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Abstract— We present the basic methodology for minimum-
energy bandlimited prediction of time-variant flat Rayleigh-
fading channels. This predictor is based on a subspace spanned
by time-concentrated and bandlimited sequences. The concept
of time-variant channel estimation using time-concentrated and
band-limited sequences was introduced recently by Zemen et al.
We extend this concept to the problem of time-variant channel
prediction. Slepian showed that discrete prolate spheroidal (DPS)
sequences can be used to calculate the minimum-energy ban-
dlimited continuation of a finite sequence. DPS sequences are
optimal for a time-variant channel with flat Doppler spectrum.
We generalize the concept of time-concentrated and band-limited
sequences to arbitrary Doppler spectra approaching closely the
lower prediction error limit defined by the Wiener filter. In
practical systems detailed channel covariance information is not
available. We design a set of subspaces spanned by DPS sequences
with fixed time-concentration but growing bandwidth. The best
DPS subspace is selected dynamically for each observation
interval using a Doppler bandwidth estimate allowing for low
complexity channel prediction. The performance of the new
predictor is compared to that of the Wiener filter by means
of Monte Carlo simulations.

I. INTRODUCTION

In mobile communication systems channel state information
at the transmitter proves to be beneficial for increasing the
system capacity. In a time-division duplex (TDD) system
channel state information can be obtained during the uplink
transmission period and used for the subsequent downlink
transmission by exploiting channel reciprocity. However, for
moving users at vehicular speed the channel state informa-
tion gets outdated rapidly and thus appropriate prediction is
necessary.

In this paper we present the basic methodology of
minimum-energy bandlimited prediction of time-variant flat-
fading channels. Time-variant channel estimation using time-
concentrated and band-limited sequences was introduced in
[1]. We extend the concepts from [1] to the problem of time-
variant channel prediction generalizing in this way earlier
results by Slepian on the minimum-energy bandlimited con-
tinuation of a finite sequence [2]. The same method can be
applied on a per-subcarrier basis in an orthogonal frequency
division multiplexing (OFDM) based system operating in time-
variant frequency-selective channels.

We model the time-variant flat-fading channel as the super-
position of P propagation paths. Each path is characterized

by its distinct complex weight and Doppler shift. Classic
approaches for time-variant channel prediction use a finite
number of noisy channel observations to identify the parame-
ters of all P paths:

• Firstly the Doppler shift of each path is identified [3]–[6]
using e.g. ESPRIT [7].

• Secondly the complex weight of each path is estimated
in the minimum mean square error (MMSE) sense [4].

• Thirdly, future channel values are predicted, based on the
above estimators.

In this paper we will describe a minimum-energy bandlimited
channel prediction method. This method avoids the problems
associated with a per-path Doppler shift estimation based on
a time-limited snapshot of noisy channel observations.

Contributions of the Paper

• Slepian [2] showed that discrete prolate spheroidal (DPS)
sequences are optimal for the prediction of a time-variant
process with flat Doppler spectrum in the sense of a min-
imum energy band-limited extension. We generalize the
concept of time-concentrated and bandlimited sequences
to arbitrary Doppler spectra.

• In practical systems detailed channel covariance infor-
mation is not available. We design a set of subspaces
spanned by DPS sequences with fixed time concentration
and growing bandwidth. The best DPS subspace is chosen
dynamically for each observation interval based on a
Doppler bandwidth estimate. This algorithm allows low
complexity prediction of the time-variant channel.

Notation

We denote a column vector by a and its i-th element with
a[i]. Equivalently, we denote a matrix by A and its (i, �)-
th element by [A]i,�. The transpose of A is given by AT,
its conjugate transpose by AH and its upper left part with
dimension P ×Q by AP×Q. A diagonal matrix with elements
a[i] is written as diag(a) and the Q × Q identity matrix as
IQ. The absolute value of a is denoted by |a| and its complex
conjugate by a∗. The largest (smallest) integer, lower (greater)
or equal than a ∈ R is denoted by �a� (�a�).
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Organization of the Paper

We introduce the signal model in Section II and explain the
channel model in Section III. Minimum-energy bandlimited
prediction is presented in Section IV. In Section V we present
a comparison of the proposed prediction method with a method
based on complex exponential basis functions by means of
Monte Carlo simulations. In Section VI a dynamic subspace
selection method using a Doppler bandwidth estimate is de-
rived and simulation results are given. Finally, concluding
remarks are provided in Section VII.

II. SIGNAL MODEL FOR TIME-VARIANT FLAT-FADING

CHANNELS

We consider a time division duplex (TDD) communication
system transmitting data in blocks of length M over a time-
variant flat-fading channel. The symbol duration is much
longer than the delay spread of the channel, i.e. TS � TD.
Discrete time at rate RS = 1/TS is denoted by m. The
channel incorporates the transmit filter, the transmit antenna,
the physical channel, the receive antenna, and the receive
matched filter. The data symbols b[m] are randomly and evenly
drawn from a symbol alphabet with constant modulus, i.e.
|b[m]| = 1. The discrete-time signal at the matched filter
output

y′[m] = h[m]b[m] + z′[m] (1)

is the superposition of the data symbol multiplied with the
sampled time-variant channel h[m] and additive complex
white Gaussian noise z′[m] with zero mean and variance σ2

z′ .
We assume an error-free decision feedback structure [8]–

[10]. Thus we are able to obtain noisy channel observations

y[m] = y′[m]b̃[m]H = h[m]+z′[m]b̃[m]H = h[m]+z[m] (2)

using the data symbol estimates b̃[m], where z[m] has the same
statistical properties than z′[m].

We assume Rayleigh fading and power control. Without loss
of generality {h[m]} is a zero-mean, circularly symmetric,
unit-variance wide-sense stationary process with covariance
function Rh[k] = E{h∗[m]h[m+k]}. The signal-to-noise ratio
(SNR) SNR = 1/σ2

z .
The noisy channel observations y[m], m ∈ {0, . . . , M −

1} are used to predict the time-variant flat-fading channel N
symbols into the future for m ∈ {M, . . . , M + N − 1}.

III. PHYSICAL WAVE PROPAGATION CHANNEL MODEL

We model the fading process using physical wave prop-
agation principles [11]. The impinging wave-fronts at the
receive antenna originate from P scatterers. The contributions
of individual paths sum up as

h[m] =
P−1∑
p=0

apej2πfpTSm =
P−1∑
p=0

apej2πνpm . (3)

Here fp is the Doppler shift of path p. For easier notation we
define the normalized Doppler frequency as νp = fpTS. The
gain and phase shift of path p are embodied in the complex

weight ap ∈ C. The one-sided normalized Doppler bandwidth
is

νD =
vfC

c0
TS ≥ |νp| , (4)

where v denotes the user velocity, fC is the carrier frequency
and c0 stands for the speed of light. We model the random
parameter sets ap and νp, p ∈ {0, . . . , P − 1} as independent.
The random variables in each set are independent and identi-
cally distributed. For P ≥ 20 the Rayleigh fading assumption
for h[m] is realistic due to the central limit theorem.

We assume a time-variant block-fading channel model.
Hence the random path parameters ap and νp are assumed
to be constant over a block of M + N symbols. The fading
process is wide-sense stationary over the duration of a single
data block. However from block to block the fading is non-
stationary [12].

IV. MINIMUM-ENERGY BANDLIMITED PREDICTION

Noisy channel observations y[m], m ∈ {0, . . . , M − 1},
are used for channel prediction. The observation covariance
matrix is given by

Σy = Σh +
1

SNR
IM . (5)

The channel coefficients for a single block of length M are
collected in the vector

h = [h[0], h[1], . . . , h[M − 1]]T (6)

and the covariance matrix is defined as

Σh = E{hhH} (7)

with elements
[Σh]�,m = Rh[� − m] . (8)

We consider a subspace-based channel description which
approximate the sequence h[m] by a linear combination of D
orthogonal basis sequences ui[m], i ∈ {0, . . . , D − 1}:

h[m] ≈ ĥ[m] =
D−1∑
i=0

ui[m]γ̂i , (9)

for m ∈ {0, . . . , M−1}. The least square estimate of the basis
expansion coefficients γi simplifies to

γ̂i =
M−1∑
m=0

u∗
i [m]y[m] (10)

due to the orthogonality of the basis functions.
We want to use a set of basis functions ui[m] that minimize

the mean square error (MSE) per observation interval. The
MSE per symbol is defined as

MSE[m] = E
{∣∣∣h[m] − ĥ[m]

∣∣∣2} (11)

and the MSE per observation interval reads

MSEM =
1
M

M−1∑
m=0

MSE[m] . (12)
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It is shown in [1], [13], [14] that MSEM can be described as
the sum of a square bias term and a variance term:

MSEM = bias2M + varM . (13)

In general, if the second order statistic Σh of the fading pro-
cess is known, the Karhunen-Loève expansion [15] provides
the optimum basis functions in terms of minimum MSEM . The
basis functions of the Karhunen-Loève subspace are defined
by

Σhui = λ′
iui (14)

for i ∈ {0, . . . , D − 1} where ui ∈ C
M has elements

ui[m]. The eigenvalues λ′
i are sorted in descending order. The

summands in (13) are given by

varM =
D

M

1
SNR

, (15)

and

bias2M =
1
M

Q−1∑
i=D

λ′
i , (16)

where Q denotes the rank of the covariance matrix Σh.
The subspace dimension that minimizes MSEM for a given

SNR is found to be [13]

D = argmin
D′∈{1,...,Q}

(
1
M

Q−1∑
i=D′

λ′
i +

D′

M

1
SNR

)
. (17)

Thus, the optimal subspace dimension D depends on the SNR.
So far we treated the channel estimation problem for a

channel that is observed for a time interval of length M .
However the main interest of this paper lies on channel
prediction. Slepian explained in [2, Section 3.1.4] that there
are infinitely many ways to choose the channel coefficients
h[M ], h[M + 1], . . . and h[−1], h[−2], . . . such that the se-
quence {h[m]} is band-limited. However, there exists a unique
way to extend a band-limited sequence in the sense of a
minimum energy continuation, which we will use for time-
variant channel prediction.

Consider a process h[m] with flat Doppler spectrum in
the interval [−νD, νD] which is observed over the finite time
interval m ∈ {0, . . . , M − 1}. In this case, the entries of Σh

read

[Σh]�,m =
1

2νD

sin(2πνD(� − m))
π(� − m)

. (18)

The sequences ui[m] calculated from (14) coincide with the
discrete prolate spheroidal (DPS) sequences truncated to m ∈
{0, . . . , M − 1} [2].

Slepian showed that the basis functions ui[m] can be
extended for m ≥ M in the minimum-energy sense according
to

M−1∑
�=0

sin(2πνD(� − m))
2πνD(� − m)

ui[�, νD] = λi(νD)ui[m, νD] (19)

for i ∈ {0, . . . , M − 1}. In the remainder we will drop
the parameter νD and use the notation ui[m] and λi when
νD is clear from the context. The eigenvalues λi(νD) are

clustered near 1/(2νD) for i ≤ �2νDM� and decay rapidly for
i > �2νDM�. For practical communication systems, e.g. with
block length M = 256 and normalized Doppler bandwidth
νD = 0.004 the subspace dimension D ranges between three
to five only.

It is known [16], that the sequences which span the time-
concentrated and band-limited subspace of a band-limited
process with arbitrary Doppler spectrum possess the double
orthogonality property of the DPS sequences, too. We conjec-
ture a minimum energy continuation of basis sequences ui[m]
for m ≥ M for arbitrary band-limited stationary processes
{h[m]}:

M−1∑
�=0

Rh[� − m]ui[�] = λ′
iui[m] , (20)

where ui[m] for m ∈ {0, . . . ,M − 1} are the elements of the
ith eigenvector ui obtained in (14) with Σh given in (7).

Using (20) we can extend the sequence ui[m] for m ≥ M
and exploit the low-rank description (9) for predicting future
coefficients of the time-variant channel.

In [17, Section 12.7] a solution to the prediction problem is
shown using a linear MMSE filter. We prove that minimum-
energy bandlimited prediction is identical to reduced-rank
maximum likelihood (ML) filtering in [18]. Reduced-rank
ML filtering itself provides a close approximation of Wiener
filtering.

V. COMPARISON WITH A PREDICTOR BASED ON COMPLEX

EXPONENTIAL BASIS FUNCTIONS

The time-variant channel predictor described in Section IV
uses time-concentrated and band-limited sequences in order
to span the channel subspace. Classical channel prediction
algorithms describe the channel subspace using complex expo-
nential basis functions. We compare the performance of both
algorithms by means of Monte Carlo simulations.

A. Predictor using Complex Exponential Basis Functions

In the method proposed in [3] the path parameters ap and
νp in (3) are identified in order to enable channel prediction.
We review here shortly the method, so that we are able to
compare it with our minimum-energy bandlimited predictor.

For a limited observation interval of length M we can
rewrite (3) in vector matrix notation according to

h =




1 1 . . . 1
w0 w1 . . . wP−1

...
...

...
wM−1

0 wM−1
1 . . . wM−1

P−1






a0

a1

...
aP−1


 = Wa ,

(21)
where wp = ej2πνp . In [3] ESPRIT [7] is used to estimate the
Doppler shift νp of each single propagation path. In this paper
we assume that all νp, p ∈ {0, . . . , P − 1} are known exactly.

The complex weight vector a = [a1, . . . , aP ] is estimated
according to

â =
(
W HW + σ2

zIP

)−1

W Hy (22)
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in [3]. Finally, the time-variant channel is predicted via

ĥ[m] =
P−1∑
p=0

âpej2πνpm (23)

for m ∈ {M, . . . , M + N − 1}.

B. Monte-Carlo Simulations

The actual realization of the time-variant flat-fading channel
h[m] is calculated according to a sum of sinusoid model
following Clarkes model, see [1, Appendix] and [19]. We
simulate P = 20 distinct paths. The covariance function of
h[m] is

Rh[m̃] = J0(2πνDm̃) , (24)

where J0 is the zeroth order Bessel function of the first
kind. All simulation results are averaged over 500 independent
channel realizations.

The symbol duration TS = (64 + 15)/(3.84 · 106 s−1) =
20.57µs is chosen according to the system parameters de-
scribed in [1]. The speed of the mobile user is varied in the
range 0 < v < vmax = 100 km/h = 27.8m/s, which results
in a range of Doppler bandwidths 0 ≤ BD ≤ 180 Hz or
normalized to the symbol duration 0 ≤ νD ≤ νDmax =
3.8 · 10−3. The channel is observed over M = 256 symbols
and predicted over N = 256 symbols. For all simulations
SNR = 10 dB.

In Fig. 1 we plot the MSE per symbol MSE[m] with m
ranging in the interval m ∈ {0, . . . , M−1,M, . . . ,M+N−1}
for two velocities v ∈ {10, 100} km/h. These velocities relate
to time-bandwidth products νDM ∈ {0.1, 1}. The MSE per
symbol MSE[m] for m ∈ {0, . . . , M − 1} is the estimation
MSE. For m ∈ {M, . . . ,M+N−1} MSE[m] is the prediction
MSE.

We compare three predictors. The lower bound is given by
the Wiener filter [17, Section 12.7]. The minimum-energy ban-
dlimited predictor (denoted ’time-concentr. subsp.’) achieves
a performance extremely close to the Wiener filter. The pre-
dictor based on complex exponentials (denoted ’compl. exp.’)
performs significantly worse even though the Doppler shift of
each path is known perfectly.

The typical behavior depicted in Fig. 1 is also documented
in [3] and [5]. With increasing νDM the prediction error
increases faster with discrete time m ≥ M . We know from
Section IV that the band-limited sequence of channel samples
is extended in the sense of minimum energy. This explains
why the prediction error increases with increasing time index
m.

The channel predictor based on complex exponentials has
perfect knowledge of the Doppler shift per path νp and uses a
linear MMSE estimate of the path parameters ap. It performs
worse than the minimum-energy bandlimited predictor. This is
not unexpected since time-limited complex exponentials with
frequencies confined in an interval [−νD, νD] span approxi-
mately the same subspace as the ui[m] (see also Fig. 4 in [1]).
The number of complex exponential basis functions equal the
number of paths P . In this example we used P = 20 paths. In

0 50 100 150 200 250 300 350 400 450 500
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Wiener filter, ν
D
M=1

compl. exp., ν
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M=0.1

Wiener filter, ν
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M=0.1

Fig. 1. Mean square error per symbol MSE[m] versus discrete time m. We
plot the performance of three predictors: The Wiener filter (as lower bound),
the minimum-energy bandlimited predictor (denoted ’time-concentr. subsp.’)
and a predictor based on complex exponentials (denoted ’compl. exp.’). The
user moves at velocity v ∈ {10, 100} km/h which corresponds to a time-
bandwidth product of νDM ∈ {0.1, 1} for an observation interval with length
M = 256.

comparison the minimum-energy bandlimited predictor uses a
subspace of dimension D = 5 only (for v = 100 km/h).

In practical situations neither the Doppler shift of each of the
P paths nor the covariance function of the time-variant process
{h[m]} is known exactly. In [1] we assume in such a situation
a maximum Doppler bandwidth νDmax and design a DPS
subspace accordingly. The performance for νD < νDmax is
suboptimal but the analysis in [1] shows that the performance
loss for channel estimation is small.

Due to the fast increase of MSE[m] for m ≥ M the usage
of a single subspace is not sufficient for channel prediction. In
the next Section we will design a small set of subspaces with
fixed time-concentration in the interval {0, . . . , M − 1} and
with growing band-limitation 0 < νD1 < νD2 < . . . < νDmax.
We select the predefined subspaces dynamically for each data
block by using a Doppler-bandwidth estimate.

VI. DYNAMIC SUBSPACE SELECTION

We are interested in a low complexity implementation.
To this end we select a set of subspaces which can be
computed beforehand. The subspace dimension D(νDmax) for
the maximum Doppler bandwidth νDmax is calculated from
(17) to be D(νDmax) = 5 for the simulation setting used in
Section V.

We propose to define D(νDmax) = 5 subspaces. The largest
subspace will have Doppler bandwidth νD5 = νDmax and
D(νDmax) = 5 dimension. For the subspace with index four
we chose the largest Doppler bandwidth νD4 such, that the
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subspace dimension is reduced by one. Generally we can write

νDi = max
νD

D(νD) = i . (25)

We follow this procedure until the subspace with index one is
spanned by one sequence only. The individual subspaces have
a time-bandwidth product νDM ∈ {0.01, 0.21, 0.54, 0.95, 1}
for the simulation setting from Section V.

In order to select the subspace with the smallest possible
Doppler bandwidth we use the Doppler bandwidth estimator
proposed in [20]. We reduce the noise level by projecting
the channel observations on the largest subspace spanned by
ui[m, νDmax] for i ∈ {0, . . . , D(νDmax)}. We define

f [m, νD] =




u0[m, νD]
...

uD(νD)−1[m, νD]


 ∈ R

D(νD) (26)

and calculate the time-variant channel estimates for the obser-
vation interval m ∈ {0, . . . , M − 1} according to

ĥ[m] = f [m, νDmax]H
M−1∑
�=0

f [�, νDmax]∗y[�] . (27)

Using ĥ[m] we obtain an estimate of the Doppler bandwidth

ν̂D =
1
2π

√√√√2/(M − 1)
∑M−2

n=0 |ĥ[m] − ĥ[m + 1]|2
1/M

∑M−1
n=0 |ĥ[m]|2

. (28)

A Doppler bandwidth estimate ν̂D is calculated for each obser-
vation interval. Based on this estimate we choose the subspace
with the smallest Doppler-bandwidth that contains ν̂D. The
chosen subspace is used for minimum-energy bandlimited
channel prediction.

We plot the performance of minimum-energy bandlimited
prediction with a dynamically selected subspace in Fig. 2. The
user moves with velocity v = 100 km/h which corresponds to
a time-bandwidth product of νDM = 1. Due to noisy Doppler
bandwidth estimates ν̂D either the subspace with νD5M = 1
or νD4M = 0.95 is chosen. As can be seen in Fig. 2 the
performance of the adaptive predictor denoted ’adapt. DPS
subspace’ lies in between the performance of the predictor
based on a fixed DPS subspace with νD4M = 0.89 and
νD5M = 1.

In Fig. 3 a similar result is shown for v = 10 km/h resulting
in νDM = 0.1. In this case either the subspace with νD1M =
0.01 or νD2M = 0.21 is chosen. Again the performance curve
for the adaptive-DPS-subspace-based predictor is in between
those of two fixed-DPS-subspace-based predictors.

VII. CONCLUSION

In this paper we present a new minimum-energy bandlimited
prediction method for a time-variant process with arbitrary
power spectral density. The predictor is based on doubly
orthogonal time-concentrated and band-limited sequences. We
obtain time-concentrated and band-limited sequences for ar-
bitrary Doppler spectra by generalizing results from Slepian
[2].
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Fig. 2. Mean square error per symbol MSE[m] versus discrete time m for
minimum-energy bandlimited prediction. We plot MSE[m] for the predictor
using full covariance information (denoted ’perf. subspace’) as lower bound
and compare it with the adaptive-DPS-subspace-based prediction scheme
(denoted ’adapt. DPS subspace’) and with three fixed-DPS-subspace-based
prediction schemes (denoted ’DPS’). The user moves at v = 100 km/h, which
yields a time-bandwidth product νDM = 1.
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Fig. 3. Mean square error per symbol MSE[m] versus discrete time m for
minimum-energy bandlimited prediction. We plot MSE[m] for the predictor
using full covariance information (denoted ’perf. subspace’) as lower bound
and compare it with the adaptive-DPS-subspace-based prediction scheme
(denoted ’adapt. DPS subspace’) and with three fixed-DPS-subspace-based
prediction schemes (denoted ’DPS’). The user moves at v = 10 km/h, which
yields a time-bandwidth product νDM = 0.1.
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Accurate estimation of the channels covariance function,
or equivalently its Doppler power spectral density, can be
costly and we have shown that this is not required because the
subspace spanned by time-limited snapshots of bandlimited se-
quences is of extremely low dimensionality. For current mobile
communication systems, this dimension ranges between three
and five only. We conclude that the predictor performance
primarily depends on the Doppler bandwidth, but is almost
indifferent to other features of the Doppler spectrum.

We exploit these observations in order to design a set
of subspaces spanned by DPS sequences with fixed time-
concentration but growing Doppler bandwidth. The appropri-
ate DPS subspace is selected dynamically for each data block
based on a Doppler bandwidth estimate. The selected DPS
subspace is used for minimum-energy bandlimited prediction.

For typical packet lengths and number of propagation paths
minimum-energy bandlimited prediction performs close to an
estimator based on complex exponentials. However a Doppler
bandwidth estimate is needed only enabling low complexity
time-variant channel prediction.
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