

d“;a:*%(,u+3p), I a",=£g,

where the acceleration is determined from the pressure gradient by (3.15).
The extra terms in the relativistic case show that the pressure which tries to
balance the star through acceleration tends to defeat itself, since it contributes
directly to the gravitational field which tends to cause the star to collapse.
A contributing factor is the relative inefficiency of a given spatial pressure
gradient in causing acceleration, in the relativistic case (see Subsect. 3'4).

We can evaluate Raychaudhburi’s equation in a cosmological model at
the present time t,. Remembering the definitions of ¢ and H (Subsect. 2'5.1)
we find from (2.16) and (3.16) (we make the plausible inference i .|, =~ 0; this
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is mot a direct consequence of (3.16)) that (°)

o Ho A
(4.13a) o=~ 6H:  3H:’
with possible maximum errors of — %, + % arising from the limits (2.16) on
shear and vorticity (but the actual errors due to these terms are probably
negligible, see Sect. 7).
If we believe that A = 0, the (4.13a) becomes

(4.13b) o =~ 6“—1{‘;: ,

showing directly the deceleration caused by the matter content of the universe.
It is rather difficult to estimate g, observationally (cf. Burbidge’s lecture).
We have indications that g, > 0; more specifically, that ¢ =1 4 4. However
we can only be reasonably certain (**) of fairly broad observational limits, say

(4.14a) o] < 5.

On the other hand, we can find a lower limit for u, on the basis of the observed
matter in the universe; this lowest estimate is y,/6Hj ~ 10-2. There could
exist intergalactic gas which is so far unobserved, giving values up to /6 H; ~ 1
(cf. lectures by ScramA in this volume). Thus we can obtain plausible limits

e Mo
(4.14b) 107t <gp.<1,

on the density u,. However it is possible that the universe is filled with a large
density of matter or energy, (such as neutrinos, (RUDERMAN [40]), gravitational
waves, (FIELD, REEs and Scrama [41]), condensed stars (ZEL'DOVICH [8]),
young galaxies (PARTRIDGE and PEEBLES [42]), or rocks), which is very
difficult to detect. The best definite limit we can place on the effective
density of such forms of energy comes directly from (4.14a) and (4.13b),
which place a limit u,<1072 g/cm® on the smoothed-out energy density of
such «unobservable » forms of matter.

An alternative viewpoint is to use (4.13a) to give limits on A in terms of

() The density x is often represented by the parameter o.= u/6H? (do not
confuse with the shear!).

(**) g, a8 defined is obtained by taking a suitable directional average, a8 it is defined
from 1.

@ Springer



Republication of: Relativistic cosmology 607

an equivalent mass density; we find
(4.14c¢) — 2501, < A < 3004,

if we believe (4.14a), (4.14)).

4'2.2. Further propagation equations. So far, we have extracted
propagation equations for § from (4.10), (4.11). We can also obtain propagation
equations for the shear and vorticity from these relations.

The skew parts of (4.10), (4.11) are equivalent to

(4.15)  ho ()’ = 0% (l*w®) + (4.15") (PPo*)* = ok (2w’) +
12 . i
+ E 7]““ Uy u’c;d . + —2-77'""0«,,,, .

Substituting into these equations for #, from (3.15), we obtain the usual vorti-
city conservation laws when we have a perfect fluid with equation of state
p = p(u) (see EHLERS [22], GODEL [43), SYNGE [44]).

The symmetric, trace-free parts of (4.10), (4.11) are (using (4.12))

(4.16) h7h(0,)" — kb iy, — (4.16) &, —ay,, +o,0,+
— B Wy + W05+ Gor0”y + £000, + +0,,0", + %00, +
+ ha(— et — §a* + Fiae,) — T by~ ot — 0t + 307, +
—}n,+ E,=0, +E,=0,
where where
B..i= Couwut; B, i=®,,— b, ",
the Weyl tensor symmetries imply 50
Eo= Fawy, EW=0, Bow=0. B,=E,,, B =0.

Thus we see that while the expansion is affected directly by the matter at
each point, the gravitational field ¥, (the « tidal force ») affects the fluid flow
by inducing shear in the flow lines; this shear then determines the vorticity
propagation and also enters into the expansion equation (tending to cause
the world lines to converge). Note the terms in w, in (4.16), representing the
distorting effect of « centrifugal forces ».

4'2.3. Constraint equations. Three further sets of equations can be
obtained from (4.8) and (4.9b).

9 — Rendiconti S.I.F. - XLVII.
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Multiply (4.8) by g*h* =

(417)  Bofwr,— o, + §09) +
+ (% + o%) @ = ¢° .

Multiply (4.9b) by k™ =

417) ™, —0™, + 30" =0.

The vorticity vector satisfies a constraint equation:

by (4.8),

Ropeqy =0 => Upapp,0 = 0;
X 7%y, shows
(4.18) 0% = 200" by .
Finally,

(4.8) Xn,,% and symmetrization
shows

(4.19) H,y=20,04—
—ht R (@0 + 05) Nppe u',

where

H,, :=41,"C, v us.

ohcd

The Weyl tensor symmetries show

Hy=H,, Ho%a=0, Huw=0.

(4.9b) implies

Viyyir = 05
Xn*"° shows
(4.18") ®,=0.

£ 4

(4.95) X and symmetrization
shows

(419) (0, 4 06 Ny =0 -

(H, has no analogue in Newtonian
theory).

In the general-relativity case, eqs. (4.12) and (4.15)-(4.19) are equivalent
to the Ricci identities (4.8). Through these equations we can completely de-
termine the curvature tensor of space-time, since the Ricci tensor is determined
directly by the matter content.and the Weyl tensor is determined by the sym-
metric, trace-free 3-tensors K., H, (it is given by

Cabcd = (nabgq"’cdn + gdmgadrl) uﬂu' E"-— (namgcdn + gamﬂcan)“"“'H“ ’

where

Gavea: = GacGva — gaagu) .
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In the Newtonian case, egs. (4.12') and (4.15'), (4.16’) are equivalent to
(4.9a) and eqs. (4.17')-(4.19') are equivalent to (4.9b).

4°'3. The Bianchi tidentities. — In general-relativity, the curvature tensor
has to obey the Bianchi identities

(420) Rab[ed;.) =0 Cabed;d = Recla;d] _%gc[aR;b];

these two forms are equivalent only because space-time is 4-dimensional
(KunDT and TRUMPER [45]). These identities imply the contracted identities

R, =} Ri* < G», =0

(which are the eq. (3.7)) and 16 further identities. Substituting into (4.20)
for Cu.q in terms of E,, H, these equations take a form rather similar to
Maxwell’s equations. If the space-time is filled with a perfect fluid, they are (*)
(4.21a) [« AVE]RGE® b — 0™ w0t H , + 3H o = } R u®;

(4.21b) [« H»]:h™h* H,, — k™" E° , + 2B n™ u, 4, + k™ (c® H,,) +
+ OHmt _ 3H' (mo,l)a _ H'(mml)n — 0 ;

(4.21¢) [« divH »]:b* H® 4hd + 9 u,0,8E,,— 3E', 0" = (i + p) o';
(4.21d) [« E»]:h"h} Bee 4 b, Py HO, ,— 2H, Y™ w4, + B™ o B, +
+ BEnt_3E‘ (mat)l_E'(mw!)l= —‘}(,u +p)a‘"‘ .

Corresponding to the identities (4.21a), (4.21b), in Newtonian theory the

tensor E*” satisfies the identities
(4.22a) E¥ = 4o,
(4.22b) E“‘a_,n”‘" =0,
which follow from (4.9a). Further the shear tensor and expansion @ satisfy
the 8 equations
(4'220) alvm.ﬂ.’d + %hu;- 6’“].1'! =0 ’

(") This form of the Bianchi identities is due to M. TRiUMPER. No difficulty arises
in obtaining these equations for a general fluid; they are rather complex, and we give

them in an Appendix. They hold for any energy-momentum tensor; the fluid approxi-
mation limits then only through prescribing the equations of state.
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which follow from (4.9b) and are in fact completely analogous to (4.21¢) and
(4.21d). One could see this by substituting into (4.21¢) and (4.21d) from (4.19),
obtaining second-order identities satisfied by the kinematic quantities; however
it is easier to proceed by noting that (4.22¢) is the condition w”, %% =0
in Newtonian theory (TRUMPER [46]), while eqs. (4.21¢c) and (4.21d) are together
equivalent to the corresponding general-relativity condition

s cdesf __ J6 b, cdes
ha.“’;cd’? U, = K :'R.bcdw 7 U, -

4'4. The field equations.

4’41. The case of zero rotation. In this special case, we can ob-
tain a useful alternative form of some of the general-relativity equations. Stand-
ard theorems show that

=0 < UpUp; =0 0=0<9,,=0
<> 3 locally functions <3 locally a function
fyg:%a=1ga- 90 =9,-

Thus in each case, w = 0 is the condition that there locally exist 3-surfaces
in space-time (the surfaces {g = const}) orthogonal to the velocity vector field.
However in general-relativity, u, is the 4-velocity vector field; so the condi-
tion w = 0 is precisely the condition that the instantaneous rest spaces defined
at each point by h,, should mesh together to form a set of 3-surfaces in space-
time. These surfaces, which are surfaces of simultaneity for all the fluid ob-
servers, define a cosmic-time co-ordinate (the function g) determined by the
fluid flow. (This time co-ordinate can be locally normalized to measure proper
time along each world line only if % =0.)

We can now use the Gauss-Codacci formulae (SCHOUTEN [4], JORDAN, EHLERS
and KUNDT [35]) to relate the curvature tensor of space-time to the curva-
ture of the 3-spaces orthogonal to u¢. If the Ricci tensor of these 3-spaces is
R*,, we find

(4.23)  B*,=h B (— 13 0,) + ) + i, Uy + 7, 4
+ Lho(— 30 + 20% 4 2u + 24 — i) ,

which implies that the Ricci scalar B* of the 3-spaces is

(4.24) R* = —36° + 202 + 2u + 24;
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these equations show how the curvature of the 3-spaces {g = const} is determined
by the matter content of the space-time through the field equations. They
are essentially general-relativistic in character; R*,, has no Newtonian analogue.
We can re-express (4.23) in the language of classical differential geometry
(cf. EHLERS [22]): if, in a 3-space {g = const}, the Gaussian curvature of the
2-surface formed by all geodesics through the point & orthogonal to the direc-
tion e, (e®e, =1, e°u, = 0) at that point is K(z, ¢°), then

(4.25) K(z, ¢°) = {l“’(l’o‘,,)' - i"l;l - ‘l'l-, dv —nln} ee’ +
F 30— 30+ d A p).

If we separate R*,, into a trace-free part (which is essentially equivalent
to E,) and its trace, then these quantities are related to each other by the
Bianchi identities for the 3-spaces,

(4.26) hd, R*e hye = } R*ichd.

These identities are equivalent to the three 4-space Bianchi identities (4.21a),
because of (4.23).

4'42. The field equations in general. We may regard eqs. (4.12),
(4.16) and (4.17) as 9 of the 10 general-relativity field equations. The remain-
ing field equation is one of the four first integrals which exist, when all the
other conditions are satisfied, as a consequence of the contracted Bianchi
identities (3.7) (*). This equation may be understood as giving a geometrical
constraint, but no extra restrictions on the kinematic quantities, if all the other
relations are satisfied. We may see this most easily in the case w = 0. Then
the trace-free part of (4.23) is equivalent to (4.16), and the trace (eq. (4.24))
is the tenth field equation, relating R* to the kinematic quantities and the
density of matter. We only have to fulfil this equation at one point of space-
time; then it is fulfilled in an open neighbourhood of that point (it is fulfilled
in a 3-surface {g = const} because of eqs. (4.21a) (which are equivalent to
(4.26) if (4.23) is fulfilled); and it is fulfilled on timelike lines through this 3-sur-
face because (3.7a) ensures that it is a first integral of the field equation). In
effect, the other equations determine a solution of the field equations up to a

(°) Let Z,,:= (Rp— 4 Rga) + Agar— Top; then the field equations are satisfied
when Z,=0. Now Z";,, =0<>03Z,4/0xr=—Z;,, — I,z +r,°2;# shows that if
Z,”=0 at all times and Z,*=0 on an initial surface {z*= const}, then Z,*=0 on an
open neighbourhood of the surface; so the equations Z,*=0 are four first integrals
of the other field equations. For further discussion see, for example, ANDERSON [47],
CHOQUET-BRUHAT [48].
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constant; eq. (4.24) determines this constant. The situation will be similar
in the case w #0. '

In Newtonian theory, the only field equation is (4.12'), the remaining 8
equations which correspond to general-relativity field equations being simply
kinematic identities.

We will not give a systematic discussion of the full set of equations here:
rather, after briefly discussing the differences between the general-relativity
and Newtonian equations, we shall illustrate their use by applying them to
simple cosmological models.

4'4.3. Comparison of Newtonian and general-relativity equa-
tions. A comparison shows the first-order eqs. (4.12)-(4.19) satisfied by the
kinematic quantities in general-relativity and in Newtonian theory are ex-
tremely similar, despite there being only one field equation in Newtonian
theory and ten in general-relativity. Apart from the extra terms in the mo-
mentum equation mentioned in Sect. 3, there are some extra terms in the
general-relativity equations which are essentially special-relativistic in origin;
these are the term 4, %, in (4.16) and the terms in %, in (4.17)-(4.19), resulting
from the 3 + 1 splitting of space-time given by hy,. There are also extra terms
which arise for essentially general-relativistic reasons. The general-relativity
equivalents of some of the Newtonian equations contain terms representing
the greater geometric freedom resulting from the possibility that space-time
can be curved; these are the terms p in (4.12), 7, in (4.16), ¢, in (4.17) and H,
in (4.19). However we have substituted for many of these terms (p, 7, and ¢.)
through the field equations, and these are determined by the other kinematic
quantities through equations of state (cf. Sect. 3). The Newtonian and general-
relativity equations are most similar in the case of dust when these terms
and %, vanish.

The second-order identities (4.21), (4.22), although in 1-1 correspondence,
look rather different; the extra terms in the general-relativity equations are
5o numerous that they dominate the equations. A further important difference
arises from the different meanings F,, has in the two theories: E, is locally
prescribed by the general-relativity equations, but is left unprescribed in
Newtonian theory. Thus, given suitable equations of state, the time develop-
ment of the system off an initial surface is completely determined in the general-
relativity case. For example if we have a perfect fluid with equation of state
P = p(u), i is given by (3.18), p° follows from the equation of state, and the rate
of change of %, along the world-lines follows from that of p. The rates of change
of 0, 04, w, are determined by (4.12), (4.16), (4.15); and the time derivatives
of E,, H,, are determined by (4.21b),  (4.21d). However in the Newtonian
case, the time development of the system is not determined until some suitable

restriction has been put on E, ; for example we can choose some particular
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world line and then prescribe E,, as an arbitrary function along that world
line. Thus having dropped the boundary condition (4.7) we can use the resulting
freedom of choice of E,, (this freedom is essentially a consequence of the infi-
nite speed of propagation of gravitational effects) to influence the fluid flow
in a rather arbitrary manner (cf. HECKMANN and SHUCKING [36]). In parti-
cular, we can use this freedom in such a way as to produce Newtonian analogues
of relativistic cosmological models. When we do so, we find that the general-
relativity integrability conditions are more restrictive than the Newtonian
conditions; as we shall see in the next Section, we seem to be able to find
Newtonian analogues for each general-relativity solution, but the converse
is not true.

5. — Applications of the field equations.

We shall assume in this Section, unless otherwise stated, that the matter
and radiation content of the universe can be represented as a perfect fluid
with equation of state p = p(u). This will be a good approximation at most
times (see Sect. 3).

51. The Friedmann (or Robertson-Walker) models. — These are those general-
relativistic models which are locally istropic about every point of space-time.
For example, exact isotropy of the number counts and radiation distribution
would show hpbuy,=0 <> piu,=—pu,; then the equation of state implies
h2p,=0. The surfaces {u = const} (") are therefore orthogonal to the fluid
vector %, in this case, which implies w, = 0; and the momentum conserva-
tion equation (3.15) imply %, = 0. An isotropic Hubble law implies a,, = 0 (and
in fact also implies %, = 0; see Sect. 6). With these conditions, (4.17) shows
h6., = 0. Thus these models can be characterized by the conditions

(5.1a) We = 0= 0 = 1,,
which imply the further conditions .
(5.1b) p=uput), p=pt, 06=00),

where the surfaces {t = const} are the surfaces orthogonal to the fluid flow
vector. We may choose the co-ordinate ¢ to measure proper time along each
world line, and the scale factor I to be a function of ¢ alone; then I(t) is pre-

(*) 6+ 0 shows s 0 by (3.8a), (3.18), so these are well-defined surfaces when this
condition holds.
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cisely the «radius function » E(f) commonly used in describing the Robertson-
Walker space-times.

The Newtonian analogues of these models may be defined by (5.1a) which
again implies (5.1b). The remaining nontrivial equations are

(6.2a) p+3u+plfl=0, (5.2¢') o+ 30l°l=0,
(5.2b) 3I°l4+3(u+3p)—A=0, (5.20') 31 fl4+3o—A=0,
(5.2¢) Ep=Hu=0. (5.2¢) E,=0.

uy

In the general-relativity case, eq. (4.25) reduces to

(5.2d) E(w, ¢) = }(u + 4— 467 = K(1),

which shows that the 3-surfaces orthogonal to u® are isotropic at each point,
and so are 3-spaces of constant curvature K(¢). (We may note that (5.20) is
the statement that space-time is conformally flat (the Weyl tensor vanishes).
There is in fact a converse to this (due to TRUMPER):

{Ew» = H, =0} = (5.1) holds,

as the Bianchi identities (4.21) show that when E, = H, =0, then hlu,=
= w,= 0np=0. Since p = p(x) ("),

{hPpp =10} = {hPpp =0} =>1,=0.)
Equation (5.2a) shows that
(5.3) U'(u+3p)=—(u?)° . | (5.3 ol = —(ol®)" .
Thus when 1" 540, we can integrate Raychaudhuri’s equation (5.2b) to obtain

(5.4a) 31— (ul*)fl — AP = 10E (5.4a') 31°*— (ol*)[l— AI* = 10F ,

E = const E = const

which is the Friedmann equation; it has the form of an energy equation (the
term ul? is constant if we have a dust-filled universe, and ol® is constant in the

(*) If we drop this restriction, we also obtain a family of inhomogeneous spaces
(SEEPLEY and TAUB [49]).
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Newtonian case). We may note that if there are several noninteracting com-
ponents of matter, (5.2) implies (5.3) independently for each such component;
50 we may add together the densities u; of such components in (5.4), or use
these equations with x representing the total energy density.

In the general-relativity case, (5.2d) is equivalent to (5.4a) if K(?) is related
to E by

10E &k
(5.40) E)=—" =1
where for convenience we have introduced the constant k = —10E/3; on

multiplying I(f) by a suitable number, we can normalize k¥ to one of the values
+1,0 or —1.
Evaluating (5.2d) at the present time shows that

k 4
(5.5a) () = = 5 (3%3 n 3?3“1);

this equation can be combined with (4.13a) (which is now an exact relation if
Po = 0) to show

(5.5) E(t) =1 = Hi20—1) + 4.

If the pressure vanishes at all times, we can rewrite the Friedmann equation
in the form

AN AN .  EIAL
(5.40) = () = (3) eom+ 10+ 5 (3) K.

Given suitable equations of state, we can find x(l) (see Sect. 3) and then
Friedmann’s eq. (5.4) gives the rate of expansion as a function of average
length I. We can further integrate the equation 6(1) 4 31°/l analytically or
numerically to obtain I(t). These equations have been studied extensively in
the literature (see, for example, ROBERTSON [50, 51], BoNDI [1], STABELL and
REFSDAL [52], REFSDAL, STABELL and DE LANGE [53], TAUBER [64], RIND-
LER [5]) so we shall simply give two comments on their solutions.

51.1. Expansion from a singularity. Raychaudhuri’s equation
(5.2b) shows that if 4 <0 and the energy condition (3.8) holds then, irrespective
of the equation of state of matter, I"° < 0. This implies g, > 0. In fact, even
if 4> 0, the condition g, > 0 is sufficient to imply I°* < 0 at all earlier times
(A is constant so (3.8) and (3.18) guarantee that u/2 remains larger than a4).
Therefore either 4<0 or g, > 0 imply there was a singularity in the universe
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when ! — 0 a finite time #, ago, where (*) (cf. Fig. 3)

1
—_—~ . 10
(5.6) 1< y: A 1.3-10"y.

[In the general-relativity case, the larger the pressure exerted by matter and
radiation, the smaller ¢, is.] The conservation equations show that the tempe-
rature and density of matter become infinitely large near the singularity.

L slope I~I°

[184]

L———to —T t

\[H,

Fig. 3. — If ¢,> 0 and the energy conditions u+p>0, x+ 3p>0 are always ful-
filled, then the age t, of an isotropic universe is less than 1/H,.

Raychaudhuri’s equation shows similarly that if 4<0 or ¢, > 0, a Robertson-
Walker universe evolves very rapidly through its high-temperature phases, most
of its lifetime up to the present occurring when T, < 300 °K. For example,
if decoupling takes place a time ?, after the singularity, then I./l, ~ 1/1000
50 t,<10°H, 1~10"y.

51.2. Qualitative properties of the solutions. If 4 =0, there
are (again irrespective of the equation of state as long as x> 0, p>0) three
possible kinds of solution. These are illustrated in Fig. 4 a). The solution
either (if k> 0) collapses back to a second singularity, or (if k¥ = 0) has just
sufficient energy to escape such a collapse (so I - oo as ¢t — o0), or (if k< 0)

(*) This inequality can be sharpened and used to show, on comparing ¢, with the
age of the galaxy, that ¢,< 5.0; see RINDLER [55].
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easily escapes. The second case is the generalized Einstein-de Sitter case, for
which u = }6% at all times. We may use (5.5a) to see that the values u, > 3Hj,
M= 3H} and u,< 3H) correspond to these three cases respectively; and (5.5)
shows that, up to a correction term involving p,, they correspond to g, > %,

t K< 0:l—e L
K=0:(— 0o always co_uapses to
(Einstein-de Sitter) second singularity
K >0: collapses
to second
singularity
t t
a) b)
L
k>0 [—o®
all K, but long
“coasting time"
(Lemaitre models)
k>0 only for K> 0
k>0 K>0 Einstein static
universe for
given values of
K>0 A, u and .
equation of state
c) t

Fig. 4. — The possible characteristics of the function /(¢) in Robertson-Walker universes
in which g +p>0, u + 3p>0 at all times. a) when A =0; b) when 4<0; o) when
A>0. The time reverses of these solution are also solutions.

¢ =13 and ¢, < }. The solutions for which I— oo as t— co are asymptotic
for large ¢ to solutions with p =0, u =0 and = H,t (the Milne universe)
if k=—1 and jo the Einstein-de Sitter universe (p = 0, lac tt) if k=0.

If A< 0 the solution must collapse back to a second singularity.

If A > 0 there exists an unstable solution with 6 =0, i.e. I = const; this
in the Einstein static solution (EINSTEIN [3]). In this case,

A=3%u+3p)>0,
K =3%u+p=const>0.

o = const,
(5.7) (5.7

A=4%0>0.

Thus as well as the possibilities arising when 4 = 0, we may further construct
solutions asymptotic, or nearly asymptotic, to the Einstein static universe,
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obtaining the possibilities shown in Fig. 4 ¢). Those solutions which expand
forever are asymptotic for large 1 to solutions with p =0, u=0 and 1=
= exp [H,t] where H,= 30 =+/A/3, a constant. The exact general-relativity
solution of this kind has k = 0, and is the de Sitter universe; it is the same
space-time which, with different field equations, constitutes the steady-state
universe.

We see that solutions in which there is no singularity, and so in which there
is a maximum temperature during the evolution of the universe, can only occur
for large positive A.

51.3. Co-ordinates. It can be shown from (5.1), (5.2d) that there
exist co-ordinates such that

the metric takes the form the co-ordinates of any given fluid
particle are
ds? = — di* + R2(t) do?
x” = R(t)¢", ¢” = const ,
where do? is the metric of a 3-space
of constant curvature k=41, 0
or — 1 (see, for example, HECKMANN 1
N _1/(e(®) .
and SCHUCKING [6], ANDERSON [47]), D= (— — A) btz

and the gravitational potential is

6\ 2

(see, for example, BONDI [1]),
where we have written R(t) = l(f) to conform with the notation commonly used

in these models. In the general-relativity case, the co-ordinates are co-moving
co-ordinates; they can be chosen so that

do? = dr? + f3(r)(d6* + sin®0.de?) ,

where
sin r +1
fry=1 r ifk=1{ 0 ;
sinh r —1

(these are the co-ordinates we shall use in Sect. 6).

5°2. Godel’'s solution. — This solution is characterised by

0=0p=%=0, w0#0, w,=0 (= w= const).
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The field equations and 1st-order identities take the form

(5.80) 20w+ A=} (x+3p), (5.80') 20+ A= }g,

(5.80) Ep=131hypw*—w,0,, (5.8') E,, =1%h,0'—0,0,,
(6.80) Hg;=0,

which imply

E,,=0, p=const.

pr.o

hehPE,,. =0, u=const,

p = const .
The second-order identities are

(5.9a) —3E' 0" = (u+ p)o', trivially satisfied.

(5.95) —E"0™=0.

In the general-relativity case, substituting from (5.8) we find that (5.9b) is
identically satisfied, but (5.9a) gives a new condition:

(5.10a) b+ p=20%.
Combining this with (5.8a) shows that
(5.100) tp—p)=—41.

We note that 4 < 0 for most reasonable equations of state; this is the oppo-
site sign to that in the Einstein static universe.

Given a suitable equation of state p = p(u), in general-relativity only one
of u,w, A will determine the other two through egs. (5.10). (In particular, if
P =0 we find 4 = 2w* = —24.) In Newtonian theory, we have only to satisfy
the restriction (5.84’); two of g, w, A are arbitrary, and A can be positive, zero
or negative. Thus the family of general-relativity solutions is more restricted
than the family of Newtonian solutions.

Further details of these solutions may be found in papers by

GODEL [56]. HrckMANN and ScERUCKING [13].

5°3. Further solutions. — Gédel’s solution is not a realistic model universe,
as the matter in this solution does not expand. We wish to find solutions with
6> 0 which are more complex than the Robertson-Walker solutions. The
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problem in integrating Raychandhuri’s equation to obtain equations like the
Friedmann equation is that we require some restriction on the Weyl tensor
enabling us to find o? as a function of I. We might try

53.1. Solutions with o¢=% =0, w0#0. In this case the vorticity
eq. (4.15) shows (I*w?)*= 0 which implies w?*= 2]l £ =0. Then we can
integrate Raychaudhuri’s equation to obtain the generalized Xriedmann
equation

200 ()

G —Ar=108,  I'=0.

3(°)* +

However it can be shown, using the integrability condition, that

there exist no such general-relativity there exist many such Newtonian
solutions if dp/dus0 (°) or if p=0 solutions (HECKMANN and Scutc-
(Erpzs [57]). KING [13]) which are necessarily

homogeneous (TRUMPER [46]).
Another simple case is.

53.2. Solutions with w=1% =0, 000, K(z,e*) isotropic. In this
case the trace-free part of (4.23) (or (4.25)) shows (I*ow)” = 0 which implies
o*=2*[ls, ¥ =0. We can integrate Raychaudhuri’s equation to obtain the
generalized Friedmann equation.

3 .
spryp— ) e _qom,  B—o.

The qualitative behaviour of I(t) is the same as in the Robertson-Walker case,
but the expansion time scales associated with these anisotropic solutions are
less than those in isotropic solutions.

There are many such solutions in general relativity (see for example ELrts
and McCarpum [58], Enuis [57]) and in Newtonian theory. For example,
the popular Bianchi I space-times with a metric of the form

ds? = — de2 + X2(¢)da> 4+ Y3(t)dy® + Z3(t)dz?
in co-moving co-ordinates (sce, for example, HECKMANN and SCHUCKING [7],

THORNE [59], JACOBs [60, 61]), belong to this family. These spatially homo-
geneous models have space sections of constant curvature K = 0; they are

() Then the surfaces p = const are hypersurfaces orthogonal to the fluid flow
vector.

@ Springer



Republication of: Relativistic cosmology 621

among the simplest homogeneous, anisotropic general-relativity cosmological
models. However I, 0 in them so their (spatially homogeneous) Newtonian
analogues also have I/, 0.

53.3. Perturbations. An important application of the set of equations
we have obtained is in the study in a very clear manner of perturbations of iso-
tropic world models (HAWKING [62]; but note that there are some misprints
in this paper, and that the expressions given for density perturbations with
p = }u are only valid for large wavelengths).

All perturbation studies agree that unless there is a very large positive
A-term (as in extreme Lemaitre models), there has not been time for galaxies
to form from thermal fluctuations in a Robertson-Walker universe (sce the
seminars by SALPETER and REES).

5'3.4. Viscous effects. Finally, following MISNER [28], we may con-
sider the effect of wiscosity on the evolution of cosmological models. Consider
the spaces of Sect. 53.2, but now with a viscosity term present. The trace-
free part of (4.23) is (because of (3.14))

Bo,,) =Pr,=—14, .

If we assume A is approximately constant during the time of interest, we can
integrate to obtain

. 2%exp[—24]
0= —-~ i'.—"""’ )

showing that viscosity causes an exponential decay in the shear. This is a
strictly general-relativistic effect (the term 7,, occurs in (4.16) but not in (4.16')).
Further, terms — } AF,, and — } AH,, now appear on the right-hand sides of
(4.21d), (4.21b) respectively, showing that viscosity will tend to make the free
gravitational field (represented by the Weyl tensor) die away (HAWKING [62]).

This and similar calculations lead us to hope (MISNER [28,29]; cf. STE-
WART [23]) that almost any universe model will turn out, after sufficiently
realistic physical processes have been considered, to evolve into a state very
like a Robertson-Walker universe.

53.5. Further solutions. Much of the work in this and the last chapter
is based on Ehler’s very clear review article [22]. TFurther applications of
the Bianchi identities to study the dynamics of fluids in general relativity may
be found in KunpT and TRUMPER [45], SzZEKERES [63], S1mrrry and TAun [49].
Solutions with H,, = 0 are discussed by TRUMPER [64]. Discussion and ap-
plications of the Newtonian equations in the cosmological context may be
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found in HECKMANN and ScHUCKING [13, 36], HECKMANN [65], RAYCHAU-
DHURI [39], TRAUTMANN [14], TRUMPER [46]. Solutions with E, =0 are di-
scussed by NARLIKAR [66].

Besides those mentioned in this chapter, many other exact general-relativity
solutions have been found; a classification of these space-times according to
their symmetries, and further references, may be found in Euiis [57],
STEWART and Enris [67], ErLiIs and MacCALLuM [58].

8. — Observations in cosmological models.

In this Section we discuss observations 'in a general curved space-time.
Although the sources and observers move with a unique velocity at each
space-time point in the applications to cosmological models we have in mind,

many of the relations in 61-6'4 and 6'6 are valid for sources and observers
moving with arbitrary 4-velocities at arbitrary points.

6'1. The geometric optics approximation. — The radiation which conveys
information in a cosmological model may be represented by a geometric
optics solution (*) of Maxwell’s equations. The electromagnetic field F,, is
regarded as a test field (i.e. we can neglect its effect on the curvature of space-
time) in a charge- and current-free space-time, and so obeys Maxwell’s source-
free equations

(6.10) F[a&;c] =0 < a¢u:Fw = ¢b;a'— ¢a;b ’
(6.1b) Fa,—0.

The potential @, will be chosen to obey the gauge condition
(6.1¢) Pe.,=0.

We agsume there exist solutions of these equations of the form
(6.2) D, = g(p) A, + small tail terms,

where a) g(p) is an arbitrary function of the phase ¢, and b) g varies rapidly
compared with the amplitude 4, in the sense that

(6.3) 9 kadn> gl ,

(*) For further discussion of this approximation, see EHLERS [68].
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where g':= 9dg/0p and we have defined the propagation vector k, by
(6.4) kii=g@,-

a) is the condition that arbitrary information can be propagated by the
signal (cf. TRAUTMANN [69]), and b) is the condition that the signal represents
a high-frequency wave with a relatively slowly varying amplitude.) Substi-
tuting (6.2) into (6.1b), ignoring the tail terms, and equating to zero separately
the coefficients of g, ¢'= dg/dp and ¢"= 0*g[dp* (which we may do as g is
arbitrary), we find

(6.5a) . k°k,=0,
(6.5b) Ao =—314.0,,
(6.5¢) (A4%)#, + R, A>=0.

The third equation will play no further part in the present discussion; its es-
sential effect is the show that we cannot in general omit the tail terms if (6.2)
is to be an exact solution of (6.1).

From (6.1a) and (6.3) we find that the electromagnetic field has the approxi-

mate form
(6.6) Fo~g'(kody— A, ky)
and the electromagnetic stress tensor S, defined by
Sdb = Fac ’be—igobI’YCchd ]
has the form (%)
(6.7) So = A¥g') ko ks
where we have defined A%.= A*A4,.
An observer with 4-velocity u° finds the radiation flux across a surface

perpendicular to k* to be the same as the instantaneous energy density of the
radiation, both being equal to

(6.8) f= Sapusub = A%(g')*(k.u®)?.
Equation (6.5a) implies k°k,,=0. However (6.4) shows ks, = Ky, SO

(*) This is the stress-tensor of a particlo (the photon) moving with 4-velocity K.
The gauge condition (6.1c) implies kA4, =0 and so ¢nsurcs A4, is spacclike.

10 — Rendiconti S.I.F. - XLVII.
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we find
(6.9) kopk®=10.

Thus the light rays (the curves whose tangent vector field is k¢) are null geodesics.
It follows that light rays are bent by an anisotropic gravitational field. Since this
deflection need not be the same for every ray in a small bundle of light rays,
such a tube may be differentially bent. Thus a curved space-time will in general
distort optical images (SAcHs [70]).

6'2. Red-shifts. — The rate-of-change of g(p) measured by an observer mo-
ving with 4-velocity we is g.,u®= g'(k,u®). If observers with 4-velocities g,
ug; measure the rate of change of the same signal g(p), these rates of change
are in the ratio (k,u®),/(k,u®),. We can think of this as a time-dilatation effect:
if a proper time interval d¢ is observed to elapse between particular signals
(such as pulses emitted at unit time intervals by one of the observers), then
dt,/dt, = (k. u®),/(k,w?).. In particular, the observed frequencies » of light or
radio waves are related by

n _ (k)
Va2 (e, u®), '

The red-shift z of a source as measured by an observer is defined in terms
of wavelengths by

(6.10a) 2 — Aobesrvea = Aemitted . Al

jmmuud ’ ltmﬂ.ud

We therefore find that

Aobserved Vemitted
1+z= observi — emitte

’
)wml tted Vobserved

1]

(6.10b) 1 + 2 = (u’;k(l)amlttu

o iub kb) observer

determines the red-shift from the 4-velocity vectors wue| U g merer 20A
from the tangent vector k¢ to the null geodesic. This relation is true no mat-
ter what the separation of emitter and observer, and holds independent of
an interpretation of the red-shift as a « Doppler » or « gravitational » red-shift.
as an example, if both observer and emitter are at the « same » point (*) and

observer)

(*) In the cosmological context, at distances up to, say, 10 Mpec.
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the emitter moves radially away from the observer, we can write
(6.11a) u, = cosh fu, + sinh fe,, c¢,ee=1, e u, =0,

a8 the 4-velocity of the emitter, where ueis the observer’s 4-velocity, e, is the
direction of motion of the emitter in the observer’s rest frame, and V= tghp
is the velocity of relative motion. Then a null ray representing a signal from
the emitter to the observer is k* = k(u®—¢?); from (6.100) we immediately
find

(6.11b) 1+4+z=exp[—f]= Vi_i; ,

the standard result for the red-shift due to radial motion of the source relative
to the observer when both are at the same space-time point.

For later use, we introduce the following decomposition of k°. Consider
an observer with 4-velocity «® and let » be an affine parameter along the null
geodesic with tangent vector k¢; so k*= dx°/dv. If »° is the unit vector in
the direction of the projection of k¢ into the rest space of the observer, then

(6.12) ke = (— u, k®)(u® + n°), nem, =1, niu,=0.

Thus a small increment dv in the affine parameter will be considered by the
observer to correspond to a time difference d¢ and a spatial displacement di,
with
(6.13) |dt| = |dl] = (— k*u,)dv .

6'2.1. The linear red-shift relation in a cosmological model.
In a given cosmological model, the emitter and observer coincide with parti-

cular galaxies moving with the unique fluid velocity u®. The change in (u°k,)
occurring in a parameter distance dv along the null geodesic is

AUt k) = (U9k,) o kA0 = (g0 ko K0) dv + 2,(k,, k) do .
The second term vanishes by (6.9). Substituting from (2.10) and (6.12),
d(uck,) = (Opnen® + u,n)(uk.)*dv .

As (6.10) implies that the change dA in any wavelength A in the parameter
distance dv is given by

di d(ugke)

. (uy k) !
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626 G. F. R. Ellis

the change of red-shift along the null geodesic is

(6.14a) (—1% = (On®n®+ ucns)dl .

Using (2.11), this can be written (Eirurs [22])

(6.14b) d% = (dl)* + (@enm,)dl .

Thus the red-shift has been split (because we have a unique 4-velocity u®
determined at each point) into a radial « Doppler » part (the first term, equi-
valent to (6.11b) for small distances when (2.11) is valid, since the latter then
implies the motion is slow) and a «gravitational » part (the second term).
Further, we can see how this red-shift-distance relation varies with direc-
tion in the sky; since the angular dependence of the terms due to 0, o4
and %, are different, we can in principle determine these quantities directly
from the linear red-shift-distance relation around that point, estimating the
distances from the observed brightness of the sources (seec Subsect, 6°4).

6'2.2. Spherically symmetric cosmological models. To illustrate
these relations, we consider a Robertson-Walker universe in the co-ordinates
of Subsect. 5'1.3. By the homogeneity and isotropy of these space-times all
future-directed null geodesics are equivalent, so it suffices to consider future-
directed radial null geodesics through the origin of co-ordinates. The corre-
sponding solution of the geodesic equation is

1
(6.15) leo = —(1 = 0)@7@,: (—1, R,0,0).

R\ R

=S|

Since the fluid velocity vector is u* = (1,0, 0, 0), we find

1
6.16 —utl, = .
(6.16a) wha= 3

Thus in these models,

(6.16b) 14+2= Loreorvr

o ]cemlu.er '

This result can also be obtained by direct integration of (6.14), or by simple
geometric methods (cf. NARLIKAR and DAvIpson [9], and the interesting
discussion by SCHRODINGER [71]).
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8'3. Polarization. — It follows from (6.5b) that the state of polarization of
the light is completely unaflected by the curvature of space-time. More pre-
cisely, any numerical parameters describing the polarization are unchanged
along the null geodesics, while any directions associated with the polarization
are parallely propagated along the null geodesics.

6'4. Luminosity. — The quantiy f in eq. (6.8) is the instantaneous flux of
the radiation; the rate of change of | along the null geodesics is determined
by the equation

(6.17) (A%), k0 = — A2k,

which follows from (6.5b). However what is measured in practice is not f,
but a time-average of f over a fairly large number of high-frequency oscilla-
tions. Thus the observed flux (%) is A2(G(p))*(k*u,)? where G(p) is a suitable
average of g'(p), and is a slowly varying function of ¢. As G(p) is constant
along the null geodesics, it can be absorbed into A without affecting (6.17).
The measured flux F can therefore be written in the form

(6.18) F = Ar(k,uv) .

6'41. The area law. Consider a bundle of null geodesics diverging
from a radiation source, with cross-sectional area dS perpendicular to the pro-
pagation vector k at a point with affine parameter value v. We quote two geo-
metrical results describing the geometry of such a bundle of null geodesics
(see Sacms [70] or PrrANI [37] for proofs):

a) the measurement dS is independent of the 4-velocity of the observer
measuring dS;

b) the change of dS along the null geodesics is determined by

d
(6.19) 35 (@9) = (@8)oke = dSke,,.

Combining (6.19) with (6.17) shows that (42dS) is constant along the geo-
desics. Thus

(6.20) A2d8), = A2d8|,

describes the change of A along the bundle of null geodesics. Combining

(*) Rate at which radiation crosses unit area per unit time.
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(6.18) and (6.20) shows that

(kauu)oburnr : 1
I pREMGA LA
« [(k"u,,),.,,“m ds ’

the factor (k,u® being constant along the geodesic), so from (6.10)
emitter g
we find

constant
6.21 I =- .
( ) (L 4 2)2d8°’

gives the measured flux at any point along the bundle of null geodesics. The
(1 + 2) factors may be understood as arising from i) the loss of energy suflered
by each photon due to the red-shift, and ii) the lower measured rate of arrival
of photons due to the time dilatation. Apart from these factors, the flux is
proportional to (dS)-!; this expresses the conservation of photons along the
bundle of null geodesics. When the energy conditions (3.8) are fulfilled, the
space-time curvature tends to cause the bundle of null geodesics to con-

null geodesics

source

Fig. 5. — Tho rofocussing of a bundle of null geodesics emanating from a source G;

the cross-scctional arcas of the bundle at P and @ are the same. As a result, the source

will appear to be anomalonsly bright, and to have an anomalously large angular dia-
meter, to an observer at Q.

verge (*) (Sacis [70], Punwvos [72], Burrorrr [73]). If there is sufficient
matter present to reconverge the null geodesics, so that the cross-sectional
area (S is the same at two points (P and Q in Fig. 5), then the factor A* will
be the same at these two points. Thus the source will scem anomalously bright
to an observer at (; if he and an observer at P both adjust their velocitics
8o as to see the same red-shift, they both measure the same flux of radiation

(*) This is truc even if space-time is empty.
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from the source (in practice the red-shift factors will often nullify this effect).
Near a point where the null geodesics are refocussed, this gravitational lens
effect tends to produce very high fluxes (cf. Salpeter’s seminar).

6'4.2. Relation to the source luminosity. The constant in
eq. (6.21) has still to be related to the source characteristics. The luminosity
of the source is defined as the total rate of emission of radiant energy by the
source. In principle, the luminosity of the source at some instant ¢, would

future light
cone of source
at instant t;

history of 2-sphere
surrounding source
world-line

of source

Fig. 6. — A space-time diagram of the intersection § of the future light cone of the source
at an instant ¢;,, with the history of a 2-sphere surrounding the source. The total light
emitted by the source at instant ¢, can be measured on S.

have to be measured by enclosing it in a 2-sphere and measuring the rate at
which radiation emitted at time ¢, crosses each surface elements dS (*) of the
sphere (in the space-time diagram of this situation, Fig. 6, we measure the
radiation on the 2-sphere S). Then we form the integral

(6.22) L:=j(1 +2)2FdS.

By (6.21), this is a constant, independent of the choice of the 2-sphere and of
its motion; this constant is the source luminosity L.

(*) Remember that dS is defined as the area projected perpendicular to &°.
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In practice, we observe the flux from the source along some bundle of
geodesics which subtends a small angle dQ, at the source and has cross-sec-
tional area dS, at the obscrver. (Subsecript G denotes the bundle of geodesics
diverging from the galaxy.) Consider a unit sphere lying in the locally Eucli-
dean space-time near the source, and centered on the source (this implies that
its 4-velocity is the same as that of the source, so (14 2)=1 on this
sphere). Let the value of /' on this sphere be denoted by F',. Then, assuming
the source radiates spherically symmetrically,

(6.23) L= fFodS = 4T,

2-sphere

relates the source luminosity to I'y. Now (6.21) applied to the bundle of null
rays shows that

(6.24) ((1 4+ 2)2FdS,) = const = F,dQ,,

where we have evaluated the constant on the unit 2-sphere. Therefore if we
define the galazy area distance r, of the source from the galaxy by

(6.25) as, = r,*dQ,,

eqs. (6.23), (6.24) show that

L 1
(6.26a) I = In r L2
is the observed flux from the source in terms of the galaxy luminosity I,
red-ghift z and area distance r,. The effects of the curvature of space-time
are contained in the factor (1/r,)% as definition (6.25) determines r, as a func-
tion of the affine parameter (and so, in a cosmological model, of the red-shift).
In the context of astronomical measurement, this flux is called the observed
luminosity of the source; the apparent magnitude m of the source is defined by

m = — 2.5 log,, I + const
S0 we can rewrite (6.26a) as

(6.26b) m = —2.5log,, L + 5 log,, rg(1 + 2) + const .

6'4.3. Distance definitions. Since we cannot measure the solid an-
gle dQ,, the galaxy area distance r, is not a measurable quantity. However
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we can define an analogous quantity, the observer area distance r,, which is,
in principle, observable. Let df, be the solid angle subtended by a bundle
of null geodesics diverging from the observer, and let dS, be the cross-sectional
area of this bundle at some point. Then the observer area distance r, of this
point from the observer is defined by

(6.27) 48, = r,*dQ, .

Thus we can find r, if we can measure the solid angle subtended by some
object (e.g. a galaxy of given type, or H,; regions in a galaxy) whose cross-
gectional area can be found from astrophysical considerations. When the distor-
tion effect is not large (if it is large, we should be able to detect it), we can
determine the area distance to reasonable accuracy from the observed angular
diameter « of some object whose linear dimension d perpendicular to the line
of sight can be estimated; then d ~r «.

If we consider a given galaxy and observer, there are defined two seemingly
independent area distances (r, and r,) between them. An important geome-
trical result, discovered by ETHERINGTON in 1933 and rediscovered by SACHS
and PENROSE in 1966, is that these area distances are essentially cquivalent.
More precisely, we have the

Reciprocity Theorem. The area distances r, and 7, are related by
(6.28a) (rg)2 = (r,):(1 + 2)*.

Proof. Let a bundle of null geodesics diverging from G with solid angle
dQ, have tangent vector k°, and let a bundle of null geodesics converging to O
with solid angle d£2, have tangent vector k'¢, where OG is a null geodesic com-
mon to both bundles (see Fig. 7); k* and k'« are to coincide on OG. Let v,
v' be affine parameters and p¢, p’* be connecting vectors for ke, k' respectively.
Then ke = cz*[ov, k*,k* = 0, Dp®/Dv:= p°, k> = k*,p* hold, together with the
corresponding primed equations (the proof of the last equation is essentially
identical to the proof of eq. (2.5)). These equations imply the geodesic devia-
tion equation D2p¢/Dv: = — R* ,k*p° k¢, and the corresponding primed equa-
tion. Since R%. k0 ké = R4 k"k's and v =o' along OG, these equations and
the Riemann tensor symmetries (4.1) show

‘g szﬂ_ aszlﬂ

Py P Dy T 0 along OG.
Therefore
la Dpd GDpla ;
P Do P Dy = constant along OG.
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Evaluating this constant at O (where p’® = 0) and at G (where p® = 0), wo find

dp’,
o dv

— !
a

i

6.29 ¢ .
(6.20) ? Eal

0

To completely determine the set of connecting vectors we consider, we specify
that p® will be orthogonal to the observers 4-velocity at O and p’® will be
orthogonal to the galaxies 4-velocity at G; then the set of connecting vec-
tors p°, p'® satisfying these conditions is 2-dimensional at each point on OG.
We write the magnitudes of p, p’ as p, p'.

Fig. 7. — Bundles of null geodesics diverging from a source G and converging to an

observer O, with a null geodcsic OG common to both bundles. If O moves so as to

see no redshift in the source spectrum, then equal areas dS,, dS,; subtend equal solid
angles dQ,, dQ,.

We wish to use relation (6.29) to relate the areas dS,, dS, of the bundles
of geodesics at @, O respectively. To do so, we choose from the connecting
vectors p a pair p,, p, such that

APz

dp,*
(6.30a) ©

=0.
dv

@

In general, these vectors will not be orthogonal at O; let the angle between
them at O be zn/2 4 y. If we rotate the pair p,, p, at G through an angle
72, this maps p, to p, and p, to — p,, and so changes the angle at O to 7/2 — .
Thus if we rotate the pair through all angles up to z/2 at &, the angle between
them at O will certainly take all values between #/2 4 v and #/2 —y. We
can therefore find a particular pair of connecting vectors p,, p, which satisfy
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(6.30a) and also
(6.30) P1%oP2alo =0

We now choose from the connecting vectors p’ a pair p,, p, determined by
the condition

o | APaa| | dpel|
1], do 9_0’ ¥l dv 6_0'
Then (6.29) shows
a dplld . dpz'a —_
s | “d 0—0, Pia| gy 0—0,

i.e. we have (because of (6.30a), (6.300)) the conditions

dp,'®
do

dp,'

o dv =0.

o

(6.300) Pllalapzlnla =0 )

With this choice of connecting vectors,

' ' d " d !
480 = piloPalo s 48, = PilePala, dQ, = % o—d%—, )
0
— dpl dpz
a0, = o d o

However (6.29) shows

dpidp'a)‘ P,
o(dv )|, = (PP

Using (6.13) this relation is

(%%
e\dv dv

(P122)

G

48,40, (k u,)?, = d8,dQ2,(k,u")?], ,

which is relation (6.28) in view of (6.25), (6.27) and (6.10).

This result is simply a consequence of the geodesic deviation equation.
It tells us that if 2 = 0, then equal surface clements dS,, dS, subtend equal
solid angles d2,, df2,, irrespective of the curvature of space-time (The factor
(1 + 2)* is simply the special relativistic correction to solid-angle measure-
ments.) Note that if there is a gravitational lens effect leading to anomalously
large source brightness, this is accompanied by an anomalously large source
solid angle. In fact, if we have the situation (see Fig. 5) that light is refocus-
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sed, the angular diameter of & given object decreases to a minimum and then
starts increasing again as that object is moved further down the past light
cone of the observer.

The reciprocity theorem allows us to extend (6.26a) to

. Ire I,
6.26¢ I = —
(6260 (r*(L+ 2 " (ro)(L+2)*
S0 we can rewrite (6.26b) as

(6.264) m = —2.5log,, L+ 5log,,r,(1 + 2)* + const .

Another way of stating the result of the theorem is to define a corrected
luminosity distance r by

e — 1"0
TE R4

(see KRISTIAN and SAcus [17]); then the theorem is
(6.28b) r=r,.

Since we can in principle find the corrected luminosity distance r for any source
with known intrinsic luminosity by measuring the flux from the source, we
can (in principle) verify eq. (6.28b) experimentally. However in practice (sec
Subsect. 6'6.2) we are usually unable to measure 7, r, independently.

In the literature, 7,7, and D (defined by D*:= F,/F") have all been cal-
led luminosity distances; this has caused some confusion about what the cor-
rect red-shift factors in various formulae are (). A further distance defined
by the null geodesics is the parallaz distance r,, defined by 7 = 2[k.|,,
which is equivalent to the usual definition of parallax distance when there
is no distortion (JorDAN, Eipirs and Sacus [74]); however this distance is
clearly not measurable in the cosmological context.

These distances are all (in principle) directly measurable quantities, which
reduce to the usual special relativistic distance a) for slowly moving nearby
sources, and b) in a static situation in a flat space-time. However in the situa-
tion in which there is refocussing and so a minimum angular diameter for any
given object, some or all of these distances will be double-valued. Even the
cosmological red-shift, which is often a single-valued directly observable di-

(*) When we refer to a « luminosity distanco » it will be the uncorrceted distanco D,
and a «corrected luminosity distance » will be r=r,.
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stance indicator, may be double-valued in certain circumstances (for example,
in a Robertson-Walker universe (A > 0, K > 0) which contracts from an in-
finite to a finite radius and then re-expands to an infinite radius).

6'4.4. Spherically symmetric cosmological models. As an ex-
ample, consider a Robertson-Walker universe with the metric given in Sub-
sect. 51.3, and the source taken at the centre of the spatial co-ordinates; we
use (6.15) to give the components of k°. Let the time at the observev be ¢,
and the time at the source be 7,.

A small affine parameter change dv along the null geodesics corresponds
to co-ordinate changes dt, dr where

(6.31) dv = Rdt = R*dr,

(cf. eq. (6.13)). The divergence of k* is

o o1 0y 2 (g
k:u—‘,\/_—gawa( gk)— (R+ )

o

Since (6.19) implies [log dS]J =flc“;ad'l), we can use (6.31) together with this
-]

equation and the definition of d2, to find

FoR®  of
Rt + f Rf f((:))-der = log (B*f*(")]a

[
gince

@ -

. ds
P—?(wa))

Here r is the radial co-ordinate difference between the source and the observer;
to express the result in a manner independent of the spatial co-ordinates used,

we note that
0 t
dt
r —fdr —fﬁ(—t) )
aq ‘0

the equivalence holding because the light moves on a null geodesic (see (6.31)).
Thus if we define

(]

[
(6.33) w=| g

aq
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then (6.32) is equivalent to

(6.34a) re= R*|, f*(u),
where
sinu +1
flu) = w if k= 0.
sinh » —1

Similarly we can show that
(6.34b) ry = R, f*(w) = (1 4 2)"2 R?|, f*(u) ,

which is consistent with (6.16) (). Whenever R°= 0 we can express % in the
form

J‘ _ dz
RR* ) A +2)R"’

and then substitute from the Friedmann equation to obtain %(z) and so 7,(2).
For example when pressure-free matter is the dominant energy component
in the universe (as it is at recent times) we can use the Friedmann equation
in the form (5.4¢) and numerically integrate to obtain r,(2). (See, for example,
REFSDAL, STABELL and DE LANGE [53].) In the particular case A4 =0 we
can integrate analytically to find (using (5.5b) to evaluate R, when k= 0) that

1

. :
I'I!)(Io(1 + z) {qoz+ (0 )((1 + 240?) 1)} ,

(6.35a) To=

when ¢,54 0, and

1 1
(6.35b) Yo = m(l —m) y

when ¢, = 0. (cf. MATTIG [75], SANDAGE [76]). Combining these with (6.26d)
gives the usual m-z relations.

We see that when ¢, 0, there is a maximum value of 7, for some value
of z, and thercafter r, decreases as # increases; ¢.e. we do have refocussing of

(*) We can also derive these cquations direct from the Robertson-Walker geometry,
(cf. DavipsoN and NARLIKAR [9]).
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null geodesics in these models. This is still true if we include a pressure term
in the Friedmann equation, so it is true in all nonempty Robertson-Walker
universes which expand from a singularity (we can always ignore a A-term at
early enough times). However the (uncorrected) luminosity distance D =
=1y(1 + 2)* always decreases as z increases; i.e. although the area factor in
(6.26¢) tends to increase I' after a certain point, the cosmological red-shift
factors suffice to ensure that the observed flux from identical sources always
decreases as distance increases.

Equations (6.35a), (6.35b) imply a simple expression for z as a function of D;
in fact

(6.35¢) 14 2=¢q(1+ DH,)— (q,—1)V1 + 2DH, .

6'5. Number counts in a cosmological model. — Consider a small affine para-
meter displacement dv at a point 4 on a bundle of past null geodesics sub-
tending a solid angle df2, at 0; this corresponds to a distance dl = (— keu,)dw

TFig. 8. — A section (v,v+ dv) of a bundle of null geodesics which subtends a solid
angle d, at 0.

in the rest-frame of a galaxy at A. The cross-section area of the bundle is
a8, =r,2dQ,, so if the number-density of radiation sources is » per unit proper
volume, then the number of sources in this section of the bundle (see Fig. 8) is

(6.36) AN = r 2dQ,(n(— k*u,)), dv .
Integrating this expression with respect to v gives the number N(v) of sources

seen by O in the solid angle d2, which lie at affine parameter distances less
than ». Wo can combine N(v) with the functions r,(v), 2(v) to obtain N(Z),
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the number of sources with intrinsic luminosity seen in d{2, with observed
flux greater than I, or N(z), the number of sources seen in d£2, with red-shift
less than z.

6'5.1. Spherically symmetric models. In a Robertson-Walker uni-
verse, if the number of sources is conserved then n = ny(I%}/R?), and (6.36)
becomes

3
";5" A4Q,. R (u) = Rrdu,

dN: .Iz.

on using (6.16a), (6.31), (6.34b). Thus

“ 3 (u —sinw cosw) , if k=41,
N(u) = 4on, B3| f*(u') du' = daun, 125 u3[3 if k=0,
° 1 (sinh % cosh u — ) , ife=—1,

is the number of sources in all directions at distances up to that characterized
by . Using (6.34) and (5.5b) we can write this as a function of r,(1 + 2),
(3.e. of 7,):

27m, ] ‘
(33(2{10—;)+A)§(ar“'smf¢f\/1—f2 , if k=41,

4 .
637a) N={ = m((L+2)0)*, it k=0,

27tm,
(Ho(1—2g,) —

A),(f\/l—]—f*—-argsinhi), if b=—1,
where
(6.37b) f= (b(H22¢,—1) + A))r(1+2), when k0.

(Care has to be taken in choosing the correct sign T when k= + 1 (ROEDER
and McVrTTiE [77]); note also that N is monotonic with affine distance
although 7, is not.) Combining this expression with 7,(2), we obtain N(z);
alternatively we can climinate z to obtain N as a function of one of the area
distances. In particular if 4 =0 in a dust-filled universe, (6.35¢) shows we
can obtain the simple expresssion

D

roll 4 2) =
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which, combined with (6.37) expresses N(D) in terms of simple analytic func-
tions. (cf. MATTING [78], SANDAGE [76].)

6°6. Observed specific intensity. — The theoretical relations we have derived
so far need to be modified in three ways to .correspond more closely to what
is actually observed.

6'6.1. Specific flux. So far, we have considered a total (bolometric)
luminosity L and flux F. However we actually observe in very restricted
wavelength ranges (in radio observations, nearly at one frequency: in optical
observations usually in the U, B, V bands). To allow for this, we represent
the source spectrum by a function #(v), where L#(v) dv is the rate at which radia-
tion is emitted by the source at frequencies between » and » + dv; #(») is nor-

malized by the condition fJ (»)dv = 1. The frequency », measured by some
o

observer is related to the frequency », of the same radiation in the rest-frame
of the emitting galaxy by »,=w,/(1 4 2) (cf. Subsect. 6'2), which implies
dv, = dy,/(1 4 2). Equation (6.26) can therefore be written

©

[# (o1 + 2)) do,

——L_J.l(v,,)dva Y

(A .
4 r5(1 +2)%  4n ra(l 4+ 2)3

Thus the flux measured in the frequency range », » 4+ dv by the observer is

_£ J(v(l +2))dv - £./(v(l + 2)) dv
Tdm ryl 42 4w ri(l +2)

(6.38a) 7,dv

We call I, the specific flux (in the case of radio sources, it is called the fluw
density) of the radiation. We can often assume () has the form S(v) =
= const»™*, where o is a constant (the «spectral index »); (this is a good ap-
proximation for many radio sources when 0.7<«x<0.9 and for many optical
sources at wavelengths longer than 5000 A when «~2). Then we find

. ' F(v) _ Iy f(v)
(6.38b) ]’p—rg(l Tz _,rg(l + z)tte

An alternative way of allowing for the effect of the source spectrum is to intro-
duce a correction term, the « K-correction » (SANDAGE [79]) which represents
the difference between F, (given by (6.38a)) and F (given by (6.26)).

6'6.2. Intensity. So far we have implicitly assumed the sources observed
are point sources. In practice we usually observe extended sources, and in-

11 — Rendiconti S.I.F. - XLVIIL.
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stead of measuring the flux from the source, our direct measurements tell us
the flux per unit solid angle from the source (HoyLE [80]), that is, the intensity
of radiation from the source. Considering a source (or part of a source) of area 4,
we find from (6.26¢) (6.27) that the intensity is

. I Ie
(6.39) 1.=m=m,
where the factor I,:= I",/A depends simply on the source characteristics.
For a given source, the intensity is independent of the area distance r, and
depends only on the red-shift z; if 2 =0, I has the value I, which is the
surface brighiness of the source. Thus, for example, the density of marking
of an image on a photographic plate is independent of the space-time curva-
ture, depending simply on the source surface brightness and observed red-
shift; as we can find 2z independent of I, we can in principle find the surfaco
brightness of the source direct from our measurements.

To find the flux I from an extended source, we have to measure I and
then integrate over the image to obtain I; therefore we have in fact (except
in the case of quasars or very distant galaxies), explicitly or implicitly, to
estimate the solid angle subtended by the source before we can deduce I from
our direct observations (see HovL [80] for further discussion). It is for this
reason that we are in practice unable to measure the corrected luminosity
distance r and area distance r, independently (see Subsect. 8'4.3). We may
in fact lose useful information if we consider only the flux J* (the « magnitude »
of the source) rather than the intensity and solid angle information which is
combined to give I'.

We may note that it is expression (6.39) which is involved in Olber’s pa-
radox (BonDI[1]; see also WHITROW and YALLOP [81], HARRISON [82] and
references cited there); this expression shows that we have the alternatives
of assuming I, is very low for the sources along almost all null geodesics from
us (perhaps because of the source evolution which must occur in view of the
finite source lifctime), or that the red-shift increases indefinitely along almost
all null geodesics.

66.3. Specific intensity. Combining the effects considered in Sec-
tions 6°6.1 and 6°6.2, we see that what we usually measure dircctly is the flux
per unit solid angle in some frequency range (»,» + dv). That is, we meas-
ure the spectfic intensity I, of radiation from the source; (6.27), (6.38) show

I, dy . S (g(l_ -+ z)) dv
4 T T e

(6.40) Idv: =

@ Springer



Republication of: Relativistic cosmology 641

which for a given source depends simply on the redshift of the source (I,-#(»)
is the surface brightness of the source at frequency »). To estimate the specific
flux (e.g. to estimate the visual magnitude m,) from an extended source,
we have to integrate the observed specific intensity, which is what is actually
measured by the photographic plate or radio receiver, over the image of the
source.

As an application of (6.40), we consider measurement of radiation from a
source emitting black-body radiation. Defining the function g(») by g(») =
= I,#(v)[v*, we can rewrite eq. (6.40) as

(6.41a) Idv =g(¥(1 + 2))»*dv,

which gives the observed specific intensity at each frequency » for any observer
who measures the source red-shift as 2. On the other hand,

(I,dv)l,,:j(%)v“dv,

is the specific intensity of radiation at the source (*), where f(»/T,) is the Planck
function for black-body radiation at temperature 7',. Comparing these ex-
pressions at the source shows g(v) = f(»/T',), which implies

(1 +2) = 1(1“—; 2)) :

Hence we can rewrite eq. (6.41a) as

(6.41b) Ldv=f (%) iy,
where we have defined
T,
42 T = ;
(6.42) s

i.c. an observer who measures the source red-shift as 2, sees the radiation as
black-body radiation at temperature 7' where 7' is defined by (6.42). Thus black-
body radiation propagates with an unchanged spectrum through curved space-
time, the observed intensity of radiation depending only on the observer’s
4-veloeity. (cf. Ehler’s lectures for a different derivation of this result). We
may note that in the Robertson-Walker models, (6.42) enables us to find the
change of black-body temperature along the null geodesies, (3.23) enables
us to find it along timelike geodesics, and (6.16) shows these results are consistent.

(*) This form follows direct from Wion’s law.
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This calculation is equally valid if we regard it as relating to observations
at one point. Suppose an observer § moving with 4-velocity u® measures the
temperature of black-body radiation, which has a propagation vector ke, as T,
while an observer 8’ at the same point moving with 4-velocity «'¢ measures the
temperature of the same radiation as 7,. Then

T = f[“ =T M
T4 (k)]

where z is the red-shift S measures for radiation from a source moving with

4-velocity w'c. If the relative velocity of S and S’ has magnitude v and the

angle measured by 8§ between the direction of k and the direction of motion

of 8" is 0, we can directly evaluate this equation by using (6.11a) and (6.12).

(Note that en, = cosf). We find (%)

T, 1 —o2)t

(6-43) T= coshp—sinh B cos® To (1—wecos0)’

where v = tghg. In particular, if S’ observes an isotropic black-body radia-
tion field with temperature 7',, then S observes a black-body radiation field
with temperature distribution in the sky given by (6.43). Conversely, if S sees
such a radiation field, then there exists an observer 8’ who sees an isotropic
radiation field. S can find the 4-velocity of 8’ by noting the maximum and
minimum black-body temperatures T, , T . on his celestial sphere; then the

velocity of 8’ relative to § is in the direction in which § observes T, and has
magnitude

_ Tmax - zymin
- Tmax + 1,min ’

while the isotropic radiation temperature measured by 8’ is T, =7, 7T .
(Remember we are using units in which the speed of light is 1.)

6'6.4. Absorption and emission in a cosmological model. Fi-
nally, we should allow for absorption and emission of radiation along the line
of sight from the source G to the observer 0. Let I, (v) be the specific intensity
of radiation travelling along a bundle of null geodesics from @ to O as measured
by an observer moving with the average velocity «* at a point A (affine para-
meter distance v from O0) in a cosmological model. We consider the change
in I, as v increases to » 4 dv (see Fig. 8). By eq. (6.40), we can represent
the change in I, due to geometrical and red-shift effects alone by the differential

(*) This is just the gencralization of (6.110) to include the transverse Doppler shift.
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equation

ar, 3 , d
dv 142z "’

where »' ;= »(1 + 2) is the frequency of radiation at 4 which, when red-shifted
to 0, is observed at frequency ». Let S(v,»)d» be the rate of emission of
radiation by each source at A per unit solid angle in the frequency range »
to v 4 dv, let n (v) be the number density of sources at A, let n,(v) be the
number density of particles scattering or absorbing radiation at 4, and let
a(v,v) be the interaction cross-section of these particles at frequency » (we
may allow for re-emission by suitable additions to either ¢ or S; similarly we
may, if we wish, represent absorption processes by a negative contribution
to §). Allowing for these processes in the velume dldS, = (—wu,k*)dvdS, at
A, the change in I, : along the geodesic can be represented by the differential
equation
0= T (0) = ma(0) 010, ) Loo).(— Rae)) =

= —n,(0)8(0,7').(— kau)(0),

(remembering that when dv is positive, S acts as a negative term and o as a

positive term). Integrating this equation along the geodesic from O(v = 0)
to G(v=v,) we find the specific intensity at 0 is

-exXp [— (v, »)(— ks u®)(v) dv +

L42,(v4)

(1 +24)°

()80, 51 + 2)
(6.44a) I, _f B

+ .eXp [—P(’U*a ”)] ’
where the optical depth p(v,») between A and O for radiation observed at O
at frequency » is

(6.44b) P, ) =|ns(v") (v, (1 + 2)) (— kqu®)(v')dv’;

0

in these expressions, z and (k*u,) are regarded as known functions of wv.

This equation determines the specific intensity of radiation we observe
in any direction in the sky; the second term represents radiation propagating
according to eq. (6.40) from G but attenuated by absorption, while the first
term represents the integrated emission from sources between O and @, again
attenuated by absorption. This equation implies a very similar equation,
which can also be derived directly from (6.39), determining the (integrated)
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intensity I; the only essential differences are that the factors 1/(1 4 2)* are
replaced by factors 1/(1 + 2)%, and the arguments containing the frequency »
are omitted (°).

6'6.5. Spherically symmetric models. To illustrate the use of these
formulae, we will apply (6.44) to a Robertson-Walker universe, taking the
matter content to be dust and ignoring the effects of radiation on the dynamics
of the universe. Then, since (6.13) shows

(——kau")dv=—dt=-—_.1—d~Rdz.
dz

we find from (6.16), (5.4¢) and (5.5b) that

dz
(1 + 2)* {HA1 + 2¢02) + (A3)(2e — 1 + (L + 2) )}

(6.45) (— kaue)dv =

(We can easily allow for noninteracting radiation in (6.45) (cf. the comments
following (5.4a)) if integrated emission from early times is important; if other
field equations than those of general relativity are used, one can allow for
this by using a suitable replacement of the Friedmann equation to determine
a new form for (6.45).) For simplicity we shall further take 4 =0 and as-
sume that the radiation sources and absorbing particles are conserved; then

n(z) = n(0)(R3R*) = n(0)(1 + 2)*

With these assumptions, the contribution to I, from sources up to a red-shift 2,
ignoring absorption, is

(6.46) I,=

n,(0) f 81 +2) de
H, ) (1 + 21+ 2¢2)°

0

We might further assume that the source emission can be described by a source
spectrum .#(») which is independent of z, and an amplitude S(#); then

(6.47a) 8(z,v) = S(2) F() .

If in particular the emission is that of a line spectrum at frequency », we can
set #(v) = 8(v—w»,) where d is the Dirac delta function; the integrated emis-

(*) Tor a derivation of an cquivalent expression in the Robertson-Walker case,
sec DavipsoN and NARLIKAR [9].
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sion %,(»,) in this case is

n0) B8 it aes
Y, (v,) = H,v, (1 + 2,)(1+ 2¢,2,)}’ T
0 , if z,>2*,
where 2,:= (v,/v) —1. (Line emission from galaxies may be important in the

infrared (GouLp and ScraMA [83]), microwave (PETROSIAN, BAHCALL and SAL-
PETER [84]), X-ray (GouLp and G. R. BURBIDGE [85]), and y-ray (CLAYTON and
SILK [86]), regions, while line emission from an intergalactic gas could be im-
portant in the radio (PENziAs and WiLsoN [87]) and ultra-violet and infra-
red (WEYMANN [88]) regions.) Regarding a source of form (6.47a) as built
up by such line emission spectra, we can re-express (6.46) in the form

(6.470) I,= f F(v.) G (v.)dve .

While in general we have to integrate by machine, for simple spectra we can
sometimes obtain analytic expressions for I,. For example if the sources have
a spectral index « and their amplitude varies as (R(f))™, then

S(t, v(1 + 2)) = S(f, Y)(1 + 2)"7%;

so in an Einstein‘de Sitter universe (g, = ) we find from (6.46)

when m#~a+ §,

A

_ n(0)80, 1) {1 1 }
" Hylx+ 2 —m) ’

and in a Milne universe (g, = 0) we find

1,=

"v(O)S("’a ) 1 .
_ffo(oz+1—m){1 }, when m# a4 1;

- (1 + z,)t+e

in the exceptional cases ¢o=%, m=a+ % and ¢,=0, m =« + 1 we find

I, =

7,(0) S, to)
7 log, (1 +2,).

o
Thus if the source brightness increases faster than (1 + 2)**t in an Einstein-
de Sitter universe, or than (1 + 2)**! in a Milne universe, there must be a

cut-off in the source evolution before some value of z which can be determined
by comparing these expressions with the observed values of I,. The source
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of radiation might be galaxies or other discrete sources (see, for example, REES
and SETTI [89], and discussions by DAvVIDSON and NARLIKAR [9] of the radio,
Low and TUckER [90] of the infra-red, Worre and BursIDGE [91] of the micro-
wave, and GouLD [92] of the ultra-violet) or an intergalactic gas (see, for ex-
ample, Frerp and HeNky [93] and WEYMANN [88]).

With the assumptions discussed at the beginning of this Section, (6.45)
shows that the optical depth up to a red-shift z in a Robertson-Walker uni-
verse is

(1 4+ 2")de’

" 0)
(6.48) P, v)—f Yo, ot + ) TR

Considering some particular scattering or absorption process, it is often reas-
onable to assume

(6.49a) oz, v) = G(2) A(v) .

In particular, we can represent line absorption at some frequency v, by setting
H(v) = d(v—w,); the resulting pptical depth A4,(z,v,) is

74(0) 3(2) (1 4 2)2
A, (2, v5) =1 Hovu "L+ 2¢02,)F’
0, for 2,>z,,

for 2, <z..,

where z,:= (v,/) —1. (Lack of observed 21 cm (FIELD [94]; PENzIAS and
Scorr [95]) and Ly « (GUNN and PETERSON [96]; BAHCALL and SALPETER [97])
absorption gi\;es useful limits (see e.g. Scrama [98]) on the intergalactic me-
dium; Ly « absorption could be important in Q.S.0. observations (REES [99]).)
Regarding an absorption process with cross-section (6.49a) as built up of such
line absorptions, we can re-express (6.48) in the form

(6.495) Pl ) = f Ay(y %2) 7 (v2) .

While in general we have to integrate these equations numerically, in special
cases we can integrate them analytically. In particular, when o(2, ») = o, = const,
we can integrate (6.48) to show

TeNa(0) i . ] . N
H, . 3?[3 {(340 + oz —1)(1 + 2¢,2) (370 1)} ’

(6.50a) p(z,v) =
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when ¢, 0, and

(6.50D) pe, =22 S o,

when ¢, = 0. Equation (6.50a) would be applicable to the Thomson scattering
arising if an intergalactic medium were ionized (BAHCALL and SALPETER [97];
BaHCALL and MAY [100]); for a fully ionized gas in an Einstein-de Sitter
universe with 7,(0) =~ 105 the optical depth would be unity at a red-shift of
about 7, while in a low-density universe with n,(0) ~ 107, the optical depth
would be unity at a red-shift of about 30. We can also use this expression to
calculate the probability of absorption effects arising from galaxies (Waco-
NER [101]; ROEDER and VERREAULT [102]) or other randomly distributed
matter (BAHCALL and PEEBLES, [103]) intervening between an observer and
some galaxy or quasi-stellar object in a Robertson-Walker universe.

In some situations, one would have to consider absorption and emission
processes together (see, for example, studies of the spectrum of the background
radiation by WEYMANN [88,104], ZEL'DOVICH and SUNYAEV [105], and of
absorption and emission by an intergalactic gas (PEEBLES [106])). Finally
we note that while we have been considering (6.44) in the context of a cosmo-
logical model, one can apply it in other situatiéns when a fluid approximation
is appropriate in astrophysics; (for example, to determine the propagation of
radiation in a star).

6'7. Null cone observations in a cosmological model. — In any given cosmo-
logical model, we can deduce the following quantities:

i) the proper motion in the sky observed for distant galaxies (see eq. (2.12)
for first-order effect) and the distortion of images caused by the curved space-
time, both of which can be found by integrating the geodesic equation (6.9);

ii) the red-shift observed for any distant sources in the model, given
by (6.10b) (see eq. (6.14) for the first-order effect);

iii) the area distance 7, of any source, obtained from k¢, by integrating
(6.17) and using the definition (6.27);

iv) the number N of sources of any given type observed up to some
affine parameter distance v in any direction, obtained by integrating (6.36);

v) the specific intensity of radiation from any given source, and the
specific intensity of background radiation in the model as a function of posi-
tion in the sky (given by (6.44));

and find relations between them. For example, in a Robertson-Walker model
filled with dust and with 4 = 0, there is no proper motion or distortion effect;
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the area distance 7, is related to the red-shift by (6.35) and the number density
to the area distance and red-shift (and so to the luminosity distance D) by (6.37);
eq. (6.44) together with (6.45) can be used to determine the observed spectrum
from any source at red-shift 2, and to find the spectrum of background radia-
tion (taking z, to correspond to an optical depth of unity).

Observations of the black-body radiation in certain homogeneous aniso-
tropic models have been discussed by THORNE [59], MISNER [28], REES [107]
and HAWKING [108], and in perturbations of a Robertson-Walker model by
SAcHS and Woryre [109], Russ and ScrAma [110], and others. The observa-
tional relations for discrete sources have been derived in certain homogeneous
anisotropic models by SAUNDERS [111,112], TomirA [113] and MAcCALLUM
and ELLrs [114]; in an exact study of some inhomogeneities in Robertson-
Walker models by KANTOWSKI [115]; and in perturbations of a Robertson-
Walker model by BERTOTTI[73], ZIroY [116], GUNN [117], PETROSIAN and
SALPETER [118], and others. They may be obtained in the form of a power-
series expansion about « here and now» in any space-time as discussed in a
very interesting paper by KRISTIAN and Sacms [17] (cf. also McCREA [119]).
The divergence k°,, is needed before r, can be found (") in a general model, so
it is often useful to know that k¢, obeys an equation very similar to Ray-
chaudhuri’s equation (see for example SacHs [70], PENROSE [72]); in fact
there is a close correspondence between equations obeyed by the kinematic
quantities defined for a timelike congruence (see Sect. 4 above) and equations
obeyed by analogous quantities (« optical scalars») defined for a congruence
of null geodesics; see JORDAN, EHLERS and SAcCHS [74], SACHS [70], NEWMAN
and PENROSE [120]. (This correspondence is based on the fact that both time-
like and null geodesics obey the geodesic deviation equation.)

In principle we can determine whether any of these space-times could be
good models of the universe or not by comparing these theoretical relations
directly with observation of classes of sources with known physical character-
istics, and with observations of the background radiation. The essential pro-
blem in carrying out this programme is that we do not know a prior: the pro-
perties of the particular sources we observe (cf. the discussions in this volume
by E. M. BurBipGE and G. R. BURBIDGE). Apart from statistical scatter in
the properties of.sources of a given type and selection effects which are exa-
cerbated by the fact that we often have only a poor idea of what kind of object
we are observing, there are two systematic effects we shall briefly mention.
Firstly, the average luminosity L, spectrum £(v) and cross-section area A
of a given class of sources will in general change in time, and so be functions
of the red-shift z; we have to determine this evolution somehow. Secondly,
we can determine r, either directly by measuring the angular diameters of

(*) There are other methods of obtaining r, which are essentially equivalent.
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sources of known diameters, or indirectly by measuring the specific flux of
radiation from the source and using eq. (6.38a). However the sources we ob-
serve in a cosmological context seldom have sharp edges: we therefore measure
the angular diameter of the source up to some isophote (SANDAGE [79]) rather
than measuring a metric diameter. (We can obtain angular measurements
corresponding to a metric diameter by measuring the angles observed between
centres of galaxies in a cluster, or between radio emission centres in a multiple
radio source, but then we have considerable difficulties in estimating the dimen-
sions of the system.) Correspondingly a measurement of the flux from the
gource may omit a contribution from the outer regions which are lost in the
general background. Thus we can only measure the area distance r, of an ex-
tended source accurately if we know the surface brightness of the source as a
function of frequency, time, and position on the surface of the source (cf.
Stock and ScHUCKING [121]). If we could measure I, separately from r,, this
might give some guide as to the evolution taking place in the source.

7. — The observable universe.

In this Section we aim to give a brief qualitative description of the ob-
servable universe, adopting conventional interpretations of the observations.
(For an alternative viewpoint, see Hoyle’s Bakerian Lecture [122].)

7'1. Causality. — In special relativity we assume that no signal or particle
can travel faster than the speed of light; it follows that an event can be cau-
sally influenced only by events within or on its past light cone, and can causally
influence only events in or on its future light cone. As the past and future light
cones never intersect in flat space-time, these sets of events are disjoint. In a
general curved space-time, this need not be so (see KRONHEIMER and PEN-
ROSE [123] and Geroch’s lectures in this volume for very general discussions).
Further, imposing the field equations is not sufficient to prevent causality
violations, as Godel’s solution (see Subsect. 5'2) contains closed timelike lines
(GopEL [56]); an observer in this space-time can travel into, and influence,
his own history.

We will regard solutions in which this can happen as physically unreason-
able. We shall therefore assume that space-time obeys the strong causality con-
dition: every point in space-time is contained in a small open neighbourhood
such that every timelike (and null) curve that leaves this neighbourhood never
re-enters it.

It follows from this postulate that the past light cone of any point is part
of the boundary of the past of that point (HAWKING [124]) ; so the total region
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of space-time which can have a causal influence on any observer lies within »)
or on his past light cone.

T'2. Isotropy of the microwave radiation. — The microwave background ra-
diation is known (see Sciama’s course) to be extremely isotropic about us, so
the Copernican principle (Seet. 1) leads us to believe the same is true for any
observer moving with the average velocity we. If this isotropy were exact,
it would follow from a theorem of EHLERY, GEREN and SAcHs [125] that the
universe was exactly a Robertson-Walker universe. This theorem states that
if freely-propagating radiation is isotropic with respect to some velocity field u*
everywhere in an open set in space-time, then the shear ¢, of w* vanishes in
that open set. However we can assume that in recent times 6 > 0 and %, =0
(see eq. (3.16)); it then follows from the work of EHIERY, GEREN and SAchs,
or from the theorem quoted in Subsect. 5°3.1, that w,=0 also. But these
conditions ensure that space-time is a Robertson Walker universe (cf. Sub-
sect. 5'1).

In view of this result, we shall regard the very high degree of isotropy of
the radiation as evidence that the universe has been very nearly a Robertson-
Walker universe since the time of last scattering of the microwave radiation.

We can in fact use the limits on the anisotropy of the radiation to place
limits on the anisotropy and inhomogeneity of the universe (see THORNE [59],
Sacus and WoLFE [109], REES and ScIAMA [110], HAWKING [126], WOLFE [127])
and on our motion relative to the mean velocity u* (SCIAMA [128], STEWART
and Scrama [129]; and cf. Subsect. 6'6.3); in particular, the measurements
may be taken to indicate limits

0o < 10730,, << 10-30,

on the present shear and vorticity of the universe.
The isotropy of radio source counts (™) (HucHEs and LONGAIR [130]) and
of background radiation at other wavelengths seems to confirm this picture.

T'3. The existence of singularities. — If the universe were exactly a Robertson-
Walker universe, with the energy conditions (3.8) satisfied, then the condition
A<0 would imply there had been a singularity a finite time #, ago in the past;
if ¢, > 0 the same conclusion would hold irrespective of the sign of A (cf. Sub-
section 5°1.1). Even if ¢, were not positive it would be plausible that the same

(*) GErocu has pointed out that if there arc « wormholes» in the universe, part
of the «interior » of the light cone can rcappear outside the light conc.

(**) Isotropy of the number counts may also be used to put limits on the vorticity,
cf. GODEL [43].
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result were true, because it is plausible to assume that the microwave radia-
tion is black-body radiation (cf. Sciama’s course) which has been thermalized
by being in equilibrium with ionized matter. Decoupling of the primeval fire-
ball of matter and radiation would take place when R/R,~ 1/1000 (cf. Sect. 2),
but if a dense intergalactic gas had been ionized by reheating, the last effective
scattering of radiation could occur as late as a red-shift of about 7 (correspond-
ing to an optical depth unity, see Sect. 6). However the reheated gas could
not thermalize the radiation to its observed temperature, so we could assume
that the existence of black-body radiation implied that at some time, RB/R,<
<1/1000. But at that time u>10°u,, so the A-term was totally negligible
(cf. estimate (4.14¢)). In fact even if the reheated matter were responsible
for the thermalization we would find R/R,<3% at some time; but then u> 5124,
so use of estimate (4.14¢) of A in Raychaudhuri’s equation would show that
1°°< 0 at that and all earlier times.

Thus any of the conditions i) 4<0, ii) g,>0, or iii) the existence of
black-body radiation indicating a previous time when matter and radiation
were in equilibrium, would imply that the radius function increased mono-
tonically from a singularity a finite time previously. Two consequences that
would follow are

a) there would be a minimum angular diameter observed for sources of
the same metric size (this follows from the results of Subsect. 6'4.4), and

b) at an early state there would be a ionized plasma filling the universe
(cf. Sect. 3).

The existence of the plasma implies a cut-off to optical and radio observa-
tions; this must occur by a red-shift ~ 1000, but could possibly happen by
as low a red-shift as 7, in a high-density universe. Similarly, at early times the
universe would be opaque to neutrinos; in fact there would be a maximum red-
shift for observations by each other kind of signal.

The existence of minimum angular diameters implies that there are 2-surfaces
on which the past null geodesics generating the observer’s light cone are recon-
verging (see Fig. 9); these 2-surfaces are « closed trapped surfaces » in the sense
defined by PENROSE [131]. In fact it can be shown that the reconvergence
will oceur before the optical depth is unity (HAWEKING and ELLis [131a]).

The real universe is not exactly a Robertson-Walker universe. Since how-
ever we can assume it is very like a Robertson-Walker universe at least up to
the time of last scattering, we expect the qualitative features a), b) to remain
true in the real universe. Figure 9 illustrates these features; if ¢, > 0 we can
estimate the time to the surface of last scattering as being of the order of, but
less than, 1/H, (cf. Subsect. 51.1).

Perhaps the most important feature is the existence of the closed trapped
surface. HAWKING and PENROSE [132] have shown i) the existence of
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this surface, ii) the strong causality condition (Subsect. 7°1. above), iii) the
energy condition: for every timelike vector V¢ at each point, R, V°V*>0 (in
the case of a perfect fluid and A = 0, this is equivalent to 4 + p>0, u + 3p>0,
cf. (3.8)), together with a «generality condition» which would certainly be
satisfied in the real universe (*), imply that there must be a singularity in the
universe. We can therefore deduce, on the basis of reasonable physical as-
sumptions, that the inhomogeneity and anisotropy of the real universe is una-

Q.— here and now

past light cone

~ 1/H,

maximum separation
between two
neighbouring
geodesics

surface of minimum
angular diameter

»*!!!5
B L. T
Vst el

closed
trapped
surface

red-shift between
30 and 1000

singularity

Tig. 9. — A closed, trapped surface in our past light cone. We cannot observe by optical
or radio telescopes beyond the surface of ionization; this surface lies beyond the surface
of minimum angular diamoter. Numbers are for a low-density universe with A= 0.

ble to prevent the existence of a singularity in our past (**) if 4<0, and un-
likely to prevent it even if 44 > 0. To postulate a « bounce » in an oscillating
universe means abandoning either general relativity (and similar theories
such as the Brans-Dicke theory, in which gravity is always attractive) or the
energy condition (which we can do only by introducing large negative pres-
sures or densities, if /1 <0) or the causality condition (but in general, a vio-
lation of causality cannot prevent a singularity occurring (HAWKING [133])).

(*) For examplo, it is fulfilled if the universe is filled with a fluid with x> 0.

(**) To show it is in tho past, wo have to show that all the past timclike geodesics
from the obscrver also reconverge in a compact region; this we can do (ITawkING and
Evruis [131a]). (Then we no longer nced the « generality condition ».)
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T'4. The early universe. — While we have concluded that the universe
is very like a Robertson-Walker universe since the decoupling of matter
and radiation, we have no direct observational evidence about earlier times,
and so cannot derive the same conclusion for these times. In fact we may
suspect that the universe was mot very like a Robertson-Walker universe at
early times, for the following reasons.

a) There must have been fluctuations larger than purely thermal flue-
tuations present in the universe at times soon after the decoupling of matter
and radiation, in order that galaxy formation could have taken place (cf. the
seminars by SALPETER and Rrrs). Allowing for the damping effect of visco-
sity when photons decoupled and earlier when neutrinos decoupled, there
must have been very large fluctuations early on in order to provide sufficiently
large fluctuations later. :

b) There are particle horizons (RINDLER [134]) in nonempty Robertson-
Walker models which develop from a singularity (since this is true for all such
models with > 0, p>0). This means that at early times in these models
each particle was causally connected only to a small number of other particles;
we can now observe radiation from parts of the universe which, if the early
universe was very like a Robertson-Walker universe, were not causally con-
nected to each other at the time of emission of the radiation. However both
the physical state and the physical parameters of the matter in these regions
appear to be very' similar, despite their having been unable to interact with
each other. This §eems a rather implausible situation (*). By contrast, Mis-
NER [28, 29] has sﬁggested that the early universe could have been highly
anisotropic and inhomogeneous; dissipative processes would tend to smooth
out the anisotropy and inhomogeneity, thus providing a mechanism to explain
the present high degree of homogeneity and isotropy. If the universe were
highly anisotropic or inhomogeneous, the horizon structure could be very dif-
ferent from that in a Robertson-Walker universe (MISNER [135]) and so the
previous problem need not arise.

¢) One can argue (HAWKING and ELLIs [131e]) that solutions of the
general-relativity field equations in which singularities have a spacelike char-
acter (as is the case in those Robertson-Walker universes in which particle
horizons occur, see PENROSE [136]) are rather special; it may be that more
general solutions have singularities with a timelike character (as in the Reiss-
ner-Nordstrom and Kerr solutions). This suggests that a realistic solution
would be unlike a Robertson-Walker solution in the vicinity of its singulm‘ities
(incidentally implying a different horizon structure, cf. b)).
(*) Unless onc can characterize in detail a plausible creation process that must
of necessity proceed in a uniform way.
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d) Observations of a fairly uniform distribution of ‘He (about 259, by
weight) suggests that many parts of the universe evolved through the helium
formation phase with time scales similar to those in the Robertson-Walker
universes (see PrEsLEs [31], THORNE [59], HAWKING and TAYLER [137], WA-
GONER, Fowrer and HovLE [33]). However very low helium abundances
observed in the atmospheres of some halo stars (cf. BURBIDGE and Scrama
in this volume) might indicate inhomogeneous element production resulting
from large density inhomogeneities in the early universe.

7'5. The nature of the singularity. — The existence of a singularity in our
past implies a breakdown of ordinary physical laws. However the theory has
been extrapolated to circumstances where we would expect some quantized
theory of gravitation to be a more appropriate description of space-time than
general relativity; it is not yet clear whether a real physical singularity would
be predicted by such a theory or not (cf. the discussion by MISNER [138]).
Thus although the singularity theorem does not necessarily imply the existence
of a real physical singularity (an end to space-time) in the universe, it may be
taken to imply that conditions in our past were so extreme that general relati-
vity was no longer a valid theory.

Although it appears that a singularity is predicted in every sufficiently
large co-moving volume in the universe (HAWKING and ErLis [131a]) this does
not necessarily imply that all the matter in the universe experienced indefini-
tely high densities in the past. In fact if the singularitiesare timelike (cf. ¢)
above), it is conceivable that a contracting phase in the universecould have
changed to an expanding phase with most of the matter inthe universe pas-
sing between isolated singularities. A consequence of this would be that no
Cauchy surface would exist: complete knowledge of the state of the universe
on any one space-section would be insufficient to determine its complete time
development.

In any case, it is clear that the existence of a «singularity » in our past
implies a breakdown of our ability to predict, at least on the basis of
present theory; perhaps we should regard this as the essential feature of the
singularity.

7°6. The observable universe. — Our optical and radio observations give us
information about the distribution of matter and the curvature of space-time
on our past light cone, back to the time when the universe was opaque. In
principle we can obtain information about conditions on our past light cone
at even earlier times (for example, by neutrino telescopes). Using the field
equations, we can extrapolate inwards to find the geometry of space-time
inside our light cone; in practice our observations of distant sources give us
relatively little information so we can only extrapolate a short way in for these
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sources, while we can reasonably extrapolate the history of nearby sources
for a rather greater time.

We can also use astrophysical, geophysical, and geological observations
to give evidence about the history of the universe near the world line of our
galaxy up to very early times. (For example, both the theory of element for-
mation combined with observations of element abundances and the theory of
stellar evolution based on observations of relatively necarby stars give restric-
tions on the physical conditions and the thermal evolution of the early uni-
verse near our galaxy.) Thus the part of the universe about which we can
obtain reasonably good evidence is the shaded region in Fig. 10 (cf. HoYLE [80]).

world-line of our
galaxy

here ana now

universe

very like region which

a Robertson-Walker can causally
universe influence us
universe pro_ ) KKKV it

bably unlike

a Robertson—

Walker-
universe

singularity

Fig. 10. — The observable universe, and the part of the universe we can observe in some

detail. The part of our past since decoupling of matter and radiation is very like a

Robertson-Walker universe; the hidden part is probably rather inhomogeneous in
structure.

Using the Copernican principle we have concluded that the region of our
past light cone since decoupling is very like a Robertson-Walker universe;
we should therefore like to find a particular Robertson-Walker universe which
is a good model for this space-time region by comparing the theoretical rela-
tions (Sect. 6) with the observations. (The model would be determined by u,
and H:g,, and the epoch at which we observe it by H,.) We might further

12 — Rendiconti S.I.F. - XLVII.

@ Springer



656 G. F. R. Ellis

aim to describe in detail the differences between the actual universe and the
Robertson-Walker universe by comparing observations with theoretical rela-
tions in a perturbed Robertson-Walker universe, and to find the detailed distri-
bution of matter and radiation in this perturbed universe. Finally we may aim
to determine something of the early universe by indirect arguments based on
the astrophysical evidence (see, for example Subsect. 7°'3, 7'4, 7’5 above); in
doing so we find useful powerful general theorems (such as those developed by
PrnNrosE and HAWKING) and detailed studies of anisotropic and inhomogencous
cosmological models (cf. Sect. 5).

Having collated this information about the universe within our past light
cone, the Copernican principle enables us to assume that conditions for other
observers would be much the same. However we must use this principle with
caution. Although we cannot necessarily assume particle horizons exist in
the universe (since the early universe, about which we have no direct observa-
tional information, may be very different from a Robertson-Walker space-time),
there will in general be effective particle horizons limiting the galaxies we can
have observed since the universe became transparent to light and radiation
(cf. SaTo [139]) (but in a Lemaitre model (4>, K >0) one might be able to
see round the universe since decoupling occurred (*).) Further there are space-
time events we have not yet observed and which no astronomer will be able
to observe within, say, the next 10000 years (although if there were no ef-
fective particle horizons, we could in principle obtain sufficient information
to predict conditions at these events).

‘While we may in principle obtain some information about the space-time
outside our light-cone by measuring the gravitational « Coulomb » field due
to matter outside, it is as yet unclear precisely what we might be able to de-
termine in this way. Thus statements about distant events outside our light
cone are, in a fundamental way, unverifiable statements, and may be very
misleading. (Consider for example the situation of an astronomer in a high-
density region in a Lemaitre universe, the high density region recollapsing to
a second singularity while most of the universe expands indefinitely.) Thus
if we postulate a « cosmological principle » on philosophic grounds it may be
impossible to disprove it; in this case, its scientific status is rather obscure.

(*) Personally, I support the view that 4= 0 because otherwise it is a field which
acts on everything but is not acted on by anything, which scems unreasonable (cf. RIND-
LER [5]).
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APPENDIX

For a general matter tensor the left-hand sides of eqs. (4.21) are unchanged;
the right-hand sides are:

(4.21a) o= :lx hd/,“.b - il: h"a ﬂ'w;b - % “)‘b (lb + '?lo-‘b (lb =+ ".l:ntu wt— ]; OQ‘ ’
(4.21) =Ly wya, — L b e, + L (B 0, ¢ — 30™¢Y)
(4.21e) = (u+p o'+ 1" uq, A+ 1y w0, + 0%,

(4.21d) =—13(u-tp)e™—auty™ — LB R g —

t hd b( 1 ;
— .]2 h A Iym,- ﬂac . ‘}.‘TL m(“bt) . % nb(m o.bt) ___éntmo ‘i‘ ,‘13_ ((/-,‘;“ + uu(/_“ + P “ab) hmt A
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