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My qualifications for giving this 
talk?

● Ph.D. in Particle Physics

● 35 years in IBM research & development

● Lots of reading!

● But I'm not an expert on QC ...



  

Dramatis Personae

● Alan Turing, Cambridge university

● Rolf Landauer, IBM Research Yorktown NY

● Charles Bennett, IBM Research Yorktown NY

● Richard Feynman, Caltech

● David Deutsch, Oxford University



  

Alan M Turing

● On computable numbers, with an application to the 
Entscheidungsproblem [decision problem] (1936)

● Showed that computing is a physical process [so subject 
to 2nd Law of Thermodynamics]

● Showed that computing machines are universal, i.e. can 
simulate any machine in a finite number of steps, 
including any other computer



  

Rolf Landauer

● Irreversibility and Heat Generation in the 
Computing Process (1961)

● Wanted to understand the minimum amount of 
energy required per computational step 

- showed that at least kT log2 energy is expended when 
1 bit is discarded (known as the Landauer limit)
- where k is Boltzmann's constant and T is temperature

● Showed that “information is inevitably physical”



  

Charles Bennett

● Logical Reversibility of Computation (1973)

● Showed that, in principle, computation is reversible 
and requires zero energy if no information is lost
- i.e. all state is retained so that we can retrace each 
step in the computation

● In practice, this means:
- need a different design for logic gates
- need to run the computation very slowly



  

Billiard Ball Computer

Assume no friction, elastic collisions
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Billiard Ball Computer

Use “mirrors” to implement “switching device”
This device is reversible because physics is
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Billiard Ball Computer

● Using balls and mirrors, we can implement 
basic logic gates: AND, OR, NOT

● With a big enough billiard table, we could (in 
theory) implement a complete computer using a 
combination of these gates

● BUT …
- billiard balls don't work in practice
- normal AND, OR, NOT gates aren't reversible 



  

Why Don't Billiard Balls Work?

● Thermal losses
- friction can't be ignored
- collisions aren't perfectly elastic

● Chaotic motion
- balls are actually conglomerates of many atoms in 
various states of vibration
- can't know their “initial state” perfectly
- small variations in initial conditional conditions can 
cause exponentially large differences in final state



  

Irreversible Gates
● AND gate

● OR gate

● Can't reconstruct input from output
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Reversible Gates

● Controlled NOT (CN) gate

● CCN gate
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Rules for CN and CCN Gates

● CN is equivalent to XOR (exclusive OR)

● CN followed by CN = no operation,

i.e. we can reverse the effect of this gate

● All other gates can be built from multiple CCN 
gates, so that's all we need to build a 
computer



  

 Richard Feynman

● There's Plenty of Room at the Bottom (1961)

● Introduced the idea of nanotechnology and 
showed that small devices could be both faster 
and more reliable than large devices

● Led to the “magic of miniaturisation” and 
Moore's Law



  

Two State Devices

● Basic component of a computer can be any 
two state device, representing one bit, e.g.
- electromechanical relay
- thermionic valve
- discrete transistor
- embedded transistor in VLSI chip

● Feynman asked “could we use a single atom, 
a single electron, or something even smaller?”



  

Two State Potential Well
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Two State Switching
● To switch from the initial state to the final state, 

we normally apply energy to enable a “particle” 
to surmount the potential barrier

● This energy is lost after switching operation, 
along with the memory of the initial state and an 
increase in entropy

● Alternatively, lower potential barrier, allow the 
“particle” to drift across; then raise the barrier

● Can achieve zero energy switch if very slow
- energy only lost when we reset the device



  

Energy Cost vs. Speed

● To drive a computation forward, we have to 
apply energy:

energy cost/step = kT log r    (r = rate)

● So we can compute at zero cost, but infinite 
time, or spend energy to get speed 

● Faster computers run hotter!



  

Richard Feynman - again

● Simulating Physics with Computers (1981)

● Showed that quantum systems cannot be 
simulated with a classical computer
- classical computers are deterministic
- can't generate truly random numbers

● But a quantum computer could be built which 
would simulate other quantum systems
- using quantum elements, e.g. electrons, which can exist in a 
superposition of states



  

Two State Device with 
Superposition

● Electrons (for example) have “spin” and, in a 
bound system such as an atom, can exist in 
“spin up” or “spin down” states
- or use photons polarised “up” and “down”
- just like a regular two state device

● In the unbound state, they consist of a mixture 
of up and down states: a superposition
- analogous to harmonics in vibrating strings
- this is now known as a “qubit” (quantum bit)



  

David Deutsch

● Quantum theory, the Church-Turing principle 
and the universal quantum computer (1985)

● Showed that quantum computers are 
universal, i.e. can simulate any possible 
physical process in a finite number of steps

● A quantum computer could be used to build 
the ultimate “virtual reality” machine, that could 
not be distinguished from the real world



  

So How Does a QC Work? 
● We can build a CN gate from 2 qubits, and 

more complex circuits using an array of qubits

● The array must be initialised (pgm & data), 
and then allowed to “evolve” (zero energy 
computation) according the laws of QM

● There's no way of knowing how long this may 
last, or whether it will complete, but we can 
arrange for the QC to tell us via output signal

● We then test whether the result is there



  

Quantum “Parallelism”

● During the computation, all states in a  
superposition evolve independently providing a kind 
of parallelism

● Certain problems, such as integer factorisation can 
be sped up exponentially, using Schor's algorithm

● Other “hard” problems can be sped up quadratically

● But only when the machine produces a result;
on average, no net performance gain over a 
number of runs



  

The Coherence Problem

● During the computation, all qubits in the array must 
be maintained in a “coherence”, i.e. in a single 
entangled quantum state

● But this is notoriously difficult to achieve
- thermal vibrations can disturb the state
- measurements will change the state

● Need some kind of “trap” to contain the array of 
qubits plus cooling equipment to reduce thermal 
vibration
- often using lasers for “optical cooling”



  

Practical Progress

● 1973  Hans Dehmelt trapped a single electron 
using an ion trap

● 1995  David Wineland made the first CN gate 
using trapped ions

● 2005?  Winfried Hensiger created first ion trap 
on a microchip

● More recent work on error correction 
techniques



  

What's Happening Now?

● Research continues at a number of research centres worldwide

● It's believed that large amounts of money are being spent by 
national intelligence agencies ...

● … because they want to break classical encryption methods 
and exploit quantum cryptography … unbreakable transmission 
of information using quantum entanglement techniques  



  

Practical Results?
● Factorisation of relatively small numbers using 

Schor's algorithm has been achieved

● One frequently repeated claim is that Grover's 
algorithm for searching a list of n items “will 
speed up database searching, enabling an item 
to be found in √n steps” ….???

● Current database search techniques depend on 
using indexes, enabling an item to be found in 
Log n steps, so this seems unconvincing

● So ….



  

The Moral of this Story is ...

● There has long been a desire to find 
computing techniques for tackling “NP hard” 
problems, i.e. faster solutions for algorithms 
which are currently intractable

● QC is the only known technique which offers a 
possible solution, but …

● Don't hold your breath!



  

Sources
● Charles Petzold, The Annotated Turing

● Tony Hey (ed), Feynman Lectures on 
Computation

● Tony Hey (ed), Feynman and Computation

● John Gribbin, Computing with Quantum Cats 
from Colossus to Qubits

● David Deutsch, The Fabric of Reality
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