From Billiard Balls to Quantum Computing:

a tutorial on the foundations of computing

Geoff Sharman

My qualifications for giving this talk?

- Ph.D. in Particle Physics
- 35 years in IBM research & development
- Lots of reading!
- But I'm not an expert on QC ...

Dramatis Personae

- Alan Turing, Cambridge university
- Rolf Landauer, IBM Research Yorktown NY
- Charles Bennett, IBM Research Yorktown NY
- Richard Feynman, Caltech
- David Deutsch, Oxford University

Alan M Turing

- On computable numbers, with an application to the Entscheidungsproblem [decision problem] (1936)
- Showed that computing is a physical process [so subject to 2nd Law of Thermodynamics]
- Showed that computing machines are universal, i.e. can simulate any machine in a finite number of steps, including any other computer

Rolf Landauer

- Irreversibility and Heat Generation in the Computing Process (1961)
- Wanted to understand the minimum amount of energy required per computational step
 - showed that at least kT log2 energy is expended when
 - 1 bit is discarded (known as the Landauer limit)
 - where k is Boltzmann's constant and T is temperature
- Showed that "information is inevitably physical"

Charles Bennett

- Logical Reversibility of Computation (1973)
- Showed that, in principle, computation is <u>reversible</u> and requires <u>zero energy</u> if no information is lost
 - i.e. all state is retained so that we can retrace each step in the computation
- In practice, this means:
 - need a different design for logic gates
 - need to run the computation very slowly

Billiard Ball Computer

Assume no friction, elastic collisions

Billiard Ball Computer

Use "mirrors" to implement "switching device" This device is *reversible* because physics is

Billiard Ball Computer

- Using balls and mirrors, we can implement basic logic gates: AND, OR, NOT
- With a big enough billiard table, we could (in theory) implement a complete computer using a combination of these gates
- BUT ...
 - billiard balls don't work in practice
 - normal AND, OR, NOT gates aren't reversible

Why Don't Billiard Balls Work?

Thermal losses

- friction can't be ignored
- collisions aren't perfectly elastic

Chaotic motion

- balls are actually conglomerates of many atoms in various states of vibration
- can't know their "initial state" perfectly
- small variations in initial conditional conditions can cause exponentially large differences in final state

Irreversible Gates

AND gate

OR gate

Can't reconstruct input from output

Reversible Gates

Controlled NOT (CN) gate

Rules for CN and CCN Gates

- CN is equivalent to XOR (exclusive OR)
- CN followed by CN = no operation,
 i.e. we can reverse the effect of this gate
- All other gates can be built from multiple CCN gates, so that's all we need to build a computer

Richard Feynman

- There's Plenty of Room at the Bottom (1961)
- Introduced the idea of nanotechnology and showed that small devices could be both <u>faster</u> and more reliable than large devices
- Led to the "magic of miniaturisation" and Moore's Law

Two State Devices

- Basic component of a computer can be any two state device, representing one bit, e.g.
 - electromechanical relay
 - thermionic valve
 - discrete transistor
 - embedded transistor in VLSI chip
- Feynman asked "could we use a single atom, a single electron, or something even smaller?"

Two State Potential Well

Two State Switching

- To switch from the initial state to the final state, we normally apply energy to enable a "particle" to surmount the potential barrier
- This energy is lost after switching operation, along with the memory of the initial state and an increase in entropy
- Alternatively, lower potential barrier, allow the "particle" to drift across; then raise the barrier
- Can achieve zero energy switch if very slow
 - energy only lost when we reset the device

Energy Cost vs. Speed

 To drive a computation forward, we have to apply energy:

```
energy cost/step = kT log r (r = rate)
```

 So we can compute at zero cost, but infinite time, or spend energy to get speed

• Faster computers run hotter!

Richard Feynman - again

- Simulating Physics with Computers (1981)
- Showed that quantum systems <u>cannot</u> be simulated with a classical computer
 - classical computers are deterministic
 - can't generate truly random numbers
- But a quantum computer <u>could</u> be built which would simulate other quantum systems
 - using quantum elements, e.g. electrons, which can exist in a <u>superposition</u> of states

Two State Device with Superposition

- Electrons (for example) have "spin" and, in a bound system such as an atom, can exist in "spin up" or "spin down" states
 - or use photons polarised "up" and "down"
 - just like a regular two state device
- In the unbound state, they consist of a mixture of up and down states: a superposition
 - analogous to harmonics in vibrating strings
 - this is now known as a "qubit" (quantum bit)

David Deutsch

- Quantum theory, the Church-Turing principle and the universal quantum computer (1985)
- Showed that quantum computers are universal, i.e. can simulate any possible physical process in a finite number of steps
- A quantum computer could be used to build the ultimate "virtual reality" machine, that could not be distinguished from the real world

So How Does a QC Work?

- We can build a CN gate from 2 qubits, and more complex circuits using an array of qubits
- The array must be initialised (pgm & data), and then allowed to "evolve" (zero energy computation) according the laws of QM
- There's no way of knowing how long this may last, or whether it will complete, but we can arrange for the QC to tell us via output signal
- We then test whether the result is there

Quantum "Parallelism"

- During the computation, all states in a superposition evolve independently providing a kind of parallelism
- Certain problems, such as integer factorisation can be sped up exponentially, using <u>Schor's algorithm</u>
- Other "hard" problems can be sped up quadratically
- But only when the machine produces a result; on average, no net performance gain over a number of runs

The Coherence Problem

- During the computation, all qubits in the array must be maintained in a "coherence", i.e. in a single entangled quantum state
- But this is notoriously difficult to achieve
 - thermal vibrations can disturb the state
 - measurements will change the state
- Need some kind of "trap" to contain the array of qubits plus cooling equipment to reduce thermal vibration
 - often using lasers for "optical cooling"

Practical Progress

- 1973 Hans Dehmelt trapped a single electron using an ion trap
- 1995 David Wineland made the first CN gate using trapped ions
- 2005? Winfried Hensiger created first ion trap on a microchip
- More recent work on error correction techniques

What's Happening Now?

- Research continues at a number of research centres worldwide
- It's believed that large amounts of money are being spent by national intelligence agencies ...
- ... because they want to break classical encryption methods and exploit quantum cryptography ... unbreakable transmission of information using quantum entanglement techniques

Practical Results?

- Factorisation of relatively small numbers using Schor's algorithm has been achieved
- One frequently repeated claim is that Grover's algorithm for searching a list of *n* items "will speed up database searching, enabling an item to be found in √*n* steps"???
- Current database search techniques depend on using indexes, enabling an item to be found in Log n steps, so this seems unconvincing
- So

The Moral of this Story is ...

- There has long been a desire to find computing techniques for tackling "NP hard" problems, i.e. faster solutions for algorithms which are currently intractable
- QC is the only known technique which offers a possible solution, but ...
- Don't hold your breath!

Sources

- Charles Petzold, The Annotated Turing
- Tony Hey (ed), Feynman Lectures on Computation
- Tony Hey (ed), Feynman and Computation
- John Gribbin, Computing with Quantum Cats from Colossus to Qubits
- David Deutsch, The Fabric of Reality