Project title:
Networked Enterprise transFormation
and resource management in Future
internet enabled Innovation CloudS

Acronym: NEFFICS Project No: 258076
THEME: ICT-2009.1.3

Internet of Things and Enterprise
A oR Environments

VDML Manufacturing Use Case

OMG document
bmi/2012-11-10

Based on NEFFICS Work Package 3 — Deliverable D3.3

www.neffics.eu

Date: 2012.10.30

Dissemination level:

Version: 1.0
Leading partner: CORDYS
Editor(s): Henk de Man
Author(s): Henk de Man, Arne J. Berre

Public

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Executive Summary

This report describes a method approcah for possible use of VDML, and shows it on a use case for
VDML (Value Delivery Modeling Language) in manufacturing. VDML is a modeling language
developed in response to an RFP by the Object Management Group , as described in the document:
Value Delivery Modeling Language 1.0, OMG document bmi/2012-11-07.

The purpose of this use case example is to describe a method for value modeling, and to show the
usage of this as an example us of the the VDML metamodel and notation, and to provide an example
of how an analyst might use VDML to develop a model for evaluation of a proposed business change.

This use case is focusing on the domain of manufacturing, and is one of the use cases studied in the
NEFFICS project, www.neffics.eu

This use case demonstrates the use of VDML for modeling and analysis of a proposed change to an
as-is business system. It also demonstrates how the scope of analysis can be limited to consideration
of a specific area of concern.

The document starts with first introducing a structured modeling approach for “value delivery models”,

based on the Value Delivery Modeling Language (VDML). The report then applies this to a
manufacturing use case.

Page 2 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Table of contents

EXECUTIVE SUMMARY ...ttt sttt sttt sttt se s esese s ss e 2 sn st s et eaesesesesanesesessaesenesasnsesnsnnas 2
TABLE OF CONTENTS ..ottt ettt bbbt bbb bbbttt bbbt 3
1 N LI] 10 L I] ST 4
1.1 OBJIECTIVE OF THIS DOCUMENTcvitiititettistateit sttt siebe sttt bbbt 4
1.2 STRUCTURE OF THIS DOCUMENTccuttitetistratestsseteststasestssssestssasest bbbt sttt bbbt 4

2 MOTIVATION AND REQUIREMENTS FOR VALUE DELIVERY MODELING..........cccccovvirinenne. 5
2.1 IMIAIN MOTIVATION ..vututututitreseststeteseseseseseseseses et st st sbssssesesesebebeseseseseaesent st e e ae b bbb ebebeb e b e b eseae st nt et se bbbt ebebenis 5
2.2 SPECIFIC REQUIREMENTS FOR VALUE DELIVERY MODELING......cutttttututtrttaesesestststnessssesesesenesssssssssessssssssasenas 8
2.2.1 Business values motivate value delivery MOdelSccooivrveeriiiiiineic e 8

2.2.2 Value delivery model supports busingss MOGENc.ceervreieiriiiniseiseese e 8

2.2.3 Value delivery model discovers process and Service Modelsccoovverirnerineininieenneeseeens 10

2.3 LEVERAGING ESSENTIALS OF EXISTING APPROACHEScctutututtirerttrttsteteseseseseneessssasssssssssssesasesesensassssnes 13
2.3.1 Value Network ANAlYSIS (WNA)ottt ettt e enens 13

2.3.2 SCOR- and VRM-based approachiesccoieiirieiniiieininieisisenisisieesis e es 14

2.3.3 LeAN VAIUE SIIEAMSeviiiietiisieie ettt bbbt bbbt b bbbt eb s 15

2.3.4 Resource-EVENt-AGENt (REA) ..ottt bbb sbenn 15

2.3.5 B3VAIUB ..ot 16

2.3.6 Capability @NAIYSIS ...coiviiirieiiiiiiiie bbbttt bbb 17

2.3.7 SUMMArY Of HMITALIONScviiiiiiiiei bbbt b ettt nbens 18

2.3.8 Summary of strengths, taken as further reqUIreMENtS ... 18

2.4 PROVIDING ADVANCED INNOVATION SUPPORTueueueuteteutststneseaessstsssesssesesesesenssssstssssssssesssesenssssenssssssnns 19

3 VALUE DELIVERY MODELING LANGUAGE (VDML) ..ottt 22
3.1 VDML EXPLAINEDcvtututeteteeeseseseneseeseseseses b besesesseesasese et aeaese s eebebe bbb e b abese e et ae s e b e b e b ettt et ebebe e e e e e s 22
3.1.1 Approach t0 eXPlain VDMLcccvcciiiiieiiiieeise ettt 22

3.1.2 Business network and collaborationccoeeiiiiincieiie s 24

3.1.3 Organizations and CapabIlItIEScocveiriiiiirieiee s 30

BLiA ACTIVITIES .ttt b bbb bbbt bbb Rt bbb enen 39

35 VU ...t 71

3.1.6 Model data 0rganization AN FE-USEceurueeiriiriirieisisiee bbbttt seee 99

3.2 VDML ADVANCED ELEMENTS ..cuvtitiiitetiisntiisietiiss et sn e s st b et n bbb n e n e enas 101

4 HOW VDML ADDRESSES REQUIREMENTS ...ttt 104
4.1 How VDML ADDRESSES SPECIFIC REQUIREMENTScciuruitteteuetesesesentsestnesssesessssssesesesesesenesssssssssssssenaes 104
4.2 HOW VDML MEETS MOTIVATION ...ctututtetetetetesesesesestsesesesessssesssesssesesessssssssasassssasssesesesesesensnsssnsasssasssasaes 109

5 CONCLUSION. ...ttt s a2 bbb bbb e bRt s £ e e £ £ £ bbb bbb e bbb ne e e 111
5.1 SUMMARY OF RESULTS ..eutttteutueststreaesesessssessesesesesesessstassesssssssesesesesesesensssstssasasasssesssesasesesesessssssasssssasasaes 111
5.2 FUTURE WORK .. .oittititieetiete sttt ettt sttt e ettt s e tesbe bt e se et esee s beeb e e n e eenb e e be e st e teabeebeeneeneenbesbeeneenbeneenes 111

6 REFERENGCES........coctiiiitiit ittt stk bbbt 22 e £ £ bbb bbb e bttt et bbb e et 112
7 GLOSSARY ..ottt bbb bbb £ R E bbb Rt E bbb bbbttt 115
7.1 JUSTIFICATION OF TERMS AND DEFINITIONS...c.c.ctiurertstteteteseseseneesesssessssssssssssesesesesesssssssssssssssasssssesesssass 115
7.2 TERMS AND DEFINITIONS ...cuttttttteteteseseseaeseseseseesesssssesesesasess st asasssss s sesesesesesasessssssasasasssasssesesesesesesssnes 115

Copyright © NEFFICS Consortium 2010-2013 Page 3/117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

1 Introduction

1.1 Objective of this document

This document is based on deliverable “Value Delivery Model and Methods” (D3.3), as part of work
package “Networked Business Value Analysis Models” (WP3) in the NEFFICS project, www.neffics.eu

Its purpose is twofold:
¢ Introducing a structured modeling approach for “value delivery models”, based on the Value
Delivery Modeling Language (VDML).
¢ Providing a detailed application of VDML to a use case. The document explains VDML by
means of the use case application. This explanation is concerned with both aspects of the
modeling language and aspects of methodology for using it.

The document means to provide understanding to users of VDML, for how VDML, as a structured
modeling language, can support them in applying business value analysis and in analyzing and
designing the business system to support business models, in the context of business innovation and
in discovering and implementing services and processes.

It also means to guide implementers of VDML modeling support designers of VDML-based modeling
methodology and to guide business analysts in creating value delivery models and conducting analysis
and to create their business designs.

1.2 Structure of this document

This document serves as an example of use of the VDML specification, and should be read together
with this.

In chapter 2 we will motivate value delivery modeling and analyze requirements that need to be
addressed in order to meet the motivation. Chapter 3 focuses on explaining VDML based on its
application to a use case. This use case is a simplified version of a part of the business of NEFFICS
partner Vlastuin. In chapter 4 we consider how, given its detailed explanation in chapter 3, VDML
addresses requirements as analyzed in chapter 2. The document is concluded in Chapter 5, in which
chapter we also outline remaining work, both during NEFFICS, and beyond (such as application for
VDML for automated business simulation).

Page 4 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

2 Motivation and requirements for value delivery modeling

Section 2.1 provides the motivation behind value delivery modeling. Specific requirements for value
delivery modeling are analyzed in 2.2. In section 2.3 some common and existing approaches, relevant
in the domain that overlaps with value delivery modeling, are analyzed and some of their “strengths”
are considered further requirements for value delivery modeling. This is also for the reason that value
delivery modeling should not cause a point of discontinuity for practitioners that adopt such
approaches, but should rather broaden their opportunities for business design and analysis, and
enable them to be aligned with a more integral, as well as standard and potentially technology-
supported modeling approach. Section 2.4 investigates requirements for advanced use of value
delivery models, such as to serve as basis for business simulation. It also clarifies the role of value
delivery models in the broader context of business innovation.

2.1 Main motivation

Three streams of research in NEFFICS, are all conducted in the context of and focus on innovation
(see Figure 1):

e Business value (WP3)
e Business model, and business model innovation (WP4)

e Process and service modeling and management (WP5).

Business
Model

Process,
Service

Figure 1. Streams of innovation-related research

Innovation is, amongst others, focused on discovery of new values, and development or improvement
of ways how values are created, exchanged and consumed.

This overlaps with what the business model community understands as business model innovation,
whereby business models serve as context for and also as subject of innovation.

This is at least suggested by the following definition of “business model”, as proposed by Osterwalder
and Pigneur (2010): “A business model describes the rationale of how an organization creates,
delivers, and captures value”.

A business model is a description of the rationale of creating value, or, as a part of it, making money.
But this description does normally not take the form of a structured model. Osterwalder and Pigneur
(2010), Osterwalder, Johnson et al. (2010), and others, introduced frameworks to describe business
models, which are merely mental models to think about business models. The business modeling
framework, as developed in NEFFICS, as part of WP4, can be found in NEFFICS D4.1 (2011) and
NEFFICS D4.3 (2012).

Next to the business modeling community, there is the community of people and practitioners that are
involved with process and service innovation. This community has evolved, at least in part, from
movements such as business process re-engineering, lean six sigma and business process
management (BPM).

Process and service innovation communities are used to describe processes and services, and how
they relate or interact, by structured models (we talk about “structured model” here, to avoid the
ambiguity of the word “model”). These models are, in fact “engineering representations” or
“architectural representations” of how the processes and services work and interact.

Copyright © NEFFICS Consortium 2010-2013 Page 5/117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Structured models lend themselves well for unambiguous interpretation by both humans and systems,
and support, amongst others:

e Automatic validation of model correctness, completeness and consistency.

e Consistent notation, graphical and otherwise.

e Model interoperability and exchange.

e Modularity and re-use of model elements

e Expression- and query-based navigation over models, including model-based calculations
¢ Change impact analysis, also based on where-used queries.

e Model comparisons

e Model simulation

e Transformation of models into models that represent different viewpoints, e.g. for purpose of
model-based automation.

¢ Life cycle management, including versioning and access control of model elements.

Everything that happens comes from a process, regardless of whether it has been formally defined.
Processes are typically involved as services. It is reasonable to assume that the “how” of creation,
delivery and capturing of value is substantially about processes and services. Process and service
innovation is a significant part of business model innovation therefore.

However, process and service innovation communities have not been able to model how processes
and services contribute to “the business”, e.g. how processes contribute to value, how value is
exchanged and consumed, etc. The engineering representation reaches as far as is required to
automate orchestration and choreography (interaction) of processes and services, and has so-far had
a technical focus.

This leads to the following observations:

e The “rationale of how an organization creates, delivers, and captures value” cannot yet be
analyzed and designed with the same rigor according to which processes and services are
analyzed and designed. Frameworks are not yet supported by an “engineering representation”
or “architectural representation”, based on structured models.

e Analysis and design of process and service models, though based on structured models, does
not exploit its actual and ultimate potential, as these models do not clarify how processes and
services are part of the “rationale of how an organization creates, delivers, and captures
value”. This is really a missed opportunity !

In NEFFICS, we intend to better align the areas of value analysis, business model analysis and
process and service analysis, and based on this, facilitate a more rigorous business design and
business architectural take on business model innovation. We intend to do this by developing a
structured modeling approach, based on so-called “value delivery models”.

The modeling and analysis area that “value delivery modeling” intends to cover has not been defined
so-far. There is no common term available that covers this area, and therefore we pick the term “value
delivery modeling”. There are existing approaches, such as value chain analysis, value stream
analysis, value network analysis, etc., but, as will be analyzed in a later section, none of these is
providing sufficient coverage in the area of concern.

Value delivery modeling is about creating value delivery models. We define a value delivery model as
“a model that supports business analysis and design based on evaluation of performance and
stakeholder satisfaction achieved through the activities and interactions of people and organizations
using business capabilities to apply resources and deliver stakeholder values”. The meaning of the
various terms that are used in this definition will become clear during discussions throughout this
document.

Figure 2 indicates how value delivery models can serve to bridge the gap between structured
representations of processes in process models, and high-level abstractions of business models in
business model frameworks.

Page 6 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

“Business A busm.ess model describes
. the rationale of how
Model an organization creates, delivers, and
captures value (Osterwalder)
Value Delivery :
Model

Model that supports business analysis

and design based on evaluation of
performance and stakeholder Process
satisfaction achieved through the

activities and interactions of people
and organizations using business
capabilities to apply resources and
deliver stakeholder values

Figure 2. Value delivery modeling bridging between “business model” and process

A more detailed positioning of value delivery models is presented in Figure 3.

articulates

Business
Model

motivate

Value
Delivery
Model

supports

discovers discovers

Process
Models

Figure 3. Position and role of a value delivery model

As Figure 3 suggests, value delivery models will:
e Be motivated by business values
e Support business models

e Be basis for discovery of process and service models

The fact that business models need to articulate business values is not subject of analysis in this

document, but will need to be addressed in next WP4 deliverables in NEFFICS.

Integrated support for value delivery models will enable to:

e Support value and business modeling frameworks with the “engine”, to unambiguously
analyze the as-is business (system) and analyze and design to-be business (system)
scenarios, entirely or in parts, and to measure, calculate and simulate aspects of the

“rationale of how an organization creates, delivers, and captures value”.

e Align value and business modeling frameworks with structured process and service models, to
guide implementation, automation, management and measurement of business model
“rationale” in the “real world”, as well as to provide performance and value measurement
feedback to structured-model-based representations of the business (and business models).

This will enable integral and closed-loop business model innovation. We will revisit this later in the

document.

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

In particular, value delivery models will enable the discovery and (re) design of processes and
services, from a value contribution and value delivery perspective. Value delivery models can serve as
process and service discovery models.

2.2 Specific requirements for value delivery modeling

In the next sub-sections we will analyze specific requirements for value delivery models, whereby we
follow the structure as presented in Figure 3.

In subsequent sections we will discuss how value delivery model can leverage essentials of existing,
though partial, approaches, and how value delivery models can also provide more advanced
innovation support, such as support for analysis of impact of business designs on value objectives, as
well as support for simulation.

2.2.1 Business values motivate value delivery models

The following requirements for value delivery models are taken from NEFFICS D3.2 (2011), its section
6 on “ICT support”.

Value identification
¢ Identify any form of value, financial and non-financial, tangible and non-tangible.
e Definable types of value

Value flow, intra and inter-enterprise
e Value creation, distribution (or “delivery”) and consumption

e By and between an unlimited number of roles, attached to an unlimited number of
organizations

e Link value flow within the business to value flow with customers and business partners
(extended enterprise, enterprise network, business ecosystem, extended value flow network).

Activities and activity networks

e Value is created, distributed and consumed by activities.

¢ A value may depend on a single activity or on a combination (or network) of activities.
Value measurement

e Value and aspects of value creation, distribution and consumption, should be measurable,
based on definable types of measures.

2.2.2 Value delivery model supports business model

The business modeling framework of Osterwalder and Pigneur (2010) is constituted from the building
blocks as represented in their “business model canvas” as shown in Figure 4.

Page 8/117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

. ae . HpA P i : i : : e : : =

Key Partners 5 Key Activities 1;3 Value Propositions (- Customer Rl'h]”u,qsﬁuu: Customer Segments ‘Ir

e ¥ - G ,—-'

Key Resources {1! Channels \;\3

BT f

=~

Cost Structure :\i Revenue Streams = -
; N>

Figure 4. Business model Canvas (source: Osterwalder and Pigneur (2010))

Other business modeling frameworks, such as the fore mentioned frameworks of Johnson et al.
(2010), and the NEFFICS business modeling framework, as documented in NEFFICS D4.1 (2011) and
NEFFICS D4.3 (2012), have a rather similar structure, as is shown in Table 1.

OSTERWALDER AND JOHNSON ET AL. NEFFICS
PIGNEUR
Customer segments Customer value proposition | Target users (non-invoiced stakeholders),
Customer relationships customers and market segments
Channels
Value propositions Value propositions
Key activities Key processes Internal value chain, using the functions

that are applied to create value

Competences, representing resources
and activities

Key resources Key resources

Key partners Network and network partners
Revenue streams Profit formula Profit formula, or more generally, value

Cost structure formulas

Table 1. Harmonization of business modeling frameworks

Value delivery models, when used to provide structured modeling support for such business modeling
frameworks, will need to capture the following:

Customer, market segments and other stakeholders
¢ Identify customers, market segments and stakeholders, other than customers, and business
relationships with them, to which parties the business provides value.

Value proposition
e Define value propositions, related to the products and services that are offered to these
parties, and which articulate the values that are delivered to them, in terms that relate to how
their needs are satisfied.

Resources and activities

Copyright © NEFFICS Consortium 2010-2013 Page 9 /117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

¢ Identify the resources and the activities that they perform or are used by, which are required to
apply the functions that are needed to create the value that is required.

Network partners
¢ Identify network partners, such as suppliers and others, and business relationships with them,
via which these parties contribute value, that is part of the overall value that the business
provides.

Profit and value calculations
¢ Define the structures and related computation mechanics that can determine all relevant
measurements of cost, revenue, as well as, more generally, value provided, value received,
and, though maybe subjectively, “value margin”, related to the operations of the business, in
the context of the business model.

The same terminology is used here as is typically used to describe building blocks in these
frameworks.

Table 2 shows how both sets of requirements, from 2.2.1 and 2.2.2, relate to each other.

VALUE DELIVERY MODEL

“Motivated by Business Values” “Supports Business Model”
Value identification Value proposition
Value flow, intra and inter-enterprise Customer, market segments and other

stakeholders

Network partners

Activities and activity networks Resources and activities

Value measurement Profit and value calculations

Table 2. Value delivery models versus business values and business models

When looking again to the detailed requirements in these various groups of requirements, it is
apparent that the requirements from 2.2.1, which focus on business values, are merely complementary
to requirements from 2.2.2, which focus on business models.

According to the current state of affairs, business modeling frameworks are not particularly explicit in
dealing with values.

Support for value delivery modeling, can smoothly bring these areas together into a single modeling
and analysis environment.

2.2.3 Value delivery model discovers process and service models

Discovery of process models based on value delivery models implies support for process improvement
or discovery based on identification of opportunities to improve customer value.

It is worth integrating value delivery models with “automation models”, such as process (automation)
models and related service models. The two “worlds”, of value delivery modeling (and analysis) and
automation, when integrated, are empowering each other in both directions.

Process and service design will become more productive, when it will be possible to, eventually,
automatically derive essential parts of process and service models, from the business know-how as
captured in value delivery models.

Value delivery models contextualize elements of automation models, whereas automation models

empower analysis by providing rigor in terms of measurements of performance and risk, and
identification of issues.

Page 10/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

When automation models are executed and monitored, real-world performance measurements can be
fed back to support next cycles of analysis. And when innovation cycles start again, no effort is
required to again discover value delivery models, as exploration of the as-is business system can be
conducted right-away, as these models will be “live” and integrated artifacts in a “business operations
platform”.

The context that analysis models provide to automation, is concerned with defining the purpose and
setting the right priorities for capability investments in business operations, and thereby, for innovation
of processes, etc., and in particular for automation of them.

In order to facilitate all this, it is essential that concepts underlying value delivery models are
sufficiently aligned with process and service modeling concepts.

According to BPMN (2011), a process is “a sequence or flow of activities in an organization with the
objective of carrying out work”. The concept of activities (and sequences or networks of them) is
covered already by Table 2.

More elaboration is required on service modeling concepts however. Essential to modeling services
are modeling of capabilities, interfaces to capabilities, and, collaborations (of roles) to engage
capabilities, through interfaces. We will take a closer look into these concepts, based on a number of
authoritative specifications of service oriented architecture (SOA) and modeling services.

Capabilities and interfaces of capabilities

e According to SOA-RM (2006), a service is “a mechanism to enable access to one or more
capabilities, where the access is provided using a prescribed interface and is exercised
consistent with constraints and policies as specified by the service description”.

e A capability, as defined by SOA-RM (2006), is a “real-world effect that a service provider is
able to provide to a service consumer”.

e SOA-RA (2011) defines a capability, less abstractly, as an “ability that an organization, person,
or system possesses to deliver a product or service”.

e SoaML (2012) defines a capability as the “ability to act and produce an outcome that achieves
a result”. According to SoaML (2012), capabilities are used to identify needed services, and to
organize them into catalogs in order to communicate the needs and capabilities of a service
area. Participants that provide a service must have a capability to provide it, but different
providers may have different capabilities to provide the same service. The capability behind
the service will provide the service. The service capability is frequently integral to the
provider’s business process. Capabilities can be seen from two perspectives, capabilities that
a participant has that can be exploited to provide services, and capabilities that an enterprise
needs that can be used to identify candidate services.

Collaboration to engage capabilities
¢ SOA-RM (2006) also defines interaction as the “activity involved in making use of a capability
offered”.

e SoaML (2012) defines collaboration as a “description of a pattern of interaction between roles”,
whereby entities or participants (e.g. persons, organizations, or systems) “play a role” in a
collaboration.

e SoaML (2012) states that the concept of collaboration is equivalent to what SOA-RM (2006)
calls interaction.

SoaML (2012) also addresses organizational aspects of services and capabilities.

Copyright © NEFFICS Consortium 2010-2013 Page 11/ 117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

Organizational alignment of capabilities, activities and resources
e Capabilities and services are possessed and provided by organizations

e Capabilities require a combination of organization, people, processes, and technology (SOA-
RA (2011)).

e A process view, as complementary to a service view focuses on what activities parties perform
to provide and use services.

Loose coupling of activity networks through stores
e From above it is clear that processes, or activity networks support capabilities, that are
provided as services, and that capabilities are involved through activities as well. This implies
many dependencies in the business system. These dependencies cannot all be activity-based
however, as this would lead to a representation of a business as one vast activity network.
This is not realistic. A business comprises many activity networks, which are loosely coupled,
via decoupling buffers, in this document further denotes as stores.

Monitoring-based scenarios and measurements
e Processes and services, as discovered, and implemented, will be executed, and it is required
to be able to feed measurements from monitoring of implemented processes and services
back to the value delivery model, as input for next cycles of innovation.

¢ As-monitored measurements, based on as-implemented parts of a value delivery model
should be distinguishable from e.g. to-be scenarios, with estimated, planned or simulated
measurements. It is essential that scenario-based analysis can be applied, based on the same
value delivery model.

Table 3 provides a harmonization of streams of requirements for value delivery models, as discussed
so-far.

VALUE DELIVERY MODEL

“Motivated by Business
Values”

“Supports Business Model”

“Discovers Process and
Service Models”

Value identification

Value proposition

Value flow, intra and inter-
enterprise

Customer, market segments
and other stakeholders

Network partners

Collaboration to engage
capabilities

Activities and activity networks

Resources and activities

Capabilities and interfaces of
capabilities

Organizational alignment of
capabilities, activities and
resources

Loose coupling of activity
networks through stores

Value measurement

Profit and value calculations

Monitoring-based scenarios and
measurements

Table 3. Harmonization of three streams of requirements for value delivery models

Note that SoaML (2012) also relates to concept of service and capability to delivery and exchange of

value:

e A service is “value delivered to another through a well-defined interface and available to a

community”.

e Service is defined as “the delivery of value to another party, enabled by one or more

capabilities”.

Page 12 /117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

e The service may be connected to a business motivational element to indicate its intended
value proposition.

e The exchange of value is the enactment of the service.

SoaML (2012) does not provide a precise and normative specification of the concepts of value, value
proposition and value exchange however. Integration of service concepts in value delivery models will
provide a unique opportunity therefore.

Some of the requirements in this section will also enable transformation of corresponding parts of
value delivery models to process models and related service models. Transformation to process
models and service models goes beyond the scope of this document however, and might be dealt with
in subsequent deliverables of work packages WP5 and/or WP7.

2.3 Leveraging essentials of existing approaches

We will discuss the following approaches, some of which have been recognized as relevant to the area
of analysis of business values by NEFFICS D3.2 (2012) as well (see Figure 5):

e Value network analysis (VNA)

e SCOR- and VRM-based approaches

e Lean value stream mapping

e Resource, Event, Agent modeling (REA)
e e3Value

e Capability analysis.

Capability
Analysis

Figure 5. Existing approaches related to the value delivery modeling domain

We will analyze their limitations, that give room to value delivery models to provide more integral
coverage, as well as their essentials that we want value delivery models to provide support for as well.

2.3.1 Value network Analysis (VNA)
Description
Value Network Analysis (VNA) uses a modelling technigue that defines the specific roles in a

collaboration and their value interactions that create value through the exchange of deliverables. Roles
and deliverables are made visible through visual graphs (see Figure 6).

Copyright © NEFFICS Consortium 2010-2013 Page 13/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

o Role
—

Formal/tangible deliverable .

- -
Informal/intangible deliverable

Figure 6. Value network with tangibles and intangibles

The goal of the method is to increase and/or optimize value outputs, to leverage financial and non-
financial resources (including intangible assets) for improving financial and organizational
performance, to find new value opportunities and improve operational performance and flows of value.
See Allee (2003), Allee (2008) and Allee (2011) for a detailed description of VNA.

Limitations

Every detail, including activity, resource and value detail that goes beyond the definition of roles and
deliverable flows (exchanges between roles) is defined as formatted text.

Strengths

The concept of role collaboration and exchange of deliverables that convey tangible and intangible
value, is very useful. It is a natural pattern of how people and/or organizations interact and cooperate,
and by doing so, exchanging value and/or together creating value. It also provides excellent basis for
seeing the big picture (e.g. business networks or business eco-systems), as well as for drilling down
into more detailed collaborations. It is also a far better basis for providing a complete picture, including
flows of tangibles and intangibles, than an activity network (or “process”) can be. An activity network
view would quickly become unreadable if it would contain the same level of detail.

This strength is basically covering all VNA provides, as the approach is not going further than just this
feature. Therefore: What VNA provides is necessary, but not sufficient, to support value delivery
modeling as intended.

2.3.2 SCOR- and VRM-based approaches

Description

Supply Chain Operations Reference (SCOR) model and Value Reference Model (VRM) are similar
approaches. SCOR, as is e.g. presented by Bolstorff and Rosenbaum (2003), is often used for design
and redesign of supply chains. VRM, as more recently presented by Mercer et al. (2010, 1), Mercer et
al. (2010, 2) and Mercer et al. (2010, 3), is typically used for discovery of business processes that are
eventually automated.

Both approaches focus on mapping chains of value chain activities, based on standardized reference
model elements: capabilities (sometimes confusingly addressed as “processes”), together with
associated measures, practices, and resources that maybe used and deliverables produced. They
combine, in a sense, the value chain approaches of Porter (1985) and the Balanced Score Card
approach of Kaplan and Norton (1996): embedding measurements, based on standardized measures,
in activities in the value chain, comparing value chain designs based on performance measurements.

The concept of applying standardized library elements for mapping value chains or processes, and as
basis for performance measurement, is also common in other frameworks (see Harmon (2007)).

Limitations

Page 14/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

These approaches lack explicit focus on value proposition and value. Focus is on performance and
performance benchmarks (see e.g. Francis (2007)). Focus is on activity networks. Support for
modeling business networks, organization alignment, resource use, etc. is limited. Levels of
abstractions can be defined by isolated models, which are not aligned by the model itself. There is no
explicit support for creation of integrated models with a scope that is broader than a single process.
There are no explicitly defined decoupling points (stores).

These approaches can be used to model a value chain or a process. But not to model a business
model or a structured model that represents the operation of a business model. Focus is more on
administrative and control flows. There is no support for analyzing parts of the same model in multiple
contexts or scenarios.

Strengths

Particular strength of these approaches are:
e Integrated measurement approach
e Libraries for standardized reference model elements
e Activity network modeling
e Explicit modeling of resources and deliverables.

2.3.3 Lean Value Streams

Description

Value stream mapping, as explained by Rother and Shook (1998), is a lean manufacturing technique
used to analyze and design the flow of materials and information required to bring a product or service
to a consumer. Customer value is the leading motivation, and focus is on improving value, by reducing
waste. It combines material flow (product produced) and information flow (e.g. sales orders or
forecasts that trigger production). Broader systems can be modeled via decoupling buffers or stores
(called “supermarkets”). The focus is on improving operational performance via detection and
elimination of non-value added (i.e. wasted) time.

Limitations

Focus is on customer value, but value is never made explicit. Measurement relates to just cycle time
(lead time), with distinction between lead time that is wasted (e.g. due to delays) and lead time that is
productive (related to actually producing things that the customer wants). The approach fits better to
manufacturing (shop floor work) than to administrative (knowledge) work, mostly due to the fact that it
actually depicts a linear material flow of just the product of concern. Focus is on free-hand drafting of
sketches. There is not much coming with the standard approach that supports detailed analysis or
simulation.

Strengths

The following is strong and useful:
e Measurement and aggregation of lead time (performance), with distinction between added
value and waste.
e The concept of stores, as buffers that decouple or link value streams.

2.3.4 Resource-Event-Agent (REA)

Description

Hruby et al. (2006) provide a detailed explanation and application of the Resource-Event-Agent (REA)
pattern. This pattern provides an accounting perspective on the creation, transformation and exchange
of economic resources by economic agents. In REA, economic agents perform economic events that
convert or exchange economic resources. REA does not deal with more subjective forms of value, but
focuses on products, services and resources that have defined costs and prices.

Copyright © NEFFICS Consortium 2010-2013 Page 15/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Limitations

Focus is on economic value, actually just price versus cost. The broader concept of value, as explored
in NEFFICS D3.2 (2012), and intended to be supported by value delivery models, is not supported.
The pattern that REA provides is rather abstract, and would have to be significantly extended, by
implementers, to make it adequate of modeling complete operations of a business model. Levels of
abstraction aren’t supported explicitly. It would all depend on what an implementer uses it for. The
intention of REA, from its inception on, has never been to serve as business analysis and design
language to the extent value delivery models are meant for. It has rather been meant to drive model-
driven logic to process accounting transactions (as is also clearly demonstrated by Hruby et al.
(2006)).

Strengths

Strong features that are useful to consider for value delivery models:
e Explicit modeling of resources, resource stores and how resources are consumed and
produced or received.
e Distinction between the role resource (“agent”) and other resources that are actually
transformed or exchanged by the role resource.
e The concept of reciprocity (something received compensating for something provided).

The basics of value exchange between “agents”, is in a way more detailed than value network analysis
provides, but on the other hand more limited, as it is just economic value.

2.3.5 e3Value

Description

e3Value, as presented by Gordijn and Akkermans (2003), is a modeling language for evaluation of the
viability of e-commerce business models or value constellations, representing a group of economically
independent entities, including market segments, that exchange transactions with economic value for
mutual benefit. This seems straightforward, but in e-commerce the number of entities, their different
interests and multiple exchanges can obscure the net value realized by the different participants.
Each of the participants must have a sustainable business model for the overall exchange to be viable.

Limitations

Like REA, also e3Value focuses on just cost and revenue (so, economic value only), and has no
broader concept of value. Cost of production of deliverables is just stated as a single measurement per
deliverable. The capabilities applied by each party aren’t defined explicitly. The e3Value approach
adopts a rather specific way of how inputs received are transformed into outputs created. It is merely
just a computation structure that would be equivalent to a set of expressions that are combined (OR,
AND, XOR, etc.) to transform the cost of inputs into cost of outputs. Actually the entire effort of a party
maybe considered a single activity with possibly complex computation logic associated, without explicit
modeling of more specific activities, resources involved and stores of resources. This makes e3Value
a good approach for quick assessment of exchange in n-ary business relationships, given cost prices
of deliverables and given demand forecasts, but it is not a good approach to facilitate modeling and
analysis of operations of business models in broader fashion. Alignment with processes and services
would be difficult and fuzzy, based on e3Value.

Strengths

Some features of e3Value are relevant to value delivery models too, though value delivery models will
need to address these in a more generic fashion.

These features are:
e Support for quantitative what-if analysis or simulation of profit, based on cost and revenue in
complex exchanges (n-ary business relationships), also based on demand forecasts of the
parties involved.

Page 16 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE{E@,)@S
bmi/2012-11-10

o Explicit definition of the deliverables that are produced and exchanged, which are the carriers
of cost and sales price.

o Explicit definition of scenarios, to enable what-if simulation of different scenarios, based on the
same model.

e Support for rather complex aggregations of measurements, albeit only cost-related.

2.3.6 Capability analysis

Description

A capability map, as used in capability analysis, defines a hierarchy of capabilities required for the
enterprise to deliver the desired results along with assessment of the importance and performance of
these capabilities. The capability map is analyzed to identify those capabilities that require
improvement—often called a capability “heat” map, an example of a part of which is shown in Figure 7.

[2.4 Customer-Facing

2.4.1.2 2.4.1.3 2.4.1.4 |
Account Account Account
Billing Mgnt Analytics Maintenance

Figure 7. Capability “heat map”

According to Krohn (2011), the capability map is the framework for defining scope and analyzing
impact. A capability is “what” the business does. By focusing on the what, the map becomes very
stable. “How” something is done changes frequently; with every system implementation or process
improvement, it is altered. However, what is done remains relatively the same, year after year. The
map organizes these capabilities into a hierarchy, with each capability level providing progressively
more detail. The hierarchy enables to start with a broad discussion and then dive into more detalil
where needed. Creating a capability map, containing commonly used or usable definitions of
capabilities, with their associated detail, establishes a common vocabulary across the business. This
will enforce productivity in design or re-design of business models, and will facilitate discovery of
opportunities to consolidate or outsource (or purposefully not doing so) capabilities.

Some approaches, such as presented by Ulrich and McWhorter (2011), also associate capabilities
with value chains or value streams, as the means for performing activities, and a way to define how
capabilities, as provided by the business, depend on each other, and, together, deliver the value to the
customer. Rather than getting lost in the details of IT implementations, organizations should instead
focus on the capabilities required to maximize value stream benefits. A value stream may involve
dozens of capabilities. The same capabilities are often deployed in many places. Value stream
mapping provides planning input to help determine which capabilities may be required to align,
consolidate, and automate various business processes across product lines and business units. When
the same capability is shown in multiple value streams, this implies that it is reused across these value
streams. If two or more apparently identical capabilities are being used in different value streams, then
there may be redundancies in the organization that require alignment from a business and/or IT
perspective. This approach is similar to what is proposed by Cummins and De Man (2011).

Limitations

Actually all what is intended by these approaches is valuable as key aspect of potential value delivery
models. Identification of capabilities alone and in isolation, and e.g. just creating “heat maps” of

Copyright © NEFFICS Consortium 2010-2013 Page 17/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

capabilities is not sufficient however. Applying capabilities in value chains or value streams is
essential, but will still only provide a partial coverage of what a business model represents.

Strengths

Define capabilities, and apply them in value streams of value chains, to enforce a common vocabulary
in the business, more robust business design, better comparability of the possibly multiple ways in
which a business does something, and to enable separation of the “what” business does, from the
“how” it is done, to facilitate analysis and design at different levels of abstraction and detail.

2.3.7 Summary of limitations

None of these approaches are sufficient to serve as basis for value delivery models as envisaged.
Creating modeling support for value delivery models is not a matter of just combining these
approaches, as:
e Their ways of expressing concepts is too heterogeneous, as are their fundamental purposes
and ambition levels.
e There are overlaps and conflicts of concepts that would not be resolvable, and there would still
be significant gaps that are not addressed by these methods.

It is, instead much better to introduce a new modeling language, called Value Delivery Modeling
Language (VDML), in such a way that essential and strong concepts of the various approaches are

still supported, and that model representations of existing approaches might be mapped to (or
transformed from) parts of value delivery models.

2.3.8 Summary of strengths, taken as further requirements

Value flow through role collaboration
e The concept of role collaboration and exchange of deliverables that convey tangible and
intangible value.

e The concept of reciprocity in collaborations or value exchanges (something received
compensating for something provided).

Capability and value stream / chain analysis
¢ Define capabilities and apply them in value chains or value streams.

e Libraries for standardized reference model elements, such as capabilities and related
measures, resources or deliverables and practices).

Explicit modeling of resources, resource stores, resource use and deliverables
e Explicit modeling of resources and deliverables.

e Explicit modeling of resource stores and how resources are consumed and produced or
received.

¢ Distinction between the role resource (“agent”) and other resources that are actually
transformed or exchanged by the role resource.

e The concept of stores, as buffers that decouple or link value streams.
Emphasis on measurement of performance and value, also applied in scenario-based analysis
e Aggregation of performance measurement, with distinction between added value and waste

(as lean value stream maps do with lead time).

e Support for rather complex aggregations of measurements (cost-related, and more).

Page 18/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

e Support for quantitative what-if analysis or simulation of profit, based on cost and revenue in
complex exchanges (n-ary business relationships), also based on demand forecasts of the
parties involved.

o The explicit definition of scenarios, to enable what-if simulation of different scenarios, based
on the same model.

Table 4 provides a harmonization of the various streams of requirements for value delivery models, as
discussed so-far.

VALUE DELIVERY MODEL
“Motivated by “Supports “Discovers Process and “Leveraging existing
Business Values” Business Model” Service Models” approaches”
Value identification Value proposition
Value flow, intra and Customer, market Collaboration to engage Value flow through role
inter-enterprise segments and other capabilities collaboration
stakeholders
Network partners
Activities and activity Resources and Capabilities and interfaces Capability and value
networks activities of capabilities stream / chain analysis
Organizational alignment Explicit modeling of
of capabilities, activities resources, resource
and resources stores, resource use and
Loose coupling of activity deliverables
networks through stores
Value measurement Profit and value Monitoring-based Measurement of
calculations scenarios and performance and value,
measurements also applied in scenario-

based analysis

Table 4. Harmonization of four streams of requirements for value delivery models

In the next section we discuss some requirements that relate to more advanced support by value
delivery models.

2.4 Providing advanced innovation support

As has been stated earlier, value delivery models will help enabling integral and closed-loop business
model innovation. They will particularly:

e Support designing, and analyzing the as-is business (system).

e Serve as context for innovation ideas, as well as support designing prototypes of what is
envisaged.

e Support discovery and design of and/or alignment with processes and services. This includes
implementation, automation, and management of processes in the “real world”, as well as
measurement of performance and value contribution of these processes and feedback of
measurement results for purpose of further analysis. This might lead to discovery of issues
that need to be resolved by further improvement of the business system.

Implementing process and service improvements or new processes and services is where the
business innovation model rubber meets the road, as this might have major impact in the organization,
might be disruptive and may introduce significant risk.

It is essential that value delivery model scenarios, supporting to-be strategies to further innovate the
business, are thoroughly defined and analyzed. Value delivery model-based impact analysis is
essential, to see to which extent they help achieving value objectives, targeted by innovation.
“Winning” strategies are typically broke down in tactics, i.e. particular change requirements to

Copyright © NEFFICS Consortium 2010-2013 Page 19/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

transform the as-is business system, and which are typically conducted as initiatives or projects. Such
tactics will involve changes in value delivery models and related process models, service models, etc.,
as well as changes in the “real world” business system itself, such as training people, putting them on
new positions, getting new partnerships in place, etc. Figure 8 indicates the role that value delivery
models can play in this context.

- @ @ %
| \‘] To-be strategies
7 TNy

lssues

Objectives

t/&

soljoe]

.) Initiatives
[value delivery model / scenario

Figure 8. The role of value delivery models in business innovation

Impact estimation requires analysis of multiple scenarios, possibly based on the same model, and a
measurement system that is scenario based. Scenario-based measurements might be determined
manually (based on estimates), through monitoring of as-implemented processes and services, or
based on simulation.

Simulations might be diverse, such as interactive what-if scenario analysis, similar to scenario-based
analysis in e3Value, or based on average measurements of performance and value.

Simulations may often require more power, in order to understand robustness of innovations, or to
detect potential risks that would otherwise be overlooked. Common types of simulation, that value
delivery models eventually may have to support, are:

e Monte Carlo simulation. A Monte Carlo simulation consists of many (typically hundreds or
thousands) of trials, each trial sampling from the distribution of a set of input elements, and
then aggregate the composite answer (output); thus the return would be characterized not by
a single number, but by a stochastic distribution of possible outcomes

e Discrete Event simulation. Discrete event simulation involves modeling the system as a set of
objects evolving over time according to the availability of resources and the triggering of
events.

e System Dynamics simulation. System dynamics simulation involves identifying the key “state”
variables that define the behavior of the system, and then relating those variables to one
another through coupled, differential equations.

See Dooley (2002) for a short discussion of these simulation approaches. See also Hubbard (2010),
who provides a quite readable discussion of how Monte Carlo simulation can help assess risks.

Both Monte Carlo simulation and Discrete Event simulation require that measurements can be
determined stochastically.

Discrete Event simulation, as well as System Dynamics simulation require that resource stores can be
used, as part of activity networks. Such stores are normally called “stocks” in System Dynamics.

Page 20/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

In summary: advanced analysis and simulation, as discussed in this section, require the following from
value delivery models:

e Scenario-based measurement and analysis.
¢ Modeling activity networks that contain resource stores.
e Measurements enabled for stochastic determination.

These partly confirm what is already captured in Table 4, and partly add to it (such as the enablement of
measurements for stochastic determination).

Other more specific and detailed requirements for simulation will be discussed later.

Copyright © NEFFICS Consortium 2010-2013 Page 21/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

3 Value Delivery Modeling Language (VDML)

VDML, as modeling language to create structured value delivery models, is meant to provide integral
and integrated modeling support that addresses the requirements as discussed in chapter 2.

In this chapter we will first explain VDML. In the next chapter we will asses how VDML addresses the
requirements as have been analyzed in chapter o.

3.1 VDML explained
3.1.1 Approach to explain VDML

As Figure 9 suggests, VDML can be thought of as constructed from the following parts:

e Libraries, such as measure libraries, capability libraries, etc.. Libraries contain elements that
are standardized in a business community or company, and that foster re-use of business
design elements, enforce common vocabulary and normalization of business designs, and
makes business modeling more productive.

e “Business design elements”, which are used to construct the actual design of a business
system, and which may refer to library elements.

e Scenarios, supporting analysis of a business design, or a part of it, in different circumstances
of use.

e “Mechanics”, representing all model elements that are not directly exposed to business
analysts, that create or use value delivery models, but that serve as technical modeling
foundations to other model elements. These are e.g. concerned with to how fundamentally
model roles and collaboration, how to support decomposition, etc.

¢ Integration with a measurement framework, as specified by the Structured Metrics Metamodel,
published as SMM (2012). The NEFFICS project partners SINTEF and Cordys are currently
participating in, and co-managing a revision task force in the OMG, to create a revision of
SMM that is best supports VDML concepts and integration.

Scenarios

Libraries “Business design elements”

“Mechanics”

+ SMM Integration
Figure 9 VDML constituents

The formal and detailed VDML 1.0 specification, traverses the VDML language part by part, more or
less in this sequence: SMM integration, “mechanics”, “business design elements”, scenarios, libraries.

In this document, we opt to discuss VDML concepts from a user, or use case perspective, and to
discuss underlying details less formally. Per each aspect of the business use case, we will discuss
VDML and SMM elements that support modeling and analyzing it, regardless of its nature (i.e.
regardless which part in Figure 9 it belongs to). We will not be exhaustive in explaining metamodel
details. The reader should refer to the VDML 1.0 specification document to get the complete
specification, covering all details.

The small use case example that we will use to explain VDML originates from NEFFICS partner

Vlastuin, but is generic enough to be commonly encountered in any product-manufacturing business.
Vlastuin produces, amongst others, trailers, and hence this use case example is about the business of

Page 22 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

a product family of trailers, denoted as XTtrailers. According to this use case, transporters (XTrailer
customers) place orders, based on which the manufacturer (here Vlastuin) produces and delivers the
trailers. Transporters also provide feedback, in the form of ideas for further innovation of the trailers (in
the XTrailer product family). The manufacturer uses these ideas to apply new innovations and to make
these available to the transporters market.

Discussion will be supported by four different types of diagrams, as indicated in Figure 10 :

Mockups of graphical model notation. These mockups suggest how model data may be
exposed to users. A VDML model user interface will be more extensive than the set of
mockups that are discussed in this document. A model user interface will consist of both
graphical diagrams and data-forms, but in this document we will only be concerned with a
selective subset of mockups of graphical diagrams. These mockups are not included in the
normative part of the VDML specification, but are vendor-specific ideas of how VDML model
data can be exposed to the user. Some of these ideas might be included as non-normative
parts of the VDML specification.

Object diagrams. Objects are instances of classes, and denote the actual model data, or
model elements, a subset of which is exposed via graphical notation. In this document, we
make use of UML object diagrams.

Metamodel diagrams. Meta-model diagrams contain the meta-model classes, that are
instantiated to create model objects. These diagrams belong to the normative part of the
VDML specification, as submitted to the OMG. As indicated above, we will use slight revisions
of some of them. Meta-models are an abstraction of underlying concepts, and express their
related semantics. It is common practice in the OMG to adopt Unified Modeling Language
(UML) -based class modeling notation, to express meta-model diagrams. For explanation of
UML in general, and UML class diagrams and object diagrams in particular, the user might
refer to Fowler (2004) for a user-oriented introduction to UML, or to UML (2011) for a formal
specification.

Informal diagrams, to explain some underlying VDML concepts.

ot (ohject dagtans
i .

s
PO S A .|

Concepts (informal)

Figure 10. Diagrams used in explaining VDML

We will follow the following route in presenting the use case and discussing how VDML supports
modeling and analyzing aspects of it, with reference to the VDML ontology in Figure 11, which is a high
level abstraction of core VDML meta-model concepts:

Business networks and collaboration
Organizations and capabilities
Activities

Value

Copyright © NEFFICS Consortium 2010-2013 Page 23/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

articulates e
Value Value Proposition |

creates and/or
consumes

provides and/or receives

] erforms |
Activity I perf Eole [
Defines work defines formal | defines informal defines business
collaboration or structural or “weak” collaboration of
requires of collaborationof | collaboration of

4@ | Community | | Business Network
Isupports owns
| Capa@l(— Org Unit

Resource
supports owns

provides
Figure 11. VDML high-level ontology

Definitions of metamodel terms, and related concepts, as far as relevant in the context of the use case,
will be provided throughout the course of the discussion. When no reference is provided in the text
itself, the definition is a VDML definition. Most definitions are provided in the Glossary in chapter 7,
which glossary also provides references to other sources that make comparable use of similar terms.
For some more technical VDML-specific definitions, not contained in the Glossary, the user can refer
for more details to the VDML 1.0 specification document.

3.1.2 Business network and collaboration

According to VDML modelling collaboration is fundamental to modelling business systems. The
essence of what is going on in business is “collaboration”. Value is created through collaboration. We
will discuss about “value” later on. VDML defines a collaboration as a “collection of participants
working together for a shared purpose”, whereby a participant is defined as “anyone or anything that
can fill a role in a collaboration”. Participants can be actors (human or automatons) or collaborations
by themselves, or roles of actors or collaborations. An actor is “an individual (indivisible) participant,
which might be human (a person) or non human (e.g. a software agent or machine)”. Basically a
business system is constructed as a collaboration of collaborations. An entire enterprise or business
network is a collaboration, and so is any team, project, process, taskforce, etc. VDML also provides
the means to align collaborations with each other and to construct collaborations from other
collaborations and individuals (actors). We will discuss these throughout the course of this chapter.
Participants participate in a collaboration, and as such, collaborate, through roles. Each collaboration
defines and contains a set of roles, a role being “an expected behavior pattern or capability profile
associated with participation in a collaboration”. Roles define what is expected from participants, and
what they have to perform, in the specific context of a collaboration. The definition of role introduces
the term “capability”. We will discuss about capabilities later. Capability expectations of roles come
from capability requirements of activities that roles have to perform in collaborations. We will discuss
about activities and capability requirements later as well. Normally roles are also associated with
rights, such as access rights to applications or information, but such concerns go beyond the scope of
VDML.

VDML specializes collaboration into a few common sub-types. Figure 12 highlights two of them:
“community” and “business network”.

Page 24/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case

bmi/2012-11-10

articulates T
Value Value Proposition |

creates and/or
consumes

provides and/or receives

| erforms]
| Activit [- I_|R0Ie <
Defines work defines formal | defines informal defines business
collaboration or structural or “weak” collaboration of
requires of collaboration of | collaboration of|

Method
supports owns

Org

| Community | | Business Network

Unit |

Resource
supports owns

provides

Figure 12. VDML high-level ontology: Collaboration highlighted

A business network is “a collaboration between independent business (or economic) entities,
potentially companies, agencies, individuals or anonymous members of communities of independent
business entities, participating in an economic exchange”. A business network defines a business
collaboration of roles.

A community is “a collaboration of participants with similar interests that work together for some
shared purpose such as sharing knowledge”. A community defines an informal or “weak” collaboration
of roles. The collaboration that a community represents is said to be “informal” and “weak”, as
opposed to collaboration in the formal and structured part of the organization, as defined by
organization units. Organization units (or org units) will be discussed later. We will revisit communities
later, and will first focus discussion on business networks.

Figure 13 provides a model view mockup of the simple business network in the XTrailer use case
example. This notation is compliant with the value network notation as introduced by Allee (2008).

Idea
—— -
”- -— -

Innovation ———
-

Transporter

Manufacturer

Product

Figure 13. Business network collaboration mockup

It represents collaboration between two parties, indicated by the ovals: the manufacturer and the
transporter. Parties are specialized roles. Roles in business network are “parties”. Collaboration
between Manufacturer and Transporter is represented by their exchange of deliverables, via
deliverable flows, depicted by the connectors. Solid connectors denote flows of tangibles. Dashed
connectors denote flows of intangibles.

A deliverable flow is defined as "a transfer of a deliverable from a provider (or producer)to a
recipient (or consumer)". A tangible is “a deliverable that represents something that is contracted,
mandated or expected by the recipient and which may generate revenue”. In the example, Order and
Product are tangibles. In the context of the XTrailer use case, Order can be taken as trailer order and
Product as a trailer. An intangible is “a deliverable that represents something that is unpaid or non-
contractual that makes things work smoothly or efficiently”. In the example, Idea and Innovation are
intangibles. Transporters provide feedback to the manufacturer, in the form of ideas. The manufacturer

Copyright © NEFFICS Consortium 2010-2013 Page 25/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

works ideas into innovations of the product, provided to the transporters. These go beyond what is
expected or contracted.

The model view mockup in Figure 13 is a user’s view of the model objects in the object diagram in Figure
14. Note again that this is the technical view “behind” the user’s view. Note that object diagrams
generally show more objects than are graphically exposed in view mockups.

Object Diagram MyCo Business | [ig ¥ TraierBusiness - Roles and Flows |

Manufacturer : Party Transporter : Party

T ——— businessNetwork = XTrailerBusiness businessNetwork = XTrgilerBusiness T :

e ———D) performedWork = Manage Fulfilment, performedWork = Submit Idea, Absorb o 8 TS Tul
:Dﬁa_;’ra T:’-d 1 Manage Innovation Innovation, Buy Product, Operate Product collaboration = S&D
ﬂe m_';q -tP md uiFI profit = Profit providedProposition = PropositionFromMarket definition = SalesOrder
Powd_ ll'l? S:o chl OW. providedProposition = XTrailerProposition receivedProposition = XTrailerProposition flow = OrderFlow,
PanduutchI:w LA 6 receivedProposition = PropositionFromMarket OrderFromStoreFlow

! roleAssignment = ManufacturerAssignment store = Orders

ProductFromStoreFlow 9 by 9
el oducts : BusinesshetwarkParty - BusinesshetwarkParty FlowDeliverable

|- FlowDeliverable

XTrailerBusiness : BusinessNetwork
ProductFlow : DeliverableFlow activily = Operaie Product, Buy Product, OrderFlow : DeliverableFlow

collaboration = XTrailerBusiness Absorb Innovation, Submit Idea, Manage collaboration = XTrailerBusiness
deliverable = Product Innovation, Manage Fulfillment deliverable = Order
isTangible = false CollaborationFlow businessitem = Innovation _ CollaborationFlow FEREREESEIRE
provider = ProductOutput containingModel = MyCompanyModel | provider = OrderOutPut
recipient = Productinput flow = InnovationFlow, OrderFlow, recipient = OrderinPut
ProductFlow, I[deaFlow, OrderFromStoreFlow

ownedAssignment = ManufacturerAssignment
CollaborationF low pany = Manufacturer, Transponer : CallabaratianFlow IdeaFlow : DeliverableFlow

scenario = OverallScenario collaboration = XTrailerBusiness
deliverable = Idea
isTangible = true

InnovationFlow : DeliverableFlow

collaboration = XTrailerBusiness
deliverable = Innovation

isTangible = true
provider = InnovationOutput

el provider = IdeaOutPut
recipient = Innovationinput

recipient = IdealnPut

FlowDeliverable
jLowoeveran’e : FlowDeliverable

Innovation : Busi

= CollabarationBusinessitem Idea : Businessltem
collaboration = XTrailerBusiness collaboration = R&D
definition = Innovation
flow = InnovationFlow

definition = Idea
flow = |deaFlow,
IdeaFromStoreFLow
store = Ideas

Figure 14. Business network collaboration objects

The two top-most objects represent the parties (roles). Of the four deliverable flow objects, two are
marked as tangible (isTangible = true), and two as intangible (isTangible = false). Parties and flows are
contained in the business network. The business network object itself is not visible in the model view
mockup in Figure 13.

Deliverables, shown as names along the connectors in Figure 13, are defined as business items,
associated with the deliverable flows. A business item is “anything that can be acquired or created,
that conveys information, obligation or other forms of value and that can be conveyed from a provider
to a recipient. For example, it includes parts, products, units of fluids, orders, emails, notices,
contracts, currency, assignments, devices, property and other resources”.

Only one business item, Innovation, is contained in the business network. The other business items
aren’t specific to the business network, but are used across multiple collaborations.

Objects in the object diagram in Figure 14. are instances of a subset of the classes in the metamodel
diagrams in Figure 15, Figure 16 and Figure 17. Several elements in these diagrams will be discussed later.
Figure 15 shows that a business network is a collaboration, and that its parties are roles.

package VOML[Iﬁ%‘ Business Networks U

| Collaboration Role i

-
BusinessNetwork Party +valueMarginContext +valueMargin | MeasuredCharacteristic
+husinessMetwork +party 0.1 0.1
1 0
{redefines collaboration} {redefines collaborationRole} +profitContext +prafit
0.1 0.1

Figure 15. Business Networks metamodel

Page 26/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Figure 16 shows how a collaboration contains roles, deliverable flows and business items. Later on we
will revisit this diagram, to discuss about assignments of participants to roles.

package VDWL [£ Collabortions |

VdmliElement MeasurabieElement
CalendarService

+participantCalendar (0.1
+participant40..1

+pamm§a1m Participant ‘ Goal PortContainer

+qgoal (0.
+collaboration 1
Actor | Role |+collaborationRole _*collaboration Collaboration
| isLead -boolean = false jo.* 1
+assignedRole |1 +performingRole |1

+performedWork (0.*

Person Activity | *actvity +collaboration
o 1

+collaboration |0.1 +collabaration |1 +collaboration |1 +collaboration|0..1
+assignment |0.* +roleAssignment |0.* +flow |0.* +businessltem [0.* +internalPortDelegation |0.*
Assignment L+uwnedAsswgnment DeliverableFlow Busil em PortDeleg

lor

Figure 16. Collaborations metamodel

Figure 17 shows how a business item is associated to a deliverable flow, and that a deliverable flow can
be marked as tangible or intangible (via a boolean property).

package VDML [!;%‘*‘ Deliverable Flows U P

InputPort [recivient +input’ peliverableFlow
1

0.1

+isTangible : boolean low
OutputPort | +provider +output 0.1
bt ek
1 0.1
+flow [0.*
+ieliverable (1 +duration 0.1
Businessitem MeasuredCharacteristic

+isFungible : boolean = true
+isSharable : boolean = false

Figure 17. Deliverable Flows metamodel

Note that deliverable flows connect to recipient and provider via “ports” (input port, output port). This
detail, which is abstracted away from the role collaboration view mockup in Figure 13, will be discussed
in 3.1.4.

Figure 18 shows how a business item can be associated with a business item definition.

It can be defined for a business item, whether its instances are interchangeable (i.e. “fungible”) or
whether the same instance can be used simultaneously in different locations (i.e. it is “sharable”).
These properties, that are essential in discrete event simulation based on the model, have not been
applied in the XTrailer use case example.

Copyright © NEFFICS Consortium 2010-2013 Page 27/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package VDML[|aE§| Business nemsu

MeasurableElement
a1

BusinessitemDefinition | *definition +businessitem Businessitem

0.1 0.* L+isFungible : hoolean = tue
+isSharahle | hoolean = false

Figure 18. Business Items metamodel

Business item definitions are contained in a business item library. A business item library contains a
taxonomy of business items, consisting of business item definitions and categories of them, and is
applied to enforce consistency in the definition of business items. Multiple business items that are
associated with the same business item definition, are considered similar from the perspective of the
library.

Figure 19 shows an object diagram that contains the business item definitions in the business item
library as part of the XTrailer use case example.

Object Diagram WyCo Business| [Business ltem Library (compressed) 1J

Product : BusinessltemDefinition
businessitem = Product
library = MyCo Bus ftem Library

Innovation : BusinessitemDefinition Idea : BusinessitemDefinition Release : BusinessitemDefinition
businessltem = Innovation businessitem = Idea, businessitem = IntermediateRelease,
library = MyCo Bus ltem Library | Approvedidea FinalRelease, BetaRelease
output = InnovationOutputiM library = MyCo Bus Item Library | input = ReleaselnputPM

library = MyCo Bus ltem Library

SalesOrder : Busi ItemDefinition ProductionWorkOrder : EngineeringWorkOrder :

businessitem = Order BusinessitemDefinition BusinessltemDefinition

library = MyCo Bus ftem Library | businessitem =F Order, businessitem = EngineeringWorkOrder
WorkOrder library = MyCo Bus ltem Library

input = ProductionWorkOrderinputPM
library = MyCo Bus ltem Library

ProductionReport : BusinessitemDefinition

businessitem = PilotProductionReport, LogisticHandlingResource :

ProductionReport BusinessitemDefinition

library = MyCo Bus ltem Library businessitem = LogisticHandlingResource

output = ProductionReportOutputPM library = MyCo Bus ltem Library
ProductManagementResource : EngineeringResource : OrderProcessingResource : ProductionResource : BusinessitemDefinition

BusinessitemDefinition BusinessitemDefinition BusinessitemDefinition businessltem = ProductionLeveliResource,
businessltem = ProdMgmtResource | businessitem = EngineeringResource | businessltem = OrderProcessingResource | productionLevel2Resource
library = MyCo Bus ltem Library library = MyCo Bus Item Library library = MyCo Bus Item Library library = MyCo Bus ltem Library

Figure 19. Business Item Library objects

Some business item definitions in this library, namely ldea, Release, Production Work Order,
Production Report and Production Resource are referenced from multiple business items (see
property “business item” in the objects in Figure 19).

The objects in the object diagram in Figure 19 are instances of classes in the metamodel diagram in
Figure 20. Business item categories are not applied in the XTrailer use case example. Characteristics
will be discussed later.

Page 28/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package VDI [[] Business tem Libraries u et

%Itemubram

+businesstemDefinition |0.* +businessltemcategory |0.*
BusinessltemDefinition |.:atq0nitem +catagory| BUSiNessitemCategory .parentcategory
+isFungible : boolean = frue 0> 0> 0.
+isSharable : boaolean = false

o *
+husinessltem |0..* *ehidZaEgon 0.

+characteristicDefinition |0..*

Characteristic
(SMM)

Figure 20. Business Item Libraries metamodel

A value delivery modeling tool can also use a business item library to guide the modeling user in
productively discovering deliverable flows in a role collaboration view (like the simple one in Figure 13).

Figure 21 provides a model view mockup that represents the structure of the business network:
participants assigned to party roles.

A XTrailer
Business
Manufacturer Transporter
~ o??
MyCompany ransporters
Market

Figure 21. Business network structure mockup

The Manufacturer party role is assigned to the company MyCompany, and the Transporter party role is
assigned to the market segment Transporter Market. A market segment can be modeled as a
community, as has been introduced earlier. A community is a specialization of collaboration, as
indicated in the metamodel diagram in Figure 22.

package VDML [!;E:‘ Communties]

|co|laboration Role

+community +member -
1 L)%
{redefines collaboration} {redefines collaborationRole}

h

Community #

Figure 22. Communities metamodel

The object diagram in Figure 23 shows the objects behind the model view mockup in Figure 22. Note that,
to keep the size of the XTrailer use case example minimal, the assignment of the Transporter party
role to the Transporter Market has not been implemented.

Copyright © NEFFICS Consortium 2010-2013 Page 29/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Objecs Diagram hayCo Fusness| g 1 Tralerfusness . Avsgrment |
KTrail i k
activity = Operale Product, Buy Product,

- Businagshatwork ar

| ~ Absorb , Submit Idea,
| Manufacturer : Party | Innovation, Manage Fulfillment
busi = XTi 8ss businessitem = Innovation ¥ |
performedWork = Manage Fulfiliment, del = MyCompanyModel | Jransporter: Rarty
Manage Innovation flow = InnovationFlow, OrderFlow, busi Metwork = XTrailerBusiness
profit = Profit ProductFlow, IdeaFlow, Orderf low p = Submit Idea, Absorb
providedP, tion = XTrailerProposith g it = erAssignment I ation, Buy Product, Operate Product
receh, T 1 = Prof party = Manufacturer, Transporter providedProposition = PropositionFromMark

oA = ManufacturerAssig io = OverallScenario ivedProposition = XTrailerPropositi
|, RoleAgsignment
ManufacturerAssignmant :
Assignment]
assignedRole = Manufacturar CollaborationOwnedAssionment

= XTH
participant = MyCompany

Faricipanthssignment

MyCompany : Drgi.lnl!

= turerAssignment
= MyComy

ownedAssig = Depariment 1Assig :

Department2Assi; Plant1Assig it

position = Depariment1, Depariment2, Plant

Figure 23. Business network structure objects

MyCompany is modeled as organization unit. Organization units are discussed in 3.1.3. The
assignment of the Manufacturer party role to MyCompany is an instance of the Assignment class in
the earlier discussed metamodel diagram of Figure 16. As an organization unit is a itself a collaboration,
this assignment construct is one of the ways to construct collaborations from other collaborations.

3.1.3 Organizations and capabilities

Organization units are the building blocks to define the more formal and structured parts of
organizations. An organization can be defined as “an administrative or functional structure normally
interpreted as a network of organization units at a higher level in an organizational hierarchy”. An
organization unit is “an administrative or functional organizational collaboration, with responsibility for
defined resources, including a collaboration that occurs in the typical organization hierarchy, such as
business units and departments (and also the company itself), as well as less formal organizational
collaboration such as a committee, project, or task force”.

Organization units provide capabilities. A capability is “the ability to perform a particular kind of work
and deliver desired value”. We will discuss about value later, but analyze capabilities in more detalil
first. Organization units that provide capabilities do need capability methods and/or resources to
support these capabilities. The same or different organization units own these. A resource is “anything
that is used or consumed in the production of a deliverable”. A capability method is “a reusable
template for a collaboration configured for participants to perform activities to deliver a capability and
to contribute value in a particular situation”. We will discuss about activities later. Both organization
units and capability methods are collaborations of roles. As will be discussed later, capability methods,
especially the more structured ones, are a perfect basis for process discovery. In particular, process
definitions that comply with the BPMN standard (see BPMN (2011)), can be generated from capability
methods (model transformation).

These concepts, as highlighted, in the VDML ontology diagram in Figure 24, will be discussed and
analyzed in more detailed and applied to the XTrailer use case example below.

Page 30/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

ticulat .
@M' Value Proposition

creates and/or
consumes

@E performs E"-’E

provides and/or receives

Defines work defines formal | defines informal defines business
collaboration or structural or “weak” collaboration of
requires of collaboration of | collaboration of|

| Community | | Business Network

Method

supports

| Capability |

provides

Figure 24. VDML high-level ontology: Organization Unit and Capability highlighted

Figure 25 shows the model view mockup of the structure of the MyCompany organization. As an
organization unit by itself, it consists of three other organization units: R&D, Trailer Plant and S&D,
being assigned the position roles Departmentl, Plantl and Department2 in MyCompany respectively.
R&D is responsible for research and development, Trailer Plant for the actual production of the trailers,
and S&D for sales and delivery.

[
MyCompany
Department 1) Plant1 Department2
~] [
R&D Trailer Plant S&D

Figure 25. Organization structure mockup

As the metamodel of organization units in Figure 26 indicates, an organization unit (org unit) is a
collaboration, and its positions are roles.

package VDML [[£]] Org Units |
Collaboration
a

+orglnit +position Position
1 0>
{redefines collaboration} {redefines collaborationRole}

OrgUnit

Figure 26. Organization Units metamodel

Consequently, and in accordance to the earlier discussed Collaborations metamodel diagram (see
Figure 16), an organization unit, as collaboration, can contain assignments of positions (as roles) to
other organization units (as collaborations, and hence participants). The object diagram in Figure 27
shows the objects that are behind the model view mockup in Figure 25. These instantiate classes in both
the metamodel diagrams.

Copyright © NEFFICS Consortium 2010-2013 Page 31/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram MyCo Business[& Org Units U MyCompany : OrgURit
lyCompany : Orgl
+ CollaborationQwnedAssimment assignment = ManufacturerAssignment : CalaborationOwnedAssignment
- OrgUnitPosttion e rTedRsy i=D parimentiAssig _ OrgUnitPostion
Department2Assignment, Plant1Assignment
position = Department1, Department2, Plant1
‘ OrgUnitFasition
Department1 : Position Department?2 : Position Plant1 : Position
orgUnit = MyCompany orgUnit = MyCompany orgUnit = MyCompany
roleAssignment = Department1Assig it roleAssi t = Department2Assignment roleAssi t = Plant1Assi 1t
RoleAssignment [CollaborationOwnedAssignment ‘ RoleAssignment RoleAssignment
DepartmentiAssignment : Department2Assignment : Plant1Assignment : Assignment
) Assignment . Assignment assignedRoIa = Plant1
assignedRole = Department1 assignedRole = Department2 collaboration = MyCompany
collaboration = MyCompany collaboration = MyCompany participant = TrallerPlant
participant = R&D participant = S&D
ParticipantAssignment ‘ ParticipantAssignment . Faric panthssignment
R&D : OrgUnit S&D : OrgUnit TrailerPlant : OrgUnit
assignment = Department1Assignment, assignment = Department2Assignment assignment = Plant1Assignment,
ReleaserAssignment businessitem = Order, Product, ProducerAssignment
businessltem = Idea, Approvedidea, OrderProcessingResource, businessltem = ProductionLevel1Resource,
ProdMgmtResource, EngineeringResource, LogisticHandlingResource ProductionLevel2Resource
IntermediateRelease, FinalRelease capabilityOffer = FulfilmentManagment, capabilityOffer = ProductionManagement,
capabilityOffer = InnovationManagement, ProductDelivery, FulfilmentPlanning ProductionExecution
IdeaManagement, ReleaseManagement, containingModel = MyCompanyModel containingModel = MyCompanyModel
ReleasePlanning, Marketintroduction, Engineering ownedMethod = FulfillmentManagementMethod ownedMethod = ProductionManagementMethod
containingModel = MyCompanyModel ownedStore = Orders, Products, ownedStore = ProductionLevel1CapacityPool,
ownedMethod = InnovationManagementMethod, OrderProcessingCapacity, ProductionLevel2CapacityPool
ReleaseManagementMethod LogisticHandlingCapacity
ownedStore = Ideas, Approvedideas,
Prodi g apacity, Engi ingCapacity,
Int JiataRal FinalRel

Figure 27. Organization structure objects

As indicated in the conceptual diagram in Figure 28, distinction is made between capabilities and
capability offers. An organization unit that provides a capability is actually having a capability offer for
that capability. The name “capability” is reserved for types of capabilities that are maintained in a
capability library. A capability library contains a taxonomy of capabilities, consisting of capability
definitions and categories of them, and is applied to enforce consistency in the definition of
capabilities. Multiple capability offers that are associated with the same capability, are considered
similar from the perspective of the library. Such libraries might be industry-standard, company-
standard, but might also be specific to a particular modeling effort. A capability offer represents “the
ability to perform a particular kind of work and deliver desired value, by applying resources that are
managed together, possibly based on formalized methods”.

Capability
Capabillity Method Owns

OfecA Provides
Library / @
Taxonom b
y Capability Provides
¥ OfferB
Method o
Capability <
Offer A 4 Provides .

Definition B

Provides

Capability

Offer B
Capability
Method owns'

Figure 28. Capability management

As Figure 28 also indicates, a capability method that supports a capability offer might be owned by the
same organization unit that also provides the capability offer, but might also be owned by a different
organization unit, e.g. in case a certain method is enforced on multiple organization units, all providing
their capability offer, for the same capability. In the XTrailer use case example we will only consider
the situation in which an organization unit that uses a capability method to support its capability offer,
also owns that method. The model view mockup in Figure 29 shows the capability library that is used in
the XTrailer use case example.

Page 32/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case

bmi/2012-11-10

Innovation Acquisition
Idea Innovation Management Product
Submission Procurement

; Idea Engineering
Innovation = —
& R Manag Exploitation
Release Market Product
Planning Intreduction Operation
Fulfillment Production
Fulfilment Management Production Management
Fulfillment Product Production
Planning Delivery Execution

Figure 29. Capability library mockup

This is a view on the model objects in the object diagram in Figure 30.

ParentChildC apability

CapabliiryDatinition
activity = Submit I9ea
liorary = MyCo Capab Library
parentCababiity = innovation

library = MyCo Capab Lirary

Object Diagram MyCo Business| i Capabisty Library hierarchy]J

Innovation :
CapabilityCategory
chiaCapabiity = la¢a
Submission, Innovation
Absorbtion, Innavation
Management

ParentChildCapaility
Innavation Management :
CapabllityDatinition
acthily = Manage Innavation
CapabiityCrer = innovationManagement
chilaCapabiity = ldea Management,
Repease

CapabilityCategory CapabilityCategory CapabilityCategory
childCapabiity = Product childCapabiiity = Futfiiment childCapatity = Product
Pracurement Management Oparation
liprary = MyCo Capab lprary = MyCo Capab Library | library = MyCo Capab
Liprary Library |
- ParentChildC apabil | ParentChildCapabiity
Innovation Ab Product Procurement : _ ParemiCriaCapabifroduct Operation :
Capabil n CapabilityDafinition CapabllityDatinition

Activity = AbSOrD Innavation
Morary = MyCo Capab Library
parentCagabiy = Innavation

attivity = Buy Product
Morary = MyCo Capab Library
parentCababilty = ACqustion

activity = Operate Prosuct
Morary = MyCo Capab Library
parentCababity = Explotation

ldea Management :
:I!Ib“ml“nm.n
activity = Manage iea

library = kyCo Capab Library

library = MyCo Capab Library |
parentCababilty = Innovation |

L ParentCnilaCapability

capabilityOffer = IdeaManagement

Release Management :
CapabilityDefinition
activity = Manage Release
capabilityCffer = ReleaseManagement
childCapability = Release Planning,

ParentChildCapabilty

. ParentChilaCapataty
Engineering : | Fulfiliment Managemant : CapabilityDafinition
CapabilityDefinition activity = Manage Fumiiment
actvity = Create initial capabiityCmer = Fufiimentanagment

Design, Finalize Design
capabilityOffer = Engineering

parentCababiity = Market lorary = MyCo Capab Library
Management library = MyCo Capab Library parentCababiity = innavation
;anagunem
ParentChilac gganllm:[. ParentChildC apabilty
LapabilityDefinition CapabilityDefinition
activity = Scope Release activity = Launch innovatian
apablityCiffer = pabliityCiffer =

liorary = MyCo Capab Library lirary = MyCa Capab Library

parentCabability = Release parentCabability = Relsase

Management Management

cheaCapability = Fulfiliment Planning, Product Delivery
library = MyCo Cagab Library
parentCabability = Fulfiiment

Production :
CapabilityCategory
chilaCapability = Proguction
Management
liprary = MyCo Capab Library

: ParentChlaCapahility

Production Management :
Capabil ition

activity = Pilat Production, Manage

Production

capabityOffer = Productionianagement

chilgCapability = Proguction Execution

library = MyCo Capabs Library

parentCabability = Production

| BarertChidCapatii
Production Exscution :

il
activity = Bulld Product
capabllityCifer = ProductionExecution
library = MyCa Capab Library
parentCabapiity = Froduction

Apatilty L FarentCl
|
CapabilityDefinition CapabilityDefinition

Aacthity = Plan Fumliiment activity = Deliver Product

pOtter = pablitycifer = ProductDelvery
library = MyCa Capab Library
parentCabability = Fulfiiment
Management

Morary = MyCo Capab Library
parentCababilty = Fulfiiment
Management

Figure 30. Capability library objects

These objects instantiate the classes in the metamodel diagram in Figure 31 .

Copyright © NEFFICS Consortium 2010-2013

Page

2

33/117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package VDML [Capabilty Libraries]
&) VdmiElement

wiiprary |CaPablityLibrary|
1 1
+capability [0.* ~capabilityDependency |0.*
+capability Capability CapabilityDependency
0 +isTangible : boolean
+isFromExternalSource : boolean
+parentCabability +isForExternalTarget : boolean

a.* v
0. +output [0..* +input|0.* +capabilityDependency |0.*
+childCapability

+characteristicDefinition |0.* +source (0.1 +target |0 1

Characteristic CapabilityCategory CapabilityDefinition
(SMM)

PracticeDefinition | +practiceDefinition +capability

- Jo- 0

+suppontsdCapability [0.*

+capabilityResourceDefinition |0.* +deliverableDefinition |1

BusinessitemDefinition

+isFungible : hoolean = true
+isSharable . boolean = false

Figure 31. Capability Libraries metamodel

Note that some classes in Figure 31 have not been implemented in the XTrailer use case example.

A value delivery modeling tool can also use a capability library to guide the modeling user in
productively discovering:

o Activities; as will be discussed later, an activity defines its capability requirement by
referencing a capability in the library.

e Capability offers; multiple capability offers might refer to the same capability in the library.

e Capability resources; resources are business items, which can reference business items
definitions, associated with capability definitions in the library.

e Inputs and outputs that capability methods need to handle, given the capability that they
support; we will discuss details of this later.

The linkage between capability offer and capability will also provide the opportunity to rationalize
capability offers, by e.g. comparing them, e.g. based on the capability methods and resources that
support these, or based on performance measurements (see 3.1.5), and based on these comparisons,
deciding to e.g. combine capability offers where appropriate, e.g. to improve economy-of-scale.

As is indicated in Figure 31, capability definitions can be associated with practice definitions. Practice
definitions are maintained in practice libraries, the meta-model diagram of which is provided in Figure
32.

package VDML[‘gﬁl Practice Libraries] T

+library o
1

Practi mL ;\\hrary

+practiceDefinition |0.* +practiceCategory |0.*

PracticeDefinition b -0oniFractice *AEOO [B actice Category | PArENICatEO0Y
0. 0 b=

+practiceDefinition |0.* +childCategory [0.*

+resourceDefinition J0.™

BusinessitemDefinition

Figure 32. Practice Libraries metamodel

Page 34/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

A practice is “a proven way to handle specific types of work and that have been successfully used by
multiple organizations”. Practices have not been applied in the XTrailer use case example and are not
further discussed in this document.

Figure 33 provides a model view mockup of the R&D organization unit, together with its capability offers
that it provides (the hexagons on the R&D boundary), the capability methods that support these
capability offers (the rectangles with activity-flow marker, inside the R&D boundary) and the resource
stores and pools that support the capability offers (the triangles without marker and the ones with re-
use marker respectively). Dotted lines indicate how a capability method that supports one capability
offer can depend on other capability offers.

R&D

Producl Management Capacity

Enganeenng Cal acn -
*L,-

Intermediate Releases

............. \ &

Final Releases

Approved |deas v

M

3
=

44

M

---a---

Figure 33. R&D capability management mockup

The capability methods are themselves collaborations. Their details will be discussed in 3.1.4.

A store represents “a container of resource”. The resource that is received or provided is identified by
a business item. A pool is a specialized store. A pool is “a store that contains re-usable resource, i.e.
resource that is returned to the pool after having been used, so that it is again available for use”.

As will be discussed in 3.1.4, stores are fundamental to decouple, or loosely couple collaborations.

The objects that are exposed via the model view mockup in Figure 33, are represented in the object
diagram in Figure 34.

Copyright © NEFFICS Consortium 2010-2013 Page 35/ 117

VDML Manufacturing Use Case

C
bmi/2012-11-10
Object Diagram MyCo Business [[ReD Daa\lsu
ReleaseManagement : Marketintroduction : CapabilityOffer ReleasePlanning : CapabilityOffer IdeaManagement : CapabilityOffer H

CapabilityOffer
applyingActivity = Manage Release
capability = Release Management
capabilityProvider = R&D
method = ReleaseManagementietnad

SuppartedCapabilityMethod
ReleaseManagementMethod : CapabilityMethod

capabilityPravider = R&D

Finalize Design, Pilat Production

businessltem = EngineeringWarkOrder, PilotWarkOrder,
BetaRelease, PilotProductionRepart

containedPort = InnovationOutputRM

delegationContext = ManageReleaseDelCnbt

flow = Approved|deaFromStoreFlow, EngineeringWorkOrderFlow,
Intermedis | low?2, Intermedi low3,
IntermediateReleaseFllow1, PilotWarkOrderFlaw,
PilotPraductionRepartFlow, PilotPraductFlow,

FinalRelease ToStoreFlow, BetaReleaseFlow, PMResourceFlowt,
EngineerResourceFlowl, PMResourceFLow2,
EngineerResourceFlow2

internalPortDelegation = InnovationOutputRmminternalDelegation
methodOwner = R&D

ownedAssignment = ProductManagerAssignment,
EngineerAssignment, ProducerAssignment

performer = ProductManager, Engineer, Producer
supportedCapability = ReleaseManagement

InnovationManagement :
CapabilityOffer
applyingActivity = Manage Innavation
capability = Innavation Management
capabilityProvider = R&D
method = InnovationManagementhethod

SupportedCapabilityMethod

InnovationManagementMethod : CapabilityMethod
activity = Manage Release, Manage Idea
containedPort = InnovationOutputiv
delegationCantext = ManageinnovationDelCntxd
flow = Approved|deaT oStoreFlow, IdeaFromStoreFLow,
IdeatorResourceFlow
internalPortDelegation = InnovationOutputimminternalDelegation
methodOwner = R&D
ownedAssignment = deatorAssignment, RelzaserAssignmeant
performer = |deatar, Releaser
supportedCapability = InnovationManagement

applyingActivity = Launch Innavation
capability = Market Introduction

activity = Launch Innovation, Scope Release, Create Initial Design,

capabilityProvider = R

capabilityResource = ProductManagementCapacity | capabilityResource = PraductManagementCapacity

‘ CapabilityResource

applyingActivity = Scope Release
capability = Release Planning

: CapabilityResource

applyingActivity = Manage Idea
capability = Idea Management

&D capabilityProvider = R&D

Ideas, Approvedideas
‘ : CapabilityResource

ProductManagementCapacity : Pool

Approvedideas : Store

containedPort = IdeatorResourceOutput,
PMResourceOutput!,
PMResourceOutput2

resource = ProdMgmtResource
storeCwner = R&D

supportedCapability = IdeaManagement,
Marketintroduction, ReleasePlanning

| CapabilityResaurce.
CapabityRESOUIEE | 1 royedideaF romStareOLtput

resource = Approvedidea

storeContext = OveraliScenario
storeOwner = R&D

supportedCapanility = IdeaManagement

StoreResource

ProdMgmtResouree : Businessitem
assignment = |deatorAssignment,
ProductManagerAssignment
collaboration = R&D
definition = ProductManagementResource
flow = |deatorResourceFlow,
PMResourceFlow!, PMResourceFLow2
store = ProductManagementCapacity

: StoreResource

Engineering : CapabilityOffer
applyingActivity = Create Initial Design, Finalize
Design
capability = Engineering
capabilityProvider = R&D
capabilityResource = EngineeringCapacity,
FinalReleases, IntermediateReleases

CapabilityResource CapabilityResource

EngineerResourceOutput2

storeOwner = R&D

EngineeringCapaci
containedPart = EngineerResourceOutputt

resource = EngineeringResource

suppartedCapability = Engineering

ool IntermediateReleases : Store

containedPort = IntermediateReleaselnput1,
IntermediateReleaseOutput2,
IntermediateReleaseOutput3

resource = IntermediateRelease
stareContext = ManageReleaseDelCnbd

EngineeringResource :
Businessitem

EngineerAssignment

callaboration = R&D

definition = EngineeringResource

flow = EngineerResourceFlow1,

EngineerResourcer|ow?

assignment

store = Engineel

storeOwner = R&D
supportedCapability = Engineering

StareResource ! StoreResaurce

IntermediateRelease :
Businessitem

collaboration = R&D

definition = Release

flow = IntermediateReleaseFlow2,
IntermediateReleaseFlow3,
IntermediateReleaseFliow1

ringCapacity, store = IntermediateReleases

EngineeringCapacity

capabilityResource = ProductManagementCapacity,

containedPort = ApprovedideaToStarelnput,

Approvedidea : Businessitem
callaboration = R&D
definition = Idea
flow = Approved|deaT oStareFlow,
ApprovedideaFromStoreFlow
store = Approvedldeas

capablllggoffer'
applyingActivity = Submit Idea
capability = Idea Submission
capabilityProvider = R&D
capabilityResource = ldeas

4apahiligﬁasnurce ‘ - CapabilityResaurce

Ideas : Store

containedPort = IdealnPut,
IdeaFromstareOutput

resaurce = ldea

stareContext = OverallScenaria
stareOwner = R&D

supportedCapability = IdeaManagement,
IdeaSubmission

‘ StoreResaurce

Idea :
Businessitem

collaboration = R&D
definition = Idea
flow = IdeaFlow,
IdeaFromStareFLow
store = Ideas

CapabilityResource
FinalReleases : Store

containedPort = FinalReleaseToStareinput,
FinalReleaseOutput
measuredCharacteristic = Margin

resource = FinalRelease

storeContext = OverallScenario
storeOwner = R&D

suppartedCapability = Engineering

: StoreResource

FinalRelease : Businessitem

callaboration = R&D

definition = Release

flow = FinalReleaseToStoreFlow,
FinalReleaseFromStoreFlow
stare = FinalReleases

Figure 34. R&D capability management objects

Objects in the object diagram in Figure 34 are instances of classes in the Organization

Capabilities metamodel diagram Figure 35, and the Stores metamodel diagram in Figure 36.

Units and

package VDML[!'_%R‘ Org Units and Capabilties U

‘Measurableslement [

c ilityoffer

pability

Collaboration

+~mathod | Capabili I

0.*

+eapabiliyOfer

K

+supportedCapability

0

+eapabilityOffer

+releasecontrol [ReleaseControl |

+eapabiliyOffen 0.

+eapability |0.

Capability

1 0.* |+strategy - string

od +methodOwner OrgUnit
0% 0.* 1
+capabiliyProvider
1
urce J Store L’DWHEUS(D\'E +storeOwner
0. 0. 1
‘ VdmiElement ‘ ‘ Pool ‘ | Role ‘
+actorPaol |0.*
~position |0,
Position | +position +orgUnit
0. 1
b)

Figure 35. Organizations and Capabilities metamodel

It is important to note the association between Pool and Position in the metamodel diagram in Figure 35.
A position defines a role in an organization unit. Resources that an organization unit has to perform
work, can be put in positions. Positions can be assigned to other roles, or to actors. As discussed,
actors might be human or non-human. Actors are individuals. In larger scale organizations, it might not
be wanted to have all positions (and maybe actors in positions) defined individually, before any
meaningful analysis and simulation can be done, based on value delivery models. It is important to
enable analysis and simulation, based on modeling aggregated resource capacity via pools. VDML

Page 36/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

enables to model just pools, and to omit modeling positions of actors. This is also the approach that
we follow in the XTrailer use case example. It might also be possible to just model a selective few
positions. By associating positions with pools, it is defined which capability offer(s) they support, as
well as which portion of aggregated pool capacity is “covered” by explicitly modeled positions.

Some elements, essential to support simulation, such as release control in Figure 35 and calendar
service in Figure 36, have not been applied in the XTrailer use case example. Measured characteristics
will be discussed later. The measurement framework that is used in VDML, based on integration with
SMM will e.g. allow defining unit of measure of inventory levels of stores (and pools) and pool sizes of
pools. For instance, measuring the size of the Engineering Capacity pool in “pieces” (numbers of
engineers), or in “hours” (available capacity hours). Pool size expresses the total capacity associated
with a pool, whereas inventory level expresses the amount of resource actually available in the store
(or pool). These characteristics are essential to simulation. “Manual” analysis will normally be based
on just averages. In “manual” analysis, the impact of a pool, due to capacity availability, might be
defined as simple as an additional delay that a pool incurs on the duration of activities. As will be
discussed later, many elements in VDML, including stores (and so pools), are “measurable”, allowing a
modeler to define custom measured characteristics on these elements. The “additional delay”
characteristic is a possible example.

package VDML[[£] Stores |
4ﬁi) PortContainer

Busi +resource +store Store
1 g.*

MeasuredCharacteristic +duration +store
1 0.1

+inventoryLevel +inventoryContainer
0.1 0.1

| rpooisize +pool Pool
0.1 0.1

+pool |0..1

+poolCalendar |0.1

CalendarService

Figure 36. Stores metamodel

Figure 37 provides a similar model view mockup of the S&D organization unit, its capability offers and its
methods and resources.

s&D I

e
]

OO
- Fulfillment f---oooo s,

Management L
Logistic Handling Capacity ="'< >

—-———

oz

Order Processing Capacity

Products

Figure 37. S&D capability management mockup

The corresponding object diagram is presented in Figure 38.

Copyright © NEFFICS Consortium 2010-2013 Page 37 /117

VDML Manufacturing Use Case
bmi/2012-11-10

| Otjecs Diagram wyCs Pusiress | g S0 Detsts ||

FulfillmentPlanning : CapabilityOffer
applyingActivity = Plan Fulfiliment
capability = Fulfillment Planning
capabllityProvider = S&D
capabilityResource = Orders,
OrderProcessingCapacity

[CapabityResource |

FulfillmentManagment ; CapabilityOffer
applyingActivity = Manage Fulfillment
capability = Fulfillment Management
capabilityProvider = S&D
method = FulfilmentManagementMethod

T SupportedCapabilibyMethad
FulfillmentManagementMethod : CapabilingMethod

activity = Plan Fulfillment, Manage Production, Deliver Product

businessitem = WorkOrder, ProductionReport
collaborationRole = LogisticHandler

=0 putFM, F putFM
delegationContext = ManageFulfillmentDelCnix

flow = WorkOrderFlow, ProductionReportFlow,

low. ProductFromStoreFlow.
OrderProcessorResourceFlow, LogisticHandlerResourceFlow

FinalReleasef

ProductDelivery : CapabilinyOffer
applyingActivity = Deliver Product
capability = Product Delivery
capabllityProvider = S&D
capabilityResource = Products,
LogisticHandlingCapacity

| CapabllityRasaurce

storeOwner = S&D
supportedCapability = FulfiimentPlanning
CapabiltyHesowce
Ordars : Stors

containedPort = OrderinPut,
OrderFromStoreOutput
resource = Order
storeContext = OverallScenario
storeOwner = S&D
supportedCapability = FulfilmentPlanning

ProductOutputFmminternalDelegation
methodOwner = SED

q = Orderf
LoaistieHandlarhssl
performer = Producer, OrderProcessor, LogisticHandler

pp dCapability = Fulfill

storaCwner = .".S&D
supportedCapabliity = ProductDelivery

Products : Stars

containedPort = PilotProductOutput,
ProductToStorelnput, ProductOutput
duration = ProductStorageDuration
resource = Product

storeContext = ManageReleaseDelCnid,
ManageFulfillmentDelCnbd

storeOwner = S&D

supportedCapability = ProduciDelivery

| StoreResource StarsRegarcs

Logis R

StoreResource
StoreResource
rderP) Order ; Product : Bi

= Orderf gnment =S8D collaboration = S&D

collaboration = S&D definition = SalesOrder definilion = Product
= OrderPri Il L] flow = OrderFlow, flow = PilotProductFlow,

flow = OrderP R low Orderf low Product ToStoreFlow,
store = OrderProcessingCapacity store = Orders ProductFlow,

Figure 38. S&D capability management objects

t = Logistich
collaboration = S&D
= Loaistich g .
flow = LogisticHandlerResourceFlow
store = LogisticHandlingCapacity

ProductFromStoreFlow

store = Products

The model view mockup for the Trailer Plant’s capability offers and related methods and resources is
provided by Figure 39. As it will appear from the discussions in 3.1.4, the two pools that support
Production Execution are considered alternative capacities. Production operators might be available
as part of Production Level 2 Capacity. These are the certified operators, that can be involved in both
pilot production (in the context of developing new trailer releases) and commercial production
(producing trailers on customer orders, based on current releases). Production Level 1 Capacity
represents the non-certified operators, which are only involved in pilot production of trailers. Production
Level 2 Capacity can be deployed to do both commercial production work and pilot production work.
The latter only if Production Level 1 Capacity, being expectedly cheaper, is not available. Production
Level 1 Capacity is only available for pilot production work.

Trailer Plant

Production Leveli Capacity

Production Level2 Capacity

E

Figure 39. Trailer Plant capability management mockup

The object diagram, representing the objects that are exposed in the model view mockup in Figure 39 is

presented in Figure 40.

Page 38 /117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram MyCo Business | s TralerPiant Detais | |

ProductionManagement : CapabilityOffer ProductionExecution : CapabilityOffer

applyingActivity = Pilot Production, applyingActivity = Build Product

Manage Production capability = Production Execution

capabllity = Production Management capabilityProvider = TrailerPlant

capabilityProvider = TrailerPlant capabilityResource = ProductionLevel1CapacityPool,

method = ProductionManagementMethod ProductionLevel2CapacityPool

- SupportadGapabilityMethod CapabilityResource CapabilityResource
ProductionManagementMethod : CapabilityMethod | ProductionLevel1CapacityPool : Pool ProductionLevel2CapacityPool : Pool
activity = Build Product containedPort = ProductionLevel1ResourceOutput | | containedPort = ProductionLevel2ResourceOutput
collaborationRole = Operator resource = ProductionLevel1Resource resource = ProductionLevel2Resource
containedPort = ProductionReportOutputPM, storeOwner = TrailerPlant storeOwner = TrailerPlant
ProductionWorkOrderinputPM, ReleaselnputPM supportedCapability = ProductionExecution supportedCapability = ProductionExecution
i ontext = ProductionDelCnixt,

StoreResource

PilotProductionDelCntxt

StoreResource
flow = ProductToStoreFlow, ProductionLevel2ResourceFlow,

ProductionLevel1ResourceFlow P ionLevel2Resource :
internalPoriDelegation = ProductionReportOutputinternalDelegation, 2 SRR g st o = PilotProdOp g 2
ProductionWorkOrderinputinternalDelegation, assignment = PilotProdOperatorAssignment1 | CommProdOperatorAssignment

Rel I nalDelegation collaboration = TrailerPlant collaboration = TrailerPlant

methodOwner = TrailerPlant definition = ProductionResource definition = ProductionResource

performer = Operator flow = ProductionLevel1ResourceFlow flow = ProductionLevel2ResourceFlow
supportedCapability = ProductionManagement store = ProductionLevel1CapacityPool store = ProductionLevel2CapacityPool

Figure 40. Trailer Plant capability management objects

So-far we have dealt with the structural parts of the XTrailer business system: its collaborations,
capabilities and resources, and how these are related to and aligned with each other. Note however,
that everywhere where a deliverable is exchanged, via a deliverable flow, there is a store or activity at
the source, and a store or activity at the target of that flow. VDML defines a deliverable as a “product
or service produced by an activity or delivered from a store that can be conveyed to another activity or
store”. Though in the meta-model provisioning or producing and receiving or consuming are handled
via activities or stores, graphical diagrams can abstract away activity and store details, and just depict
a deliverable flow as occurring between providing and receiving roles. That is why we could defer
analysis of activities so-far. The 3.1.4 will deal with the behavioral parts of the business system, based
on activities.

3.1.4 Activities

An activity represents “work contributed to a collaboration by a participant in a role of the
collaboration”. A role may contribute to multiple activities in the same collaboration. As the VDML
ontology diagram in Figure 41 highlights, roles perform activities, and activities require capabilities.
These aspects will be analyzed in detail in this section, in the context of the XTrailer use case
example. Activities also create and/or consume value. This latter aspect will be discussed in 3.1.5.

articulates s
Ilal_ui|<—-—[Value Proposition I

creates and/or y y
consumes provides and/or receives
— performs |]
Activity [| Role [€
Defines work defines formal | defines informal defines business
collaboration or structural or “weak” collaboration of
requires of collaboration of | collaboration of|

4@ [Community | | Business Network
isupports owns

| Capa@<— Org Unit |

supports owns

provides

Figure 41. VDML high-level ontology: Activity highlighted

In a value delivery model, activities may be designed by following these steps:

o Define which capability is required in order to perform the work. This capability requirement
can be defined based on a reference to a capability in a capability library.

Copyright © NEFFICS Consortium 2010-2013 Page 39/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

()

Find organization units that provide capability offers for the capability that is required, and
select one capability offer. This selection might be supported by assessment of measurements
of performance and value contribution. Performance and value measurement will be
discussed in 3.1.5.

When the capability offer is supported by a capability method, which it typically the case with
broader capabilities, delegate the work of the activity to that method, and assign the activity
performing role to the organization that provides the capability offer of choice.

When the capability is more atomic, no method might be defined, but the capability offer might
be supported directly by resources, including people. These resources can then be considered
for use by the activity. A subset of them may also be assigned the activity performing role.

It is also possible to define assignment of method roles specifically in the context of the
delegation to that method.

In this section, these steps will all be demonstrated in the context of the XTrailer use case example.

Note that more variations are possible, such as:

When an organization unit provides just one capability offer, and all it does is performed in the
context of just that capability, there might be no need to organize activities in a separately
defined capability method. Rather the organization unit, as collaboration, can contain activities
directly, and activities can delegate their work to the organization unit directly. It is even
possible to delegate work to communities and business networks, though matching of required
capability versus offered capability cannot be performed explicitly then.

When an organization unit provides a capability offer that matches the capability that is
required by an activity, and the activity delegates its work to that method accordingly, the
activity performing role maybe be assigned to the method itself, instead of to the organization
unit that provides the capability offer.

These and other possible variations will not be demonstrated in the XTrailer use case.

We now revisit the XTrailer business network collaboration. Its role collaboration view, or “value
network” view was already represented by the model view mockup in Figure 13. Figure 42 provides a
model view mockup of its activity network.

9]
€ Submit Idea Absorb Buy Operate
a |dea Innovation Product Product
% Order
o
'_
Innovation
_ A 4
7}
2 Ideas : ; Orders
@
= Manage
S _
§ Innovation Order Fulfillment

Figure 42. Business network’s activity network mockup

Note that both the role collaboration view, and the activity network view are views on the same
underlying model. Figure 43 combines both the view in one picture, for convenience and ease of
recognition.

Page 40/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case N‘E(E@,)w
bmi/2012-11-10

Manufacturer

Product

0]
-4 Submit Idea Absorb Buy Operate
8 idea Innovation Preduct Product
2 Order
& 4 A
=
Innovation
g
.§ Ideas Orders
S Manage Manage
5 Innovation Order Fulfillment
=

Figure 43. Business network: role collaboration versus activity network

Roles, in one view represented as ovals, in the other as swim lanes, are the same. Four out of five
deliverable flows exposed in both views. The activity network view is providing detail that is abstracted
away in the role collaboration view. These details are:

e Activities of the business network. Note that business networks, as any collaboration, can
contain activities, according to the Collaborations metamodel diagram that was already
provided in Figure 16.

e Stores that are owned by the organization that fills the Manufacturer party role. Though the
Idea flow into the Ideas store, and the Order flow into the Orders store are shown in the role
collaboration view, the stores themselves aren’t. These store inputs are “handled” under the
responsibility of the Manufacturer role in the business network collaboration (see also the
object diagram in Figure 44. The Ideas store is owned by R&D and the Orders store by S&D,
both being organization units that are part of MyCompany.

e The deliverable flow of Order, from the Orders store to the Manage Fulfillment activity.

Two activities, “Manage Innovation” and “Manage fulfillment”, are represented by a rectangle shape
that contains an “expansion button” (a small box with “+” sign in it), in Figure 42. These activities
“delegate” their work to another collaboration, as will be discussed below. Basically these activities
represent the use of sub-collaborations, in the context of the business network collaboration.

Figure 44 shows the object diagram that contains the objects behind the activity network view in Figure 42.

Copyright © NEFFICS Consortium 2010-2013 Page 41/ 117

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

Object Diagram MyCo Business [[XTrailerBusiness - Activity Network u

FlowSource

PortCaontainerPart

Manage Innovation : Activity
appliedCapability nnovationManage
capabilityR = Innovation Managy
collaboration = XTrailerBusiness
containedPort = InnovationCOutput
delegationContext = ManagelnnovationDelCnbxd
performingRale = Manufacturer

Ideas : Store
containedPart = IdealnPut,
IdeaFromstore
resource =

R&D
suppartedCapability = IdealManagement,
ldeaSubmission

performedWorkPerformingRole
Manufacturer : Party

businessNetwark = XTrailerBusiness
performedWaork = Manage Fulfillment,
Manage Innavation
port = OrderinPut, dealnPut
profit = Profit
providedPropasition = XTrailerProposition

performedWorkPerformingRole

Manage Fulfillment : Activity
appliedCapability O = FulfilmentManagment
capabilityR = Fulfilment Management
collabaration = XTrailerBusiness
containedPart = Productoutput,

OrderFrom: elnput
delegationCon ManageF ulfilimentDe|Ctd
performingRole = Manufacturer

: PortContainerPort
| R

. PartHandler

supportedCapability = FulfilmentPlanning

PortContainerPort

PortContainerPart

T
InnovationOutput : QutputPort
output = InnavationFlow
outputDelegation = InnovationOutputDelegation
portContainer = Manage Innovation
valueAdd = MarketDrivenDesign,
Fastinnavation

IdealnPut : InputPort

FlowTargef
handler = Manufacturer
input = IdeaFlow

- PortHandier o oeontainer = Ideas

OrderlnPut: - FlowTargetj
InputPort

handler = Manufacturer
input = OrderFlow
portContainer = Orders

PortCantainerPart

Orders : Store

cantainedPart = OrderinPut,

OrderFlow : DeliverableFlow
———————————— RIS}

PortCantainerPart

InnovationFlow
Absorb Innovation : Activity
capabilityRequirement = Innovation
Absorbtian

collaboration = XTrailerBusiness
containedPort = Innavationinput
perfarmingRole = Transporter

Innovationinput :
InputPort

input = InnovationFlow

partContainer = Absarb

Innovation

performedWorkPerfarmingRale
Submit Idea : Activity

appliedCapabilityOffer = Ideasubmission
capabilityRequirt a Submission
collaboration = > usiness
caontainedPort = IdeaOutPut
perfarmingRole = Transporter

gerfar%edWarkF‘emrmnga\e

Transporter : Party
businessNetwark = XTrailerBusiness
performedwWark = Submit Idea, Absorh
Innovation, Buy Product, ite Product
providedProposition = PropositionFromiarket
receivedPropasition = XTrailerProposition

: PortContainerPart.

FlowSource
erableFlow

IdeaOutPut : OutputPort
output = IdeaFlaw
partContainer = Submit |deal
valueAdd = Feedback

OrderQutPut : OutputPort
autput = CrderFlow
partContainer = Buy Product
valueAdd = RepetitiveBusiness,
Payment

PortContainerPart erformedWorkPerformingRale

receivedProposition = PropaositionFromMarket OrderFromsStoreOutput -|PartContainerPart
roleAssignment = Manufacturerassignment resource = Order ~{ront-ontainerron _
stareContext = OverallScenario Buy Product : Activity
storeOwner = S&D OrderFromStoreFlow : capabilityRe nt = Praduct Pracurement

OrderFromsStorelnput : InputPort - FlowTarget
input = OrderFromStoreFlow
inputDelegation = OrderinputDelegation
portContainer = Manage Fulfiiment

FlowSource]

ProductOutput : OutputPort
output = ProductFlow
outputDelegation = ProductOutputDelegation
portContainer = Manage Fulfillment
valueAdd = FairPrice, LateSpecFreeze

DeliverableFlow collaboration = XTrailerBusiness
cantainedPort = OrderOutPut
measuredCharact ¢ = HistoricOrderinterval
perfarmingRale = Transporter

recurrencelnterval = Orderinterval

OrderFromStoreOutput :
OutputPort

output = OrderFromstoreFlow

partContainer = Crders

performedWorkPerfarmingRale

FlawTarget

Operate Product : Activity
capabilityRequirement = Product
Operation
collaboration = XTrailerBusiness
containedPart = Productinput
performingRole = Transporter

Productinput :
InputPort

input = PraductFlow

portContainer = Operate

Product

PortCantainerPort

Figure 44. Business network’s activity network objects

Party roles, activities that they perform, stores and deliverable flows connecting activities and stores
can be recognized easily. The object diagram also contains “ports”, being input ports and output ports

of activities and stores.

The objects in the object diagram in Figure 44 above are instances of classes in the metamodel
diagrams of Port Containers (Figure 45), Activities (Figure 46), Stores (Figure 36) and Deliverable Flows
(Figure 17). The notion of “port container” needs further explanation.

As was indicated earlier, in relation to the Deliverable Flows metamodel diagram in Figure 17,
deliverable flows connect to other elements via input ports and output ports. They do not connect to
activities and stores directly. They connect to “port containers”. A port container is a container of ports.
Port and port containers are fundamental parts of VDML metamodel “mechanics”. A port is a
connection point to a port container, used to handle inputs and outputs (e.g. consume inputs, produce
outputs or delegate inputs or outputs to ports of other port containers). As will appear later, ports are
also instrumental in carrying information, in particular value contribution measurements.

The Port Containers metamodel diagram is provided by Figure 45.

Page 42 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package VDU [5] Port Containers |
MeasurableElement

MeasuredCharacteristic | +planningPercantage Port +containedPort

0.1 0.1 |isintermediate : boolean = false | 0-* 1

+offset

o X Lot +handler
0.* 0.1

+batchSize

0.1 0.1 -

+condilion | Expression

0.1 0.1 [+hody: string [0..1]

+outputDefinition |0.1 +inputDefinition |0.1

BusinessitemDefinition

Figure 45. Port Containers metamodel

Both activities and stores are defined as port containers. The Stores metamodel, as provided earlier, in
Figure 36, indicates how a store is defined as port container. Figure 46 below, containing a subset of the
Activities metamodel, defines activity as a port container.

package VDML [Aclwmas - simplified u

Activity

+performedWork |0.*

+performingRole |1

Role

Figure 46. Activities metamodel (partial)

From the Collaborations metamodel diagram, provided earlier in Figure 16, it appears that a

collaboration is a port container as well. The usefulness of that will appear from discussions later in the
document.

The informal schema in Figure 47 provides an overview of what will be discussed in detail, based on
formal models, in the remainder of this section. It represents all activities in the XTrailer use case
example. Note that this use case is an over-simplification of reality, for sake of keeping the example
small.

Copyright © NEFFICS Consortium 2010-2013 Page 43/ 117

VDML Manufacturing Use Case N‘E(E@,)w
bmi/2012-11-10

Manage Innavation
Innovation ahan
Idea Submit
Idea

Manage
Release

Create Initial ' Finalize
Design Productio j Design

Intermediate release

Order Buy
Product

Manage Product Operate
Fulfiliment Pl?:auc!

Plan Deliver
Fulfillment

Figure 47. Use case overview: collaborations, stores and activities

The four ovals, containing activities, represent the capability methods that have been introduced in
3.1.3. The six activities, not contained in any of these, are the ones contained in the business network
itself, and are the same as the activities in Figure 42 and Figure 43. Figure 47 provides an impression of
how activities delegate their work to other collaborations (here capability methods), and how stores
can serve as decoupling points between collaborations. Delegations are indicated by the dashed
connectors in Figure 47.

When an activity delegates its work to another collaboration, inputs and outputs of the (parent) activity
should be mapped to inputs and outputs of the (sub) collaboration. This is handled by “delegating”
input and output ports from the activity to input and output ports of the collaboration. It is a common
situation also, that collaborations, that are involved by activities, through delegation, independent of
each other, do still depend on an input or output of each other. Example: the Manage Fulfilment
activity in Figure 47 delegates its work to the Fulfillment Management method. Independent of this, the
Release Management method is involved through delegation from the Manage Release activity in the
Innovation Management method, which is involved through delegation from the Manage Innovation
activity. Consequently, the two capability methods, Release Management and Fulfillment
Management, run independent from each other. But the Manage Production activity does require a
final release as input, which is an output of the Finalize Design activity in the Release Management
method. The Finalize Design activity can pass on its output, a final release, as “side effect” deliverable,
to the Final releases store, as owned by R&D (see Figure 39 above), from which the Manage Production
activity can use it as an input resource. This way both collaborations can be loosely coupled (or
actually decoupled), via the store. Consequently, communication of inputs to and outputs from
collaborations can be achieved by a hybrid communication of (1) port delegation, in the context of an
activity delegating its work to the collaboration, and (2) delivering outputs to a store or using inputs
from a store.

As Figure 47 indicates, five activities delegate their work, each to one particular capability method. But
two of these activities, Pilot production in the Release Management method, and Manage production
in the Fulfilment Management method, delegate their work to the same method, Production
Management. As will be discussed in detail below, each of these delegations comes with its own
mapping of inputs and outputs (between delegating activity and the capability method to which the
work is delegated), requires specific assignments of resources to performer roles inside the capability
method, and results in its own set of measurements of performance and value contribution aspects.
Per delegation a “delegation context” is set, to facilitate this. From Figure 47 it can be inferred that such

Page 44/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

delegation contexts form a “context tree” (a tree of analysis contexts). Measurements will be discussed
in 3.1.5.

A delegation context is “a specialized Analysis Context, set by an activity and in which the activity
delegates its work to a collaboration; a delegation context also defines the delegations of activity
inputs and/or outputs to/from collaboration inputs and/or outputs, and may define assignments of roles
within the collaboration”.

Analysis of a consistent business use case does require a broader “analysis context” than just one
delegation context. Though most flow details are not presented in Figure 47 above, as they will be
discussed based on detailed and formal models below, consider, for instance, the flow of ideas from
the market, to innovations that flow back to the market. Consider for instance such measurements as
the duration and cost of processing ideas into innovations, or analysis of how the ratio of successful
ideas, that make it to launched innovations, along the flow. This requires an “analysis context” that
does not only involve the Innovation Management and Release Management methods (both through
delegation), but also the Ideas and Approved ideas stores, and probably the Intermediate releases
store as well. Or consider, for instance, the build-up of cost of a product, consisting from an allocation
of a portion of the cost of creating a new release, and the cost of producing and delivering the product.
The “analysis context” would probably involve all methods and stores in Figure 47.

Consequently, in addition to “delegation contexts”, one or more sub-trees of delegation contexts come
together in a “root context”, which VDML calls “scenario”. A scenario defines “a consistent business
use case of a VDML model by specifying a, possibly recursive, analysis context for elements in scope
of that use case; the nesting of contexts allows a collaboration to be used as a sub-collaboration by
more than one activity, each of which sets its particular context and measurements”.

Though all methods, as indicated in Figure 47, are involved from and to support the XTrailer business
network, and the use case example in this document does only focus on this single business network,
the MyCompany organization is most likely involved in multiple such business networks, related to
different types of trailers and/or different market segments or customers. All these business networks,
having their own activities, do involve the same capability methods and reach out to the same stores,
in the same organization units, etc. This will lead to a scenario tree, consisting of even more branches.

Both scenarios and delegation contexts are analysis contexts, an analysis context being defined as “a
set of measurements of a particular use of one or more collaborations or a store when used as a
decoupling point between collaborations; when a collaboration is used by an activity, a context also
defines the delegations of activity inputs and/or outputs to/from collaboration inputs and/or outputs,
and may define assignments of roles within the collaboration”.

Figure 48 provides an informal and conceptual representation of a context tree.

VDML Model

. Scenario "
Scenario 1 Scenario 2
(Defautt)
Delegation Deiegation Delegation Delegation
Context Context Context Context
Delegation Delegation Delegation
Context Context Context

Figure 48. Context tree

Figure 48 suggests that the same VDML Model, or value delivery model, may contain multiple scenarios,
one of which serves as default scenario. A default scenario can be used when various measurements,
throughout multiple collaborations and stores, are indifferent towards variation of scenarios. They will
only be provided once, via the default scenario. The use of multiple scenarios, based on the same
model, can be particularly useful in the following situations:

e A scenario does only involve a subset of elements of a value delivery model, e.g. just all about
innovation and release management, but no fulfilment.

Copyright © NEFFICS Consortium 2010-2013 Page 45/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

e Alternative scenarios, analyzing the same model, or a subset of it, in different circumstances,
whereby e.g. various context based aspects, such as measurements and role assignments
are varied. One scenario might reflect the “as-is” situation, whereas other scenarios might
reflect alternative “to be” situations. Measurements of “as-is” scenarios might be based on
actual performance as observed in the real-world business situation that the model is
supposed to represent. Measurements of “to-be” scenarios might be estimates as manually
entered by a business analyst, or they might result from model-based simulations. Different
simulations might result into different scenarios.

Figure 49 provides a model view mockup of the scenario tree in the XTrailer use case example.

Default Scenario
@ i Overall Scenario

r V = .
;-XTraiIer 4 \/ v \/ \/
Business
Orders Final Releases Ideas Approved ldeas

o -I Manage Innovation Del. Cntxt | | Manage Fulfillment Del. Cntxt ’--.-‘- £t
1 " I
CH @ @ oo
Innovation c c c Fulfillment :
Management Management |
|
o «I Manage Release Del. Cntxt |~ -- -
o < v
Release
Management Intermediate Releases Products
Pilot Production Del. Cntxt |+=+= =+~ | Manage Production Del. Cntxt |
i
@ it @ [
334 " §¢¢
Management

@ Context-based observation
c Context-based port delegation
i Context-based assignment

Figure 49. Context tree mockup

It shows that the Overall Scenario relates to the business network itself, as well as four of the stores. It
contains an observation. As will be discussed in 3.1.5, an observation is the element that contains
measurements, and in this case measurements of measured characteristics of measurable elements
of the business network and the stores. We will revisit all about measurements in 3.1.5.

As the capability methods Innovation Management and Fulfillment Management are involved through
delegation of the Manage innovation and Manage Fulfillment activities respectively, it can be
understood why the Overall Scenario contains the delegation contexts “Manage Innovation Delegation
Context” and “Manage Fulfillment Delegation Context”, that relate to the Manage Innovation and
Manage Fulfillment methods respectively.

As already discussed earlier, the Production Management method is involved through delegation from
both the Pilot Production activity in the Release Management method and the Manage Production
activity in the Fulfillment Management method. This explains why the Production Management method
is reached in two ways from the scenario context tree in Figure 49.

As will be discussed later, Products store-related measurements are required specifically in the
context of the Manage Release activity, delegating to the Release Management method, as well as ion
the context of the Manage Fulfillment activity, delegating to the Fulfillment Management method. This
explains why also the Products store is reached in two ways from the scenario tree in Figure 49.

The model view mockup in Figure 49 also indicates, that, although a scenario only contains delegation
contexts, and observations (i.e. sets of measurements), delegation contexts may also contain context-
based port delegations and context-based assignments. We will discuss these in detail below, based
on the XTrailer use case example.

Note that the scenario context tree in Figure 49 does not show pools and organization units. This is
because we assume that, in the XTrailer use case example, any measurement that relates to these
elements is contained in the observation of the default scenario, which is not expanded in Figure 49.

Page 46/ 117 Copyright © NEFFICS Consortium 2010-2013

bmi/2012-11-10

VDML Manufacturing Use Case NE{E@,)@S

The object diagram, containing the objects behind the model view mockup in Figure 49, is shown in

Figure 50.

Object Dusgram Mo Busness | [Soenang and Comtest ||

DefaultScenario : Scenario
antaining 1= MyC y 1
contextObservation = DefaullScenarioObservation

- ScenarioCollaboration OveraliScenario : Scenario . .
D e ———————1 -~ StoreContexdt
: StoreConted = MyC:
cum e a0 = AT - StoreContext |
— , . Staretiontest | contextObservation = Cn warliaeservation — Ideas : Store
Orders : Store | = ldeas, Approvedkdeas, Fi | Orders |
ICantest = lionDelCrbd, ManageFulfilimentDelCnbd
|- FarentContexdilelegatonContet : ParentContextlaleqgationCaontest
XTrallerBusinaess : R ontext : | Approvedideas: |
BusinessHetwork Store y " ApLADElEe : e . . Store
contexts = Innovatiar ProductOutpAtD 1
. ntetos = DelCntds cantextc =F
Y = Manage comextObservation = Manager ulfilimentDelCnodObservatian
delegationtConted = ManageRel DelCntd contextSlore = Products
parentContest = OverallScenario delegatedactivity = Manage Fulfiliment
delegationtConbext = ManageProductionDel St
parentContexd = CverallScenario
ParentCanteDelzqatiancontest | DelzgationCantastCalaboration | DelzgatianCanteaCallabaration
ManageReleaseDelCntxt : DelegationContext InnovationManagementMethod FultlimsntiManagementMathod]
StoreContext : Eﬁglﬁml : CapabilityMethod
arD = utputD: !
CONtEXC = wod
IntermediateReleases contextObservation = ManageReleaseDelCnbddbservation
: Store LextStore = Int iateRel Progucts - Storecanted
defegatedActivity = Manage Release

debegationtContedt = PilotProductionDeiCnbd

parentContext = ManageReleaseDelSnbd

parentContest = ManageinnovationDelCnbd - stareCantest | Products : Store '|
FarentCantestDeleqationCantest
| - ParentCantesthelagationContet . DelegationContextCallabors s
= | BQMMM ManageProductionDalCntxt : DelegationContaxt
’ qnmeant = FilstPradn 1, CapabilityMethod = CommFrad
B e L g AL D contedBasedParDelegation = WarkOrderinpuiDelegatian,
. = A L FinalR:eleaseinputDelegation,
FllatwarkOrderinputDelzgatian,)
Imerme':IlaleRelea‘;elnpuns:])elegallon P'”T'ﬁl,'.“"R""”".OULF'ULD‘“’Q?“““
M con ation = P ethod
SIRECC It e il | Beteqationcantesteolabaratiory conterObservation geProductionDeiCnbddbservation
delegatedactivily = Pilot Production | EEEEEEEEEE— - :tionhana; f S antestc delegatedactivity = Manage Production
= 1 CapabliityMethod F——————————— parentContex = ManageFulfilmentDeiCnbd

Figure 50. Context tree objects

These objects are instances of classes in the Scenario and Analysis Context meta-model that is

shown in Figure 51.

package VDML[Scenann and Analysis Context u

VdmiElement

B e R s steriste | +harizon PO . ;p‘urtDE\EgatmnCnntEx\ 'tnmexIBasedPnr\DE\Egauhnn PortD
horizon rscenano 0
0.1 0.1

lysisContext 0 ntext +contextObsenvation | Observation
0. 0.1 (SMM)
+storeContext
0. +parentContext
1
’—L‘ 0.* | +delegationtContext
Scenario DelegationContext

+ype : String

+contextStore |0.*

Store

ReleaseControl +releaseContiol +scenario *; ntext nent 1t
+sirategy : string 0.x o 0.1 [\

+scenario 0. +delegationContaxt |0.*

+contexC 0.* +contextC: 1

Collaboration

Figure 51. Scenario and Analysis Context metamodel

As it appears from Figure 51, a scenario can also drive the variation of a release control, which defines a
strategy that determines, for a capability offer, the priority of work to be performed, relative to other
work. This is required for simulation, and will not be discussed further in the context of the XTrailer use
case example. Per scenario a horizon can be defined, which may serve as the horizon for simulation.
This will neither be discussed further in this document.

In the remainder of this section, discussion will focus on activity networks, activity delegation and
related details. All of these are applied in the context of the XTrailer use case example.

Copyright © NEFFICS Consortium 2010-2013 Page 47/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

We first consider the Manage Innovation activity, as performed by the Manufacturer party role in the
business network. The object diagram that defines this activity is shown in Figure 52.

Dbiost Disgram WyCo Bushess[i Warese Frvation Defogston 1]

Manage Innovation : Activity
appliedCapabilityOffer = InnovationManagement
capabilityRequirement = Innovation InnovationOutput : OutputPort

ActivityApplied CapabilityOffer

InnovationManagement : CapabilityOffar Management PorContainetPot outpyt = InnovationFlow
EPP‘Yln_QAC_'M‘Y = Manage Ir llaboration = XTi i outputDelegation = InnovationOutputDelegation
capan!|!ry = Inl:lovallm'l it inedPort = InnovationOutput poriContainer = Manage Innovation
capabilityProvider = R&D delegationContext = ManageinnovationDelCnxt valueAdd = MarketDrivenDesign,
method = InnovationManagementMethod | | performingRole = Manufacturer Fastinnovation

DeleqatedActivityDelenationContext

enDalCHbr Delenati DelegationContextPortDelegation - OutoutDeleqgtionSiource
cont: dPoriDelegation = ationOutputDelegation
contextCollaboration = InnovationManagementMethod
;ortaxzogza{lvzticap;Manag‘e\nnnv"alionDeICnlxtOIJservalion Innovati ian : OutputD
pEeyey cn‘;‘:’;_ e Ve Dr"'\!lcn‘l.‘d poriDelegationContext = ManagelnnovationDelCntxt

source = InnovationOutput

parentContext = OveraliScenario target = InnovationOutputiM

DelegationContextCallaboration OutputDelegationTarget

InnovationManagementMethod : CapabilityMethod InnovationOutputiM : OutputPort
activity = Manage Release, Manage Idea | PortContanerPort el dOutput = InnovationOutputDelegati
containedPort = InnovationOutputiM outputDefinition = Innovation
delegationContext = ManagelnnovationDelCntxt outputDelegation = InnovationOutputimminternalDelegation
flow = ApprovedideaToStoreFlow, IdeaFromStoreFLow, portContainer = InnovationM tMethod
IdeatorResourceFlow
internalPortDelegation = InnovationOuty temnalDel

methodOwner = R&D

ownedAssignment = IdeatorAssignment, ReleaserAssignment
performer = [deator, Releaser

supportedCapability = InnovationManagement

Figure 52. Delegation to Innovation Management method (objects)

The activity object in Figure 52 shows, that the Manage Innovation activity has “Innovation Management”
as capability requirement. In accordance to that requirement, the Innovation Management capability
offer of R&D as the capability providing organization unit, is selected as the applied capability offer (the
top-left object in Figure 52). The activity delegates its work to the Innovation Management method
(indicated by the large vertical object shape at the bottom of the diagram), through the “Manage
Innovation Delegation Context” delegation context. That delegation context contains the delegation of
the “Innovation Output” output port of the activity to the corresponding output port of the capability
method. As was already indicated earlier, a capability method, as any collaboration, is a “port
container”, which can contain ports. This is exemplified here, by the Innovation Management method,
containing an output port. This can be considered a port on the “boundary” of the method. It allows
“black boxing” of the method to its using contexts. A (parent) activity just delegates to that method,
thereby delegating its ports to corresponding method ports, without having to know the details of the
activity configuration inside the method. As will be discussed later, this will also make value delivery
models suitable as basis to drive definition of more IT or automation-related artifacts such as web-
service interfaces or user interfaces.

The delegation context object in the object diagram in Figure 52 is an instance of the Delegation Context
class in the Scenario and Analysis Context diagram in Figure 51. The contained output port delegation
object is an instance of the Output Delegation class in the Port Delegations meta-model diagram in
Figure 53.

package VDML[[£|PortDelegations U |:|

PortDelegation
InputDelegation OutputDelegation

+inputDelegation (0.1 +delegatedinput |0.* +outputDelegation |0.1 +delegatedOutput|0.*

+source |1 +target |1 +source |1 +arget |1

InputPort OutputPort |

Figure 53. Port Delegations metamodel

Page 48/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

The Activity object, including its various links, is an instance of the Activity class in the Activities
metamodel diagram in Figure 54.

package VDML | £ Activites - simpified 2 U

+performingRale [1

+performedWork Activity
0>

+activity |0.* +activity |0.* +delegatedActivity |1

+capabilityRequirement (0.1 +appliedCapabilityOffer | 0.1
‘Capa.bimy CapabilityOffer ‘

+delegationContext [0.*
DelegationContext

Figure 54. Activities metamodel (partial)

The basis for the capability method object, as contained in the object diagram in Figure 52, to connect
via a port, is the Capability Methods metamodel, as presented in the metamodel diagram in Figure 55. It
defines a Capability Method as a Collaboration, and, as a Collaboration is a Port Container, it can
contain ports. Note also that a Capability Method contains performers, which are specialized roles.

Collaboration m

package VOUL[|2 Capabilty Methods |]

+msthod | capabilityMethod +method +perfarmer | Performer
0 1 0.
+method [0.* {redefines collaboration} {redefines collaborationRole}
+methodResource [0.* +implementedPractice (0.*

Businessltem| |PracticeDefinition|

Figure 55. Capability Methods metamodel

Note also that the meta-model diagram in Figure 55 shows some more Capability Method detalil, that is
not applied in the XTrailer use case example:

e Association of business items, directly with capability methods. This is useful for resources for
which storage in stores does not apply, and for which consideration of use or consumption by
individual activities is not meaningful, but for which it is still relevant to define or assert that
capability methods are supported by such resources. Examples of such resources are patents,
or technologies such as Enterprise Resource Planning (ERP) suites or Business Process
Management (BPM) technology, such as a “process execution engine”.

e Association to practice definitions in a practice library, indicating which practices are meant to
be implemented by a particular capability method.

Note that, so-far a model view mockup of delegation, including its port delegations, has not been
suggested. This is because, most likely, the definition of delegation does not involve graphical
diagrams, but merely a tabular and table-oriented user interface.

Figure 56 provides a model view mockup of the activity network of the Innovation Management method.

Copyright © NEFFICS Consortium 2010-2013 Page 49/ 117

VDML Manufacturing Use Case

bmi/2012-11-10

= |deas Approved ldeas

o

g v Idea Manage ppmved Idea v

S Idea

?.mj " Innovation
anage

E Release ’

[F}

i

Figure 56. Innovation Management method’s activity network mockup

The corresponding object diagram is provided in Figure 57.

MyCo Business| [§f

1

- PartContainerPort

Rey dideaOutput : OutputPort

IdeasUse : ResourceUse
activity = Manage Idea
resource = [deaFromStorelnput

I ActivityResaurceUse

Manage idea :Activity
appliedCapahilityOffer =

|- PartContainerPort

output = ApprovedideaToStoreFlow

=Idi

capabilityReq = ldea
1=1r i
1 = ApprovedideaOutput, input =
IdeaFr put, IdeatorR
= Ideator Idea

I PP
portContainer = Manage Idea
FlowSaurce
ApprovedideaToStoreFlow : DeliverableFlow

collaboration = InnovationManagementMethod
deliverable = Approvedidea

provider = ApprovedideaQutput
recipient = ApprovedideaToStorelnput

FlowTarget

ApprovedideaTeStorelnput : InputPort
input = ApprovedideaToStoreFlow
poriContainer = Approvedid

P
resourcelUse = |deaiorResourceUse, IdeasUse

IdeaFromStoreFLow

erformedWarkP erformingRole

recipient = IdeaFromStore

FlowSource

Ideator : Performer
method = InnovationManagementMethod

PortCantainerPart

per = Manage Idea
roleAssignment = IdeatorAssignment

Approvedldeas : Store
containedPort = ApprovedideaToStorelnput,
ApprovedideaFromStoreOutput
resource = Approvedidea
storeContext = OverallScenario
storeOwner = R&D
supportedCapability = Ideallanagement

ce =

p

IdeaFromStoreOul|
resource = [dea

storeContext = OverallScenario
storeOwner = R&D
supportedCapability = IdeaManagement

ResourceResourcellse

IdeaFromStorelnput : InputPort
poriContainer = Manage

resourceUse = |deasUse

collaboration = InnovationManagementMethod
deliverable = |dea

provider = IdeaFromStoreQutput

IdeaFromStoreOutput :

oulput = IdeaF
portContainer = Ideas

PortCantainerPort

Ideas : Store
containedPort = IdealnPut,

InnovationOutputMR : OutputPort

Output = p

outputDelegation = InnovationRMOutputDelegation
portContainer = Manage Release

iternalD

| PontContainerPor
Manage Release : Activity
appliedCapabilityOffer = ReleaseManagement
capabilityRequirement = Release
Management
collaboration = InnovationManagementMethod
containedPort = InnovatienOutputMR
delegationContext = ManageReleaseDelCntxt
performingRole = Releaser

IdeaFromStoreFLow

: DeliverableFlow

performedWorkPerformingRole

elnput

Releaser : Performer

| method = InnovationManagementMethod
k = Manage Release

OutputPort

Low

put

Figure 57. Innovation Management method’s activity network objects

Note the Resource Use object, defined in relation to the “idea from store input” of the Manage idea
activity. A resource use might specify how much resource (input) is required, possibly in relation to an
output (e.g. “four wheels go into a car”). The “ideas use” object could be used here to e.g. define the
average number of ideas that the Manage idea activity takes from the Ideas store. Details of this have
not been applied to the use case here. Resource use will be discussed in more detail later, in relation
to using resources from pools.

Note also that, though the model view mockup in Figure 56 shows three connectors, there are only two
deliverable flow objects instantiated according to Figure 57. The output port “Innovation Output MR” of
the Manage release activity is not related to a deliverable flow object. The reason for that is clear from
the objects diagram in Figure 58, which defines the further delegation of the output port of the Innovation
Management method (its “boundary port”) to a port inside the method, namely the “Innovation Output
MR” output port of the Manage Release activity.

Page 50 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram Ny Co Business | (g Manage Innovation Dekegation - mermal ||

InnovationManagementMethed : CapabilityMethod PortContainerPort InnovationOutputiM : OutputPort
activity = Manage Release, Manage Idea —— delegatedOutput = InnovationOutputDelegation
containedPort = InnovationOutputiM outputDefinition = Innovation
delegationContext = ManagelnnovationDelCntxt outputD ion = Innovati i iternalDelegation
flow = ApprovedideaToStoreFlow, IdeaFromStoreFLow, portContainer = InnovationManagementMethod
IdeatorResourceFlow c ;
InternalPortDelegation = InnovationOutputimmintermalDeleg AL Il st }ﬂw
methodOwner = R&D

ownedAssignment = IdeatorAssignment, ReleaserAssignment . i R DalEgsHon I
= OutputDelegation
performer = |deator, Releaser

supportedCapability = InnovationManagement collaboration = Innovation tMethod
source = InnovationOutputiM

target = InnovationOutputMR

CollaborationActivity
QutputDelegationTarget

Manage Release : Activity InnovationOutputMR : OutputPort
appliedCapabilityOffer = F ment | _~-EonContainerart delegatedOutput = InnovationOutputimminternalDelegation
capabilityRequirement = Release outputDelegation = InnovationRMOutputDelegation
Management portContainer = Manage Release

thod

ion = InnovationManag
containedPort = InnovationOutputMR
delegationContext = M; Rel DelCntxt

performingRole = Releaser

Figure 58. Innovation Management method’s internal delegation objects

The output delegation object, as associated with the capability method object in Figure 58, is an instance
of Port Delegation class, as associated to the Collaboration class, and serving as its “internal port
delegation”, in the Collaborations meta-model diagram of Figure 16 above.

In the mockup of the activity network diagram, in Figure 56, “boundary” port shows as a small “bottom-
left pyramid” shape. The port delegation, from the that port to the activity port is visualized as a
connector, similar to the other flow connectors, though its meaning is different: the “actual” flow is in
the parent collaboration, being the business network collaboration, the network of which was given in
Figure 43. Actually the port shape in Figure 56 serves as a “placeholder” for the actual deliverable flow in
Figure 43.

Note that, when a capability method would be delegation target of an activity, and in the context of that
delegation, there are no port delegations to one or more capability method ports (“boundary” ports),
the connectors that represent port delegations from these “boundary” ports to ports of activities inside
the capability method, would not be shown in the context of that delegation.

The Approved Idea flow in the activity network view mockup in Figure 56 shows as “conditioned”, the
corresponding output port being explicitly visible and showing as a small diamond. This might express
either one or both of the following situations:

e A condition on a port, here an output port, defined as expression, associated with the port.
Port Containers. The Port Containers metamodel diagram, as presented earlier in Figure 45,
defines how a port can be conditioned. The Expressions metamodel diagram is presented in
Figure 59. Expressions are essential to simulation. They are also useful when capability
methods are used as basis for generation of process definitions. Expressions are not applied
in the XTrailer use case example and will not be discussed further.

o A planning percentage on a port, which is especially useful in “manual” analysis based on
value delivery models, where average measurements are applied. The objects diagram in
Figure 60 shows partial application of this in the context of the use case. The Port Containers
metamodel diagram in Figure 45 defines how a port can have a planning percentage.

Copyright © NEFFICS Consortium 2010-2013 Page 51/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package VDML [}ﬂi_f‘ Expressions]

VdmiIElement
Expressionl_ +expression +operand | Operand

+body : string 1 0.* |[+alias: smng|

+operand |0.*

+measuredCharacteristic |1

Measuredcharacteristic

Figure 59. Expressions metamodel

Only activity ports can be conditioned or have a planning percentage. This is not obvious from the
meta-model, but is expressed as constrained over the meta-model, in the VDML 1.0 specification.
According to the object diagram in Figure 60, the “Approved Idea Output” output port of the Manage idea
activity has a planning percentage. This is visualized in the activity network diagram mockup in Figure
56 via the small diamond on the corresponding deliverable flow connector.

Objeet Diagram MyCo Business [/55 ldea Approval Ratio - Planning Percentage |

Manage Idea : Activity ApprovedideaOutput : QutputPort
appliedCapabilityOffer = IdeaManagement | EorContanerPot output = ApprovedideaToStoreFlow
capabilityRequirement = Idea Management planningPercentage = IdeaApprovalRatio
collaboration = InnovationManagementMethod portContainer = Manage Idea
containedPort = ApprovedideaOutput, :

IdeaFromStorelnput, IdeatorResourcelnput - PorPenningPercentage
performingRole = Ideator IdeaApprovalRatio ; MeasuredCharacteristic |
resourcellse = IdealorResourceUse, Ideaslse characteristicDefinition = IdeaApprovalRatio

plannedPort = ApprovedideaOutput

Figure 60. Planning percentage objects

This planning percentage has a functional meaning. It is a measured characteristic that defines the
idea approval ratio of the Manage Idea activity. The activity might, for example, approve 80 % of ideas
on average. This is the first example of a measured characteristic that we encounter in the discussion
of the use case so-far.

As the VDML elements metamodel diagram in Figure 61, being the most “core” and “technical” part of
the VDML metamodel, shows, a measured characteristic can be defined by association with a
characteristic. Characteristics, as well as associated measures, are defined in measure libraries,
based on the SMM metamodel (see SMM (2012)). A characteristic is defined “a
distinguishing feature or quality that can be qualified or quantified by applying a measure”.

package VDVL[[£] Vel Elements |

+element VdmiElement

1 +description : string
+name : strin
+represents : string [0..1]

+attribute [0.*

Attribute

+tag . string
+value : string

[|#measurand +measurement
(CMOF) |1 0 (SMM)

+measurableElement |0..

+measuredCharacteristic |0.*

MeasuredCharacteristic [*measuredCharacteristic +measurement
0

‘ {redefines

+measuredCharacteristic |0.*

+characteristicDefinition |0..1

Characteristic
(SMM)

Figure 61. VDML Elements metamodel

Page 52/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

The measured characteristic object in the objects diagram in Figure 60, is an instance of the Measured
Characteristic class in the metamodel diagram in Figure 61. Its characteristic definition “ldea Approval
Ratio” is an instance of the associated Characteristic class. This characteristic is stored in a measure
library. The reader might refer to SMM (2012) for the measure library metamodel. The object diagram
of the measure library that we use in the XTrailer use case example, as far as modeling characteristics
is concerned, is provided in Figure 62. We will discuss the use of several more of these characteristics,
together with its associated measures, in 3.1.5.

Object Diagram MyCo Business|[&5 Measure Library - Generic - Characteristics (compressed)],|

Profit : Characteristic SalesVolume : Characteristic PaymentAmount : Ide: rovalRatio : IdeaVolume : Characteristic
library = GenericMeasures | library = GenericMeasures Chansteristie Characteristic library = GenericMeasures
measure = ProfitMeasure = SalesVolumeM library = library = Ger

Orderinterval : Characteristic RecipientSatisfaction : Characteristic IdeaProductization :
library = GenericMeasures library = GenericMeasures Characteristio
= Orderinter £ measure = RecipientSalisfactionMeasure library = GenericMeasures
OrderintervalMeasure

SalesMargin : ProductPrice : Characteristic RecipientValue : Characteristic MarketD Wi :Cl

library = GenericMeasures library = GenericMeasures library = GenericMeasures library = GenericMeasures
measure = SalesMarginMeasure measure = RecipientValueMeasure = MarketDrivenDesig ightedSatisfactionM e

FairPriceWeightedSatisfaction : Characteristic LateS ion : Characteristic Fastl ionWeight i ion : C
library = GenericMeasures library = GenericMeasures library = GenericMeasures
measure = FairPriceWeigt \Measure | measure =L P reezeWeigl A Ire . measure = FastinnovationWeightedSat A ire

L F i ion : isti LateSpecF Weight : Characteristic InnovationLeadTime :

library = GenericMeasures library = GenericMeasures Characteristic
measure = Laty i ionM measure = Li T i library = GenericMeasures
p

P g

ProductlLeadTime : Characteristic
library = GenericMeasures
measure = ProductLeadTimeMeasure,
ProductLeadTimeMeasure,
ProductLeadTimeMeasure

ProductDeliveryHandlingTime : CI isti ionLeadTime : Characteristic
library = GenericMeasures library = GenericMeasures
measure = ProductDeliveryHandlingTimeMeasure | measure = ProductionLeadTimeMeasure,
ProductionLeadTimeMeasure

BuildProductDuration : stic ProductStorageDuration : Characteristic
library = GenericMeasures library = GenericMeasures
= BuildProductDurati e | measure = ProductStorageDurationMeasure

Figure 62. Measure Library objects (Characteristics)

As the VDML Elements metamodel in Figure 61 shows, a measured characteristic can be associated
zero or more measurements, Measurement being an SMM metamodel class as well. VDML enforces,
per metamodel constraint, that when N measurements are associated with the same measured
characteristic, these measurements will be contained in N different observations, each observation
containing just one measurement for the measured characteristic. This is important to support analysis
context as discussed earlier: An analysis context can have a context-specific measurement for a
measured characteristic (of e.g. a store or collaboration or part of it), as contained in its observation.
Observation is an SMM meta-model class as well. Analysis Context is a VDML meta-model class. The
metamodel diagrams of VDML Elements (in Figure 61) and Analysis Context and Scenario (in Figure 51)
define the integration between VDML and SMM.

The application of characteristics, measures, measurements and observations, to the XTrailer use
case example, will be discussed in detail in 3.1.5.

As is clear from the Port Containers meta-model diagram in Figure 45, planning percentage is a
metamodel-defined association to the Measured Characteristic class. VDML defines several more
associations to Measured Characteristic, each with its particular semantics. Some of them, in the area
of value and value proposition, will be discussed in 3.1.5.

As the VDML Elements metamodel diagram in Figure 61 shows, any measurable element can have zero
or more measured characteristics associated. These are the measured characteristics that a business
analyst can define, as custom model elements. As the Port Containers metamodel diagram in Figure 45
shows, both ports and port containers are measurable elements, and so can have custom defined
measured characteristics. In 3.1.5 various examples of custom measured characteristics will be
discussed, in the context of the XTrailer use case example.

Copyright © NEFFICS Consortium 2010-2013 Page 53/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

As the mockup of the activity network diagram of the Innovation Management method in Figure 56
indicates, the Manage Release activity, shown via a rectangle shape containing an “expansion button”
(small box with “+” sign), is delegating its work to another collaboration. The object diagram in Figure 63
shows the objects that define this delegation. The Manage Release activity sets a delegation context,
to delegate its work to the Release Management method that supports the Release Management
capability offer of R&D. In the context of that delegation, the Innovation output is delegated further
“down”, from the Manage Release activity to the Release Management method (the output port on its
“boundary”).

[‘Object Diagram 1yCo Business [i Manage Release Deiegation] |

Manage Release : Activity

appliedCapabilityOffer = ReleaseManagement
capabilityRequirement = Release

ActivityAppliedCapabilityOffar

ReleaseManagement : CapabilityOffer Managemerﬂ PortContainerPart
applyingActivity = Manage Release collaboration = InnovationManagementMethod - InnovationOutputMR : OutputPort
capab!l!ty - R§|SESS Management containedPort = InnovationOutputMR delegatedOutput = InnovationOutputimminternalDelegation
capabilityProvider = R&D delegationContext = ManageReleaseDelCntxt outputDelegation = InnovationRMOutputDelegation
method = ReleaseManagementMethod performingRole = Releaser portContainer = Manage Release

ManageReleaseDelCntxt : DelegationContext
contextBasedPortDelegation = InnovationRMOutputDelegation

DelegatedActivityDelegationContext 3
OutputDelegationSource

contextCollaboration = ReleaseManagementMethod TR InnovationRMOutputDelegation : OutputDelegation
. DelegationContextPortDelegation i -
contextObservation = ManageReleaseDelCntxtObservation =~ ————————— portDelegationContext = ManageReleaseDelCnixt
textStore = IntermediateRel . Products source = InnovationOutputMR
delegatedActivity = Manage Release target = InnovationOutputRM
delegationtContext = PilotProductionDelCntxt
parentContext = ManagelnnovationDelCntxt - OutputDelegationTarget
DelegationContextCollaboration)
ReleaseManagementMethod : CapabilityMethod iCarianenha InnovationOutputRM : OutputPort
il On@inertol - i i
activity = Launch Innovation, Scope Release, Create Initial Design, Finalize ——=——————— delegatedOutput = InnovationRMOutputDelegation
Design, Pilot Production outputDelegation = InnovationOutputRmminternalDelegation
businessitem = EngineeringWorkOrder, PilotWorkOrder, BetaRelease, portContainer = ReleaseManagementMethod

PilotProductionReport

containedPort = InnovationOutputRM

delegationContext = ManageReleaseDelCntxt

flow = ApprovedideaFromStoreFlow, EngineeringWorkOrderFlow,
IntermediateReleaseFlow2, IntermediateReleaseFlow3,
IntermediateReleaseFllow1, PilotWorkOrderFlow, PilotProductionReportFlow,
PilotProductFlow, FinalRelease ToStoreFlow, BetaReleaseFlow,
PMResourceFlow1, EngineerResourceFlow1, PMResourceFLow2,
EngineerResourceFlow2

internalPortDelegation = InnovationOutputRmminternalDelegation
methodOwner = R&D

ownedAssignment = ProductManagerAssignment, EngineerAssignment,
ProducerAssignment

performer = ProductManager, Engineer, Producer

supportedCapability = ReleaseManagement

Figure 63. Delegation to Release Management method (objects)

According to the activity network diagram mockup in Figure 56, showing the activity network of the
Innovation Management method, and according to its corresponding object diagram in Figure 57, the
Manage Release activity is performed by the Releaser, being a performer role. As the Manage
Release activity delegates its work to the Release Management method of R&D, it is logical to assign
the Releaser role to the R&D organization unit. This assignment is defined in the object diagram in
Figure 64.

Page 54 / 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram hlyCo Business| [Innovation Management Method - Assignments U

GollaborationFlaw InnovationMar Method : CapabilityMethod
—) - activity = Manage Release, Manage Idea
Manage Idea : Activity ActivityAppliedCapability Offer containedPort = InnovationOutputiv
- | delegationContext = ManageinnavationDelCntd

?gggiﬁmﬁ:&";g%i; - :g:z“&aa”naag;?:;;t |deaManagement : CapabilityOffer flow = ApprovedideaT oStoreFlow, IdeaF romStoreFLow, IdeatorResourceFiow
collaboration = InnovationManagementMethod applyingActivity = Manage Idea mgi;lﬂga:gf?%aggn plEtn N pltmpptergalBelecatian
containedPart = ApprovedideaOutput, capability = Idea Management Ay 0
IdeaFromStoreinpu, IdeatorResourcenput capabiltyProvider = R&D Rl = Ran e ReleaRerArsignment
performingRole = Ideatar capabilityResource = ProductianagementCapacity, ldeas, y 2
resourceUse = ldeatorResourceUse, IdeasUse Approvedideas STy S (AR T Tl

_perunme dWorkPermormingRole CollaborationOwnedAssignment

MethodPerfarmer MethodPerfarmer

ActivityResourceUse

IdeatorResourceUse : ResourceUse

activity = Manage |dea Ideator : Performer
resource = deatorResourcelnput

Releaser : Performer

methad = InnovatiognManagementmethod methad = InnavationManagementmethad

: PortContainerPort [ResourceResourcelse perfarmedWork = Manage Idea perfarmedWork = Manage Release
|deatorResourcelnput : InputPort RoleResource roleAssignment = IdeatorAssignment roleAssignment = ReleaserAssignment
—— roleResource = IdeatorResourcelnput
input = IdeatarResourceFlaw RoleAssignment
portContainer = Manage ldea RoleAssignment
;E;“?ﬂﬁ;;: lEaloiEesourcelse IdeatorAssignment : Assignment ReleaserAssignment : Assignment
assignableResource = ProdMgmtResource assignedRole = Releaser
FlowTarget assignedRole = deator collaboration = InnovationManagementMethod

MyCo Business::IldeatorResourceFlow : collabaration = InnovationManagementiethod participant = R&D
D

CollaborationOwnedAsgignment

verableFlow
: AssignableResourceAssignment ParticipantAssignment

~Flowbeiverable ProdMgmtResource : Businessitem R&D : OrgUnit
assignment = IdeatarAssignment, assignment = Department1Assignment, ReleaserAssignment
ProductiManagerAssignment businessitem = Idea, Appravedidea, ProdvgmtResource,
FlowSoures collaboration = R&D EngineeringResource, IntermediateRelzase, FinalRelease
— definttion = ProductManagementResource capabilityOffer = InnovationManagement, Ideavianagement,
IdeatorResourceOutput : QutputPort flow = IdeatarResourceFlaw, ReleaseManagement, ReleaseFlanning, Marketintraduction, Engineering
output = IdeatarResaurceFlow PMResourceFlow1, PMResourceFLow2 containingModel = MyCompanyMadel
partCantainer = PraductManagementCapacity store = ProductianagementCapacity ownedMethod = InnavationManagementMethod,
ReleaseManagementMethad
\w ownedStore = Ideas, Approvedideas, ProductianagementCapacity,
ProductManagementCapacity : Pool EngineeringCapacity, IntermediateReleases, FinalReleases
containedPort = IdeatorResourceOutput,

PMResourceOutput1, PMResource Qutput2
resource = ProdiigmiResource
stareOwner = R&D

supportedCapability = IdeaManagement,
Marketintroduction, ReleasePlanning

Figure 64. Innovation Management method’s role assignment objects

The Ideator role performs the Manage Idea activity. This activity requires an Idea Management
capability, and based on that, the Idea Management capability offer of R&D is applied. No capability
method is defined to support it. As shown in the capability management diagram mockup of R&D in
Figure 33 above, the ldea Management capability offer is supported by the Product Management
Capacity pool. The object diagram in Figure 64 shows how capacity from that pool is assigned to the
Ideator role:

e Product management resource, defined as business item, flows from the product management
capacity pool, via the Ideator resource flow, to the Manage Idea activity.

e The corresponding input port of the activity is associated with the Ideator performer role,
indicator that the resource is meant as role resource.

e The activity also defines a resource use (Ideator Resource Use) in relation to the input port.
This resource use can be used to, for instance, specify the resource quantity required (which
is not specified in the use case example).

e The Innovation Management method contains an assignment (ldeator Assignment) to assign
the Ideator role to the product management resource.

Note that the delivery flow of role resource from the pool to the Manage Idea activity is not visualized
in the activity network mockup in Figure 56 As it is expected that such flows will clutter activity network
diagrams too much, we assume that resource flows from and to pools are, by default, not shown in
these diagrams. It would be reasonable that a user option would be supported to show them where
and when wanted.

Activity and activity-related objects in the object diagram in Figure 64 are instances of several classes in
the Activities metamodel diagram in Figure 65. Note that not all properties have been instantiated in the
use case example.

Copyright © NEFFICS Consortium 2010-2013 Page 55/ 117

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

package /DNL| [Activities |

+capabilityRequirement (0.1 +appliedCapabilityOffer |0..1

|Measurab.fe£fement ‘ ‘ OutputPort
+deliverable |0.1
+resourcelse [0.*
Jse +guanti
ResourceUse Xl d T y MeasuredCharacteristic PortContainer
+inputDriven : boolean = false
+isExclusive : boolean = false dR.
+resourcelsConsumed : boolean = frue L ourceUss Ll
0.1 0.1
+rasourcelse +duration m
0.1 01
+resourcelse |0.% +resourceUse [0.* +duration |1 +recurrencelntenval 0.1 +cellahorationGoal | 0.1
+conditionalResourceUse | 0.1
{ordered}
+condition | 0.1 +resource [0.*
Expression ‘ ‘ InputPort |
* +activity |0.1 +scheduledActivity [0.1
+roleResource |0, +activity [0.*
+activity s
+role (0.1 1 gctivity
Role +perormingRole +perormediork
1 0.*
PracticeDefiniti +implementedPractice +activity
0. 0.
+activity | 0. +activity [0.* +delegatedActivity [1

+delzgationComeaxt[0.*

| Capability

Capabilit'foer|

DelegationContext

Assignment and assignment-related objects in the object diagram in Figure 64 are instances of some of

Figure 65. Activities metamodel

the classes in the Assignments metamodel diagram in Figure 66.

+del

DeliverableFlow | *input
0.1

package VDWIL[[2 Assignments |

VdmiElement

7

Particip | +participant
Jo

+assignment
0~

] it

+assignment

Ij‘ﬁusinessltem +assignableResource
0.1

liverable |1

+flow (0.*

0

+roleAssignment [0.*

+assignedRole |1

+recipient +roleResource +role ¥
dlent, InputPort|, o ﬁﬁojle

0.1

+performingRole 1

+performedWork |0.*

Figure 66. Assignments metamodel

Figure 67 contains the activity network diagram mockup of the Release Management method.

Page 56 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(E@)@S
bmi/2012-11-10

| ™ Innovation

Final release

lApproved ideas

Product
Manager

Approved Idea
Beta release

Final releases

Intermediate releases
Interm. release

Engineer

Interm,
release

IProduct

Producer

Products

Figure 67. Release Management method’s activity network mockup

Note that this capability method, as well as other methods that we consider in the use case, will
contain much more detail in a real-world situation. For sake of simplicity and keeping the use case
content minimal, we only model over-simplified parts of the business system. For example, in
relation to the activity network in Figure 67, we assume the following:

e Any approved idea goes into a next release; modeling alternatives is omitted (e.g. to model
removing of aged ideas).

e When a design fails, it fails permanently and completely; modeling of rework and re-use of
successful parts of a design is omitted

Such assumptions do not lead to real-world-complete models, but we do not want to extend the
content of the use case beyond what is needed to explain the modeling constructs of VDML, their
semantics, and ways to expose them to business users.

The object diagram in Figure 68 shows performer roles and activities of the Release Management
method. Delivery flow objects detail, as exposed in the mockup in Figure 67, will be shown on
subsequent diagrams, one per each performer role, as the number of objects that represent the
method’s activity network are too many to show in a single diagram.

Copyright © NEFFICS Consortium 2010-2013 Page 57/ 117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

Object Diagram 1yCo Busness | [ig Release Management Method - Roles and Activities]

| Create Initial Design : Activity
appliedCapabilityOffer = Engineering
capabilityRequirement = Engineering

nagemer
containedPort = EngWolnput,
IntermediateReleaseOutput1,
PilotWorkOrderOutput,
EngineerResourcelnput1
performingRele = Engineer
resourceUse = EngineerResourceiUse

Engineer : Performer
method = ReleaseManagementMethod
performedWork = Create Initial Design,
Finalize Design
leAssig 1t = Engi Assig it
roleResource = EngineerResourcelnput2,
EngineerResourcelnput1

| Finalize
appliedCapabilityOffer = Engineering
capabilityRequirement = Engineering

agemer
cont:

ort = Inter put3,
PilotProdReportinput, PilotProductinput,
BetaReleaseOutput,
EngineerResourcelnput2

performingRele = Engineer

MethodPerformer

CollaborationActivity EngineerA

Scope Release : Activity

appliedCapabilityOfter = ReleasePlanning
capabilityRequirement = Release Planning
Bl e Relaasa 4

ReleaseManagementMethod : CapabilityMethod

BetaRelease, PiIatEroducliunRepurt

containedPort = ApprovedideaFromStorelnput, Eny
CollaboratienActnity activity = Launch Innovation, Scope Release, Create Initial _CollaboratiopActivity performingRole = ProductManager
Design, Finalize Design, Pilot Production resourceUse = PMResource2Use,
i n = Engineeri Order, Pi Order, ApprovedideasUse

containedPort = InnovationOutputRM
ionContext = leaseDelCnixt

flow = ApprovedideaFromStoreFlow,
Engineer low, Ir

ReleaseFlow2,

llow1,

Ir eleaseFlow3, Inter
" " b : [
PilotWorkOrderFlow, PilotProductionReportFlow, MahodPerforrner |

PilotProductFlow, FinalRelease ToStoreFlow, BetaReleaseFlow,

ProductManager : Performer

=p

method = ReleaseManagementMethod
performedWork = Scope Release, Launch
Innovation

PMResourceFlow1, EngineerResourceFlow1,
PMResourceFLow2, EngineerResourceFlow2
internalPortDelegati

1= Inr utputF

roleResource = PMResourcelnputi,
PMResourcelnput2

methodOwner = R&D
ownedAssignment = ProductManagerAssignment,

ProducerA CollaborationActivity
performer = ProductManager, Engineer, Producer

supportedCapability = ReleaseManagement

Launch Innovation : Activity

appliedCapabilityOffer = Marketintroduction
capabilityRequirement = Market Introduction

containedPort = InnovationOutputLI,

MethodPerformer : CallaborationActivity

resourceUse = EngineerResource2Use

Producer : Performer
method = ReleaseManagementMethod
performedWork = Pilot Production
roleAssignment = ProducerAssignment

Pilot Production : Activity

appliedCapabilityOffer = ProductionManagement
capabilityRequirement = Production
Management

collaboration = ReleaseManagementMethod
containedPort = IntermediateReleaselnput2,
PilotWorkOrderinput, PilotProdReportOutput
delegationContext = PilotProductionDelCntxt

BetaF pul
FinalRelease ToSt:
performingRole = ProductManager
resourceUse = PMResource 1Use

t FIVIF

oreOutput

P

i1,

performingRole = Producer

g\

Figure 68. Release Management method object’s (partial)

The object diagram in Figure 69 contains the objects that define how the Innovation output on the
“boundary” of the Release Management method is delegated to an activity output port inside the
method. This is similar to what has been discussed earlier in relation to the Innovation Management

method.

Oject Diagram 1O Dusness| 5 Manage Reass Deegaton - reermad ||

Finalize Design, Pilol Production
businessltem = EngineeringWerkOrder, Pi

BetaRelease, F'IIotEmducﬂ;nRepon

Order,

DelCnid

ontext = ManageRel

activity = Launch Innovation, Scope Release, Create Inlial Design,

: PortContainerPort

InnavationOutputRM : OutputPort

- Callah intemalP nnDielegatinn

tedOutput = In OutputDelegatl
outputDelegation = | tionOutp nalDelegati
pertContainer = ReleaseManagemeniiethod

| OulpulDelegabonSource

QutputDalegation

flow = App low, Eng
IntermediateReleasaFlow?2, IntermediateReleaseFlow3,
IntermedlateReleaseFllowt, PllotWorkOrderFlow,
PiloiProductionReporiFlow, PilotProductFlow,

derFlow,

EngineerResourceFlow1, PMResourceFLow2,
EngineerResourceFlow2

internalPortDelegati
methodOwner = R&D

=P

Engineemsusignme nt, Pmducemss?gnmen‘l'

performer = ProductManager, Englineer, Producer
apability =

FinalReleaseToStoreFlow, BetaReleaseFlow, PMResourceFlow1,

L CollaborabanActvily

1

Launch Innovation : Activity

appliedCapabilityOffer = Marketintroduction
capablltyRequirement = Market Introduction

collaboration = ReleaseManagementMethod
source = InnovationOutputRM
target = InnovationOutpuiLl
I OutpusDelegationTargat
InnovationOutputl] : OutputPort
delegatedOutput = InnovationOutpl legati
poriContalner = Launch Innovation

containedPort = InnovationOutputLI,

BetaReleaseinput, PMResourcelnput

FinalReleaseToStoreOutput
rformingRole = Producti,

resourcellse = PMResource1Use

PortiContamerFart

1,

Figure 69. Release Management method’s internal delegation objects

Objects behind the activity network diagram of the Release Management method in Figure 67, are
contained in the object diagrams of Figure 70 (for the Engineer performer role), Figure 71 (for the
Producer performer role) and Figure 72 (for the Product Manager performer role). These diagrams show
examples of modeling constructs that have been discussed earlier.

Page 58 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

Ubject iagram MyCo Busness | (i Felease Managemert Method - Activty Network - Lngineer ||

EngWalnput : InputPart Enginsar : Parformar

Input = EnginseringWorkordsrFiow
portCantainer = Craate Initial
Design

r
[Poncantainerpan
—

perormingral PortContainerPort

resourcellse = EngincerResource 1Use
. PariContainersadt
IntermediateReleaseOutput ©

PortCantainerFort

PllstPradRapartinpue

InputPort
input = PilotProductionReportFlow
portContainer = Finalize Design

EngineerResourceinpul2 - PartContalnerPart

| perrorming Igineer
resourcellse = l:ngln-_‘f:rl?f:sc urce2use
[

neainerFor

PilotWorkOrderoutput :
outputPort
autput = PilatworkOrdenFlow
portCantainer = Create
Initial Design

QutputPort
output = IntermediateReleassrilow!
portContaingr = Create Initial Design

InputPort
Input = Intermediats!
portCantainer = Finalze Design

| FlawTarget FlowTarget lows:
PllotWorkOrderinput : InputPort IntermediateReleaseinputl : IntermediateReleaseOutputd ;
Input = PllotWarkrdertlow InputPort QuiputFort

InputDelegation = PllatwarkOrderinputDelzgation

inpul = IntermediateReleaseFllow|
portCantainer = Pllat Production b

portGontEiner = Intermediat

output = IntermedialeReleaseFlowd
ases | portContamer = nlermediateRelcases

[PotContainePart FortContainerFort

IntermedisteReleases : Store

supportedCapability = Engineering

leaserlowd

BetaReleaseQutput :

InputPort QutputPort
input = PllatFraod output = GetaReleaserion

portContaingr
Design

portContaingr = Finalize Design

: FlowSaurce

- FlowTarg

FlowSource - FlowTarget
PilotProductOutput : BataRelsaseinput :
QuiputPort InputPort
output = PllotProductlow input = Betal

portContaingr = Products
PortC antal

portContaner

Innavaton
Fort &

Products : Stare

duratian

resoul 1
storeContext = ManageReleaseDeiCntd,
ManageFumiimentDelCntd

storeOwner = 580

supportedCapability = ProductDelivery

Figure 70. Release Management method’s activity network objects (for Engineer performer role)

Object Diagram MyCo Business [[Release Managemert Method - Activity Network - Producer | | | oo
g roducer : Perf

method = ReleaseManagementMethod
performedWork = Pilot Production
roleAssignment = ProducerAssignment

Pilot Production : Activity

.appliedCapabilityOﬁsr = ProductionManagement |

capabilityRequirement = Production

Management

collaboration = ReleaseManagementMethod

containedPort = IntermediateReleaselnput2,
| PilotWorkOrderinput, PilotProdReportOutput

delegationContext = PilotProductionDelCntxt

performingRole = Producer

: PortContainerPort

{ performedWarkPerfarmingRole

PortContainerFort
Int: diateR : InputPort PilotWorkOrderinput : InputPort
input = IntermediateReleaseFlow2 input = PilotWorkOrderFlow
inputDelegati t liateRel InputDelegati inputDelegation = PilotWorkOrderinputDelegation

portContainer = Pilot Production

portContainer = Pilot Production
- FlowTarget
IntermediateReleaseFlow? : DeliverableFlow

collaboration = ReleaseManagementMethod
deliverable = IntermediateRelease

provider = IntermediateReleaseCutput2
recipient = IntermediateReleaselnput2

: FlowSource
Rel Output2 : QutputPort

output = IntermediateReleaseFlow2
portContainer = IntermediateReleases

: PortContainerPort

IntermediateReleases : Store
containedPort = IntermediateReleaselnput1,
IntermediateReleaseOutput2,
IntermediateReleaseOutput3
resource = IntermediateRelease
storeContext = ManageReleaseDelCnixt
storeOwner = R&D
supportedCapability = Engineering

: PortContainerPort

PilotProdReportOutput : QutputPort
output = PilotProductionReportFlow
outputDelegation = PilotProdReportOutputDelegation
portContainer = Pilot Production

FlowSaur
P\IotPrcductianRaonFlnw : DeliverableFlow
collaboration = ReleaseManagementMethod
deliverable = PilotProductionReport
PilotPredReportOutput

provide
recipient = PilotProdReportinput

FlowTarget
PilotProdReportinput : InputPort

input = PilotProductionReportFlow
portContainer = Finalize Design

Figure 71. Release Management method’s activity network objects (for Producer performer role)

Copyright © NEFFICS Consortium 2010-2013

Page 59 / 117

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

Object Diagram MyCo Business| Release Management Method - Activity Networlc - Product Manager ﬂ

performedWarkPerformingRole

ProductManager : Performer

performedWarkPerformingRole

ActivityResourceUse

ApprovedideasUse : ResourceUse

activity = Scope Release
resource = AppravedideaFromstareinput

Scope Release : Activity
appliedCapabilityOffer = ReleasePlanning
capabilityRequirement = Release Planning

method = R 1agementMethod
performedWark = Scaope Release, Launch
Innovation

roleAssignment = ProductianagerAssignment
roleResource = PMResourcelnput?,
PMResourcelnput2

collaboration = Ry 1agementiethod
containedPart = ApprovedideaFromStoreinput,
EngWoOutput, PMREsoUrcelnput2
performingRole = ProductiManager
resourceUse = PMResource2Use,
ApprovedideasUse

PortContainerPart

|

Launch Innovation : Activity
appliedCapabilityOffer = Marketintroduction
capabilityRequirement = Market Introduction
collaboration = ReleaseManagementiethad
containedPart = InnovationOutputLl,
BetaReleaselnput, PMResourcelnput1,
FinalReleaseToStoreOutput

perfarmingRale = PraductManager
resourceUse = PMResource1Use

POftCe rPort

ResourceResourcelse : PartContainerPort : PartContainerPart

PartContainerPort

BetaReleaselnput : FinalReleaseToStoreOutput : InnovationOutputLl : QutputPort
InputPort OutputPort delegatedOutput = InnovationOUtpUtRmmInternalDelegation
input = BetaReleaseFlow | output = FinalReleaseTaStoreFlow | partContainer = Launch Innavation
portContainer = Launch portContainer = Launch Innavation
Innovation

ApprovedideaFromStorelnput : EngWoOutput : OutputPort
InputPort output = EngineeringWarkorderFlow

input = AppravedideaFromstareFlow | portContainer = Scope Release

portContainer = Scope Release

resourceUse = ApprovedideasUse

FlowTarget : FlowSource

ApprovedideaFromStoreFlow :
DeliverableFlow

EngineeringWorkOrderFlow :
DeliverableFlow

- FlowSaurce

FlowTarget

ApprovedideaFromStoreOutput : EngWolnput : InputPort

OutputPort inpLt = EngineeringWarkorderFlow
output = AppravedldeaFromStareFlaw portCantainer = Create Initial
portContainer = Appravedideas Design

: PartContainerPart

Approvedideas : Store
containedPort = ApprovedideaT oStarelnput,

FlowSource

FinalReleaseToStoreFlow :
DeliverableFlow

FlowTarget

FinalReleaseToStorelnput :
InputPort

input = FinalReleaseToStoreFlow
portContainer = FinalReleases

PortContainerPort

FinalReleases : Store
containedPort = FinalRelease ToStorelnput,

ApprovedideaFromStare Output
resource = Approvedidea

stareContext = OverallScenaria
stareOwner = R&D

supportedCapability = IdeaManagement

FinalReleaseOutput
measuredCharacteristic = Margin
resource = FinalRelease
stareContext = OverallScenario
stareOwner = R&D
supportedCapability = Engineering

Figure 72. Release Management method’s activity network objects (for Product Manager performer role)

Note in Figure 72 that no deliverable flow has been modeled to convey the Innovation output of the
Launch Innovation activity. This corresponds with the small “bottom-left pyramid” shape, representing
a “boundary” port, in the activity network mockup in Figure 67. And this is because the corresponding
output port is delegated from the output port on the “boundary” of the Release Management method,
which is itself delegated from the output port of the Manage Release activity in the Innovation
Management method. The Innovation output in the business network itself is delegated, in multiple
steps, all the way down to the Innovation output of the Launch Innovation activity in the Release
Management method. The business item that denotes the Innovation going to the market, as well as
the deliverable flow conveying it to the market, are only defined in the business network. From there it
is just delegated to ports that do not connect to a deliverable flow themselves.

As the mockup of the activity network of the Release Management method in Figure 67 suggests, the
Pilot Production activity, performed by the Producer, delegates its work to another collaboration. The
object diagram in Figure 73 shows that it delegates to the Production Management capability method.
As discussed earlier (see e.g. Figure 39 and Figure 40) this method supports the Production Management
capability offer of the Trailer Plant. This capability offer is applied, given the capability requirement of
the Pilot Production activity (it requires a Product Management capability). Figure 73 also shows
delegation of two input ports and one output port to the corresponding ports on the “boundary” of the
Production Management method.

Page 60/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

Object Dlagram WyCo Business | (S Pilot Production Delegation |J

ProductionManagement :
CapabilityOffer

applyingActivity = Pilot Production,

ActivityAppliedCapabilityOffer

Pilot Production : Activity
appliedCapabilityOffer = ProductionManagement
c

1 ment = Praduction Management
collaboration = ReleaseManagementMethod

Manage Production

capability = Production Management
capabilityPravider = TrailerPlant

method = ProductionManagementivethod

IntermediateReleaselnput2 : InputPort
input = IntermediateReleaseFlow2
InputD: = IntermediateR
portContainer = Pilot Production

InputDeleaationSource
IntermediateReleaseinputDelegation :
InputDelegation
portDelegationContext = PilotPraductionDelCnbd
source = IntermediateReleaselnput2

target = ReleaselnputPM

Delegation

InputDelggationTarget

ReleaselnputPM : InputPort
delegatedinput = IntermediateReleaselnputDelegation,
FinalReleaselnputDelegation
IinputDefinition = Release
inputDelegation = ReleaseinputinternalDelegation
portContainer = ProductionManagementMethad

PortContainerPort Farhiedtor - nput2
PllatworkOrderinput, PilotProdReportOutput
PortContainerPart delegationConte:xt = PilatProductionDelCnbd

PilotWorkOrderinput : InputPort
Input = PilatWarkOrderFlow
InputDelegation = PilotwarkOrderinputDelegation
portContainer = Pilot Production

- InputDeleqationSource
PilotWorkOrderinputDelegation :
InputDelegation
portDelegationContext = PilotPraductionDelCnbd

source = PilotWorkOrderinput
target = PraductionWorkOrderinputPM

De\egat\4nconte.«FonDe\egatmn

PortContainerPort

performingRole = Producer

PilotProdReportOutput : OutputPort
output = PllotProductionRepartFlow
outputDelegation = PilatProdReportOutputDelegation
partContainer = Pliot Production
| _DulputDelEgationsource
PilotProdReportOutputDelegation :
OutputDelegation

portDelegationContext = PilotPraductionDelCnbd

source = PilotProdReportOutput

target = PraductionReportOutputPi

De\e?anancumeﬂpfnue\eganan

DelegatedActivityDelegationCantext

PilotProductionDelCntxt . DelegationContext

contextBasedAssignment = PilotProdOperatorAssignment,
PilotProdOperatorAssignment2
contexBasedPortDelegation = PilotProdReportOutputDelegation,
PilotwWorkOrderinputDelegation,
IntermediateReleaselnputDelegation
contextCallaboration = ProductionManagementMethod
contetObservation = PllotProductionDelCnbdObservation

: InputDeleqatipnTarqet

DelegationContextPartDelegation
ProductionWorkOrderinputPM : InputPort

delegatedinput = PllotWorkOrderinputDelegation
‘WarkOrderinputDelegation
inputDefinition = ProductionWarkOrder

inputDelegation = ProductionWarkOrderinputinternalDelegation

portContainer = ProductionManagementMethod

. PortContainerPort

PortContainerPort

deleqatedActvity = Pilat Production
parentContext = ManageReleaseDelCnbd

OutputDelegationTarget

ProductionReportOutputPM : OutputPort

delegatedOutput = PilotProdReportOutputDelegation,
A DE\EQE(IU"CUH[EXYCUl\EDU[d[logmducnnnggpnnompmngega[ian

outputDefinition = ProductionRepart

outputDelegation = ProductionReportOutputinternalDelegation

portContainer = ProductionManagementMethod

ProductionManagementMethod : CapabilityMethod

activity = Build Product - PortContainerPort
callaborationRole = Operatar
containedPort = ProductionReportOutputPM,
ProductionWorkOrderinputPM, ReleaselnputPM
delegationContext = ManageProductionDelCnbid,
PilotPraductionDelCntxt

flow = ProductToStoreFlow, ProductionLevel2ResourceFlow,
Productionl evellResourceFlow

internalPortDelegation = ProductionReportOutputinternalDelegation,
ProductionWorkOrderinputinternalDelegation,
ReleaselnputinternalDelegation

methodOwner = TrailerPlant

performer = Operator

supportedCapability = PraductionManagement

Figure 73. Delegation to Production Management method, from Pilot Production (objects)

Given that the Producer role in the Release Management method is performing the Pilot Production
activity, and given that this activity delegates its work to the Production Management method of the
Trailer Plant, it is obvious that the Trailer Plant is assigned the Producer role. The objects that defined
this assignment are contained in the object diagram in Figure 74.

Object Diagram MyCo Business| [sg Release Management Method - Assignment - Producer IJ

ReleaseManagementMethod : CapabilityMethod
activity = Launch Innovation, Scope Release, Create Initial

MethodPerfarmer M. d

Producer : Performer
method = Rel

Design, Finalize Design, Pilot Production

businessltem = EngineeringWorkOrder, PilotWorkOrder,
BetaRelease, PilotProductionReport

containedPort = InnovationQutputRM

delegationConlext = ManageReleaseDelCnixt

flow = ApprovedideaFromStoreFlow, EngineeringWerkOrderFlow,
IntermediateReleaseFlow2, IntermediateReleaseFlow3,
IntermediateReleaseFllow1, PilotWorkOrderFlow,
PilotProductionReportFlow, PilotProductFlow,
FinalReleaseToStoreFlow, BetaReleaseFlow,
PMResourceFlow1, EngineerResourceFlow1,

F Low2, low2
internalPortDelegation = InnovationOutputRmminternalDelegation
methodOwner = R&D

ownedAssignment = ProductManagerAssignment,
EngineerAssignment, ProducerAssignment

performer = ProductManager, Engineer, Producer
supportedCapability = ReleaseManagement

: CollaborationOwnedAssignment

performedWork = Pilot Production
roleAssignment = ProducerAssignment

RoleAssignment

ProducerAssignment : Assignment
assignedRole = Producer
collaboration = ReleaseManagementMethod
participant = TrailerPlant

ParticipantAssignment

TrailerPlant : Olgunﬂ
assignment = Plant1Assignment, ProducerAssignment
businessitem = ProductionLevel1Resource,
ProductionLevel2Resource
capabilityOffer = ProductionManagement,
ProductionExecution
containingModel = MyCompanyModel

dMethod = P 1
ownedsStore = ProductionLevel1CapacityPool,
ProductionLevel2CapacityPool

Figure 74. Release Management method’s Producer role assignment objects

The objects in the object diagram in Figure 75 define assignment of Engineering resource, from the
Engineering Capacity pool, to the Engineer performer role in the Release Management method. The
metamodel concepts to support this have been discussed earlier, when we discussed about
assignment of product management resource to the Ideator role in the Innovation Management
method.

Copyright © NEFFICS Consortium 2010-2013 Page 61/ 117

VDML Manufacturing Use Case
bmi/2012-11-10

Object Diagram hiyCo Business| [&|Release Management Method - Assignment - Engineer u

ReleaseManagementMethod : CapabilityMethod

Create Initial Design : Activity
appliedCapabilityOffer = Engineering
capabilityRequirement = Engineering
collabaration = ReleaseManagementMethod
containedPort = EngWalnput,

CollabarationFlow

CollaborationActivity

activity = Launch Innavation, Scope Release, Create Initial Design,

CallabarationFlow

Finalize Design, Pilat Praduction

businessitem = EngineeringWarkQOrder, PilatWarkOrder,
BetaRelease, PilotProductionRepart

containedPart = InnovationOLtpUtRM

delegationContext = ManageReleaseDelCnbd

flow = ApprovedideaFromStareFlow, EngineeringWorkorderFlaw,
IntermediateReleaseFlow2, IntermediateReleaseFlows,
IntermediateReleaseFllow1, PilotWorkOrderFlaw,
PilotProductionReportFlow, PilotProductFlow,

. CallabarationActivity

]

appliedCapabilityOffer = Engineering
capabilityRequirement = Engineering
collaboration = ReleaseManagementiethod
containedPart = IntermediateReleaselnput3,

IntermediateReleaseCutput1,
PilotWorkQrderOutput,
EngineerResaurcelnput1
performingRole = Engineer
resourcelse = EngineerResource1Use

[ActivityResourceUse
EngineerResourceiUse :
ResourceUse

activity = Create Initial Design
resource = EngineerResourcelnput1

PilotPFrodReportinput, PilotProductinput,
BetaReleaseOutput,
EngineerResourcelnput2
performingRole = Engineer
resourceUse = EngineerResource2Use

‘ ActivityResourcellse

EngineerResource2Use :
ResourceUse

activity = Finalize Design
resource = EngineerResourcelnput2

FinalReleaseToStoreFlow, BetaReleaseF|ow, PMResourceFlowt,
EngineerResourceFlow!, PMResourceFLow2,
EngineerResaurceFlow2

internalPortDelegation = InnovationOutputRmminternaDelegation
methodOwner = R&D

OwnedAssignment = ProductManagerAssignment,
EngineerAssignment, PraducerAssignment

performer = ProductiManager, Engineer, Producer
supportedCapability = ReleaseManagement

MethadPerfarmer
Engineer : Performer performedWorkPerformingRolel

methad = ReleaseManagementMethod
performedWork = Create Initial Design, Finalize
Design

roleAssignment = EngineerAssignment
roleResource = EngineerResourcelnput2,
EngineerResourcelnput1

1 performedWarkPerformingRole

PortCantainerPort

: ResourceResourcelse
|

ResourceResourcelse

EngineerResourceinput1 :
InputPort
Input = EngineerResourceFlow!
portCantainer = Create Initial Design
resourceUse = EngineerResource1Use
rale = Engineer

EngineerResourcelnput2 :
InputPort

RoleResaurce

input = EngineerResourceFlow2
portContainer = Finalize Design
resourceUse = EngineerResource2Use
rale = Engineer

CollaborationOwnedAssignment aleAssignment

EngineerAssignment : Assignment
assignableResource = EngineeringResource
assignedRole = Engineer
collaboration = ReleaseManagementiethod

‘ AssignableResourceAssignment

EngineeringResource :
Businessitem

FlowTarget

EngineerResourceFlow1
erableFlow

EngineerResourceFlow2
DeliverableFlow

FlowDeliverable FlowDeliverable |§

assignment = EngineerAssignment
collaboration = R&D

definition = EngineeringResource
flow = EngineerResourceFlowt,
EngineerResourceFlow2

store = EngineeringCapacity,
EngineeringCapacity

StoreResource

- FlowSource

FlowSource

EngineeringCapac ool

containedPart = Engineerkesourceoutputt,
EngineerresourceOutpLt2

resource = EngineeringResource
storeowner = R&D

suppartedCapability = Engineering

EngineerResourceOutputi :
OutputPort
output = EngineerResourceFlow1
portCaontainer = EngineeringCapacity

EngineerResourceOutput2 :
OutputPort
output = EngineerResourceFlow2
portCaontainer = EngineeringCapacity

PartContainerPart

: PortContainerPart

Figure 75. Release Management method’s Engineer role assignment objects

In a similar way, product management resource, from the Product Management Capacity pool of R&D
is assigned to the Product Manager role in the Release Management method. This is defined by the
objects in the object diagram in Figure 76.

Page 62 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

Object Diagram MyCo Business [[Releass Management Method - Assignmen - FIA U

CallaborationFlaw

: CollaborationActivity

Scope Release : Acti

appliedCapabilityOffe eleasePlanning
capabilityRequirement = Release Planning
collaboration = ReleaseManagementMethod
containedPort = ApprovedideaFromStorelnput,
EngwoOutput, PMResoUrcelnput2

performingRale = ProductManager

resourcelUse = PMResource2Use, ApprovedideasUse

PartCaontainerPol

: ActivityResourceUse
PMResource2Use :
ResourceUse
activity = Scope Release
resource = PMResourcelnput2

ReleaseManagementMethod : CapabilityMethod

activity = Launch Innovation, Scope Release, Create Initial

CollaborationFlow

Design, Finalize Design, Pilot Production

businessitem = EngineeringWarkQrder, PilotWorkOrder,
BetaRelease, PilotPraductionReport

containedPort = InnovationOutputRM

delegationContext = ManageReleaseDelCntxt

flow = ApprovedideaFromstoreF|ow, EngineeringWorkorderFlow,
Interme | Flow2, Interme I Flow3,
IntermediateReleaseFllow1, PilotWorkOrderFlow,
PilatProductionReportFlow, PilotProductFlow,
FinalReleaseToStoreFlow, BetaReleaseFlow, PMResourceFlowT,
EngineerResourceFlow1, PVMResourceFLow2,
EngineerResourceFlow2

internalPortDelegation = InnavationOutputRmminternalDelegation
methodCwner = R&D

ownedAssignment = ProductiManagerAssignment,
EngineerAssignment, ProducerAssignment

performer = PraductManager, Engineer, Producer
supportedCapability = ReleaseManagement

CallaborationOwnedAssignment
ProductManager : Performer ‘

: MethodPerformer

ResourceResourcelse

PMResourcelnput2 : InputPort

performedWarkPerfarmingRole method = R 1agementMethod
perfarmedWork = Scope Release, Launch
Innavation

: RoleResaurce

CaollaborationActivity

]

perfarmedWorkPerformingRp

Launch Innovation : Activity
appliedCapabilityOffer = Marketintroduction
capabilityRequirement = Market Introduction
collaboration = ReleaseManagementMethod
containedPart = InnovationOutputL,
BetaReleaseinput, PMREsOUrCEINpuUtt,
FinalRelease TaStoreOutput
performingRale = PraductManager
resourcelse = PMResource1Use

PortContainerPart

ActivityResourcellse

PMResourcelUse :
ResourceUse
activity = Launch Innovation
resaurce = PMResourcelnputt

o

roleAssignment = ProductManagerAssignment
roleResource = PMResourcelnputt,

input = PMResourceFLow2
portContainer = Scope Release
resourcelse = PMResource2Use
role = ProductManager

FlowTarget

. FlowDeliverable

PMResourcelnput2

I RoleAssignment
ProductManagerAssignment :
Assighment
assignableResource = ProdivigmtResource
assignedRole = PraductManager
collaboration = ReleaseManagementiethod

AssignableResourceAssignment

ProdMgmtResource : Businessitem

assignment = IdeatorAssignment,

FlowSource

PMResourceOutput2 : OutputPort

output = PMResourceFLow2
portContainer = PraductManagementCapacity

ProductManagementCapaci

containedPort = IdeatorResourceOutput,
PMResourceOutput!,
PMResourceOutput?
resource = ProdMgmtResource
storeOwner = R&D

PortContainerPort supportedCapability = IdeaManagement,
T | Marketintroduction, ReleasePlanning

ProductManagerAssignment
collaboration = R&D

definition = ProductManagementResource
flow = |deatorResourceFiow,
PMResourceFlow1, PMResourceFLow2
store = ProductManagementCaparcity

ool

PaortContainerPort

RoleResource

FlowDeliverable

: #suur:eﬂesuurceuw

PMResourcelnputi :
InputPort
input = PMResourceFlowl
portContainer = Launch
Innovation
resourceUse = PMResourceUse
role = ProductManager

FlowTarget

PMResourceFlow1 : DeliverableFlow

0d

: FlowSaurce

PMResourceQutput1 : OutputPort
output = PMResourceFlow1

partCantainer = PraductManagementCapacity

Figure 76. Release Management method’s Product Manager role assignment objects

The XTrailer business network is concerned with both innovation and fulfillment. Structural and
behavioral parts that relate to innovation, as well as to the involvement of production in innovation,
have been discussed in detail so-far. In the remainder of this section the discussion will focus on what
is behind the fulfillment part. The sub-scope of the use case that relates to this is highlighted in the use

case overview diagram in Figure 77.

Copyright © NEFFICS Consortium 2010-2013

Page 63 /117

VDML Manufacturing Use Case
bmi/2012-11-10

Product

¥

Figure 77. Use case overview: Fulfillment part highlighted

We will in particular discuss the Manage Production activity of the Fulfilment Management method
imposes a second delegation context on the Product Management method, as it is involved for both
pilot production in release management and “commercial’ production in fulfilment management.

Figure 78 shows the objects that are involved in delegating the work of the Manage Fulfillment activity in

the business network. For convenience, the reader might

again lookup that activity in the activity

network mockup of the business network in Figure 42. The activity delegates to the Fulfillment
Management method that supports the Fulfilment Management capability offer of S&D. All metamodel

constructs that support this have been discussed before.

‘Oblect Diagram MyCo Business [i Manag Futiment Deegation ||

ActivityAppliedCapabilityOffer

Manage Fulfill
appliedCapabilityOffe
capabilityRequirement = Fulfillment
Management

collaboration = XTrailerBusiness
containedPort = ProductOutput,
OrderFromStorelnput

Activi

FulfilimentManagment : CapabilityOffer
applyingActivity = Manage Fulfilment
capability = Fulfilment Management
capabilityProvider = S&D
method = FulfillmentManagementMethod

ulﬁllm;ﬁﬁdianagmanl

ontext = ulfillmentDelCntxt
OrderFremSterelnput : InputPort PortCi i ole = | er
input = OrderFromStoreFlow T =
inputD = OrderlnputDel DelegatedActivityDelegationContext
portContainer = Manage Fulfillment ManageFulfilimentDelCntxt : DelegationContext
contextBasedPortD 1= OrderlnputD

PortContainerPort

ProductOutput : OutputPort
output = ProductFlow
outputDelegation = ProductOutputDelegation
portContainer = Manage Fulfillment
valueAdd = FairPrice, LateSpecFreeze

DelegationContextPartDelegaffioductOutputDelegation
InputDelegationSource
OrderinputDelegation : InputD:
portDelegationContext = ManageFulfillmentDelCntxt
source = OrderFromStorelnput
target = OrderlnputFM

contextStore = Products

delegatedActivity = Manage Fulfillment
delegationtContext = M PraductionDelCntxt
parentContext = OverallScenario

InputDelegationTarget

OrderinputFM : InputPort
g put = OrderinputDeleg; 1
inputDelegation = O p
portContainer = FulfillmentManagementMethod

PartContainerPort

FulfillmentManagementMethod : CapabilityMethod

Deleaati i "

= WorkOrder, ProductionReport
collaborationRole = LogisticHandler

containedPort = OrderinputFM, ProductOutputFi
delegationContext = ManageFulfillmentDelCnixt

flow = WorkOrderFlow, ProductionReportFlow,
FinalReleaseFromStoreFlow, ProductFromStoreFlow,

ProductOutputFmminternalDelegation

methodOwner = S&D

ownedAssignment = OrderProcessorAssignment,
Logistict ig ProducerAssig

performer = Producer, OrderProcessor, LogisticHandler
supportedCapability = Fulfillmentianagment

contextCollaboration = FulfillmentManagementMethod
contextObservation = ManageFulfilmentDelCntxtObservation

: DelegationContextCallabaration

activity = Plan Fulfillment, Manage Production, Deliver Product

OrderProcessorResourceFlow, LogisticHandlerResourceFlow
internalPortDelegation = OrderinputFmminternalDelegation,

~Lelegabont ontexiPortDelegation o a -
DelegationContextPortDelegation . OutpulDelegationSource

ProductOutputD ion ; O
poriD ontext =
source = ProductOutput

target = ProductOutputFM

DelCnixt

OutputDelenationTarget

ProductOutputFM : OutputPort
delegatedOutput = ProductOutputDelegation
outputDelegation = ProductOutputFmminternalDelegation
portContainer = FulfilmentManagementMethod
valueAdd = ShortProductL T

PartContainerPort

Figure 78. Delegation to Fulfillment Management method (objects)

Page 64 /117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

Figure 79 shows the activity network mockup of the Fulfilment Management method.

- 2 Order
La Plan
o § Fulfillment
o Work order
@
o
=]
B Final releases
o Final release)
Production report
Product
©%
2o
| =
gs
4T Product
Products

Figure 79. Fulfilment Management method’s activity network mockup

The corresponding objects are contained in the object diagram of Figure 80. As the two connectors in
the mockup in Figure 79 map to port delegations, rather than to deliverable flows directly, it is clear why
the diagram in Figure 80 contains four deliverable flow objects, rather than six. Similar situations have
been discussed earlier, in relation to other activity networks of other capability methods.

Object Diagram MyCo Dusiness | [Futfiment Managemen Method - Activty Network | |

Einal a5 : Store
containedPort = FinalRelease ToStoreinput
FinalReleaseOutput
measuredCharactenstc = Margin
resource = FinalRelease
storeContet = OverallScenana
storeCrner = RED
supportecCapablity = Engineering

FlowTargel

InputPort
input = ProductionRepartFlow
portContainer = Delver
Product

FartContainerfort

FartCantainarart

FinalReleaseOutput : QutputPort

FinalRel#aseFromstoraFlow @

- FlowSource

| FlowTarget input = FinalRel

FinalRele#assinput ; INputFore

output = FinalRel Fi toreFlow
portContainer = FinalR

F Output : OutputPort

outputDelegation = ProductionReportOutputDelegation
portContainer = Manage Froduction

L Panc

. Parc:ontainerFort

[1

inputDelegation = FinalReleaseinputDelegation
portCantainer = Manage Production

| PortContainerPart

Manage Production : Activity
Toductioniana;
2

[ParCantainarFart I

Deliver Product : Activity
applicdCapabili

capabilityRequ

oty
ery

ethad
Braductinput

resourcelise = LogisticHandlerResourcellse, Productuse

A ActvityResourcellse

P WarkOrdarinput : InputPart

Input = ProductFromsStoreFlow
partContainer = Deltver
Product

resourcellse = ProductUse

input = WorkOrderFlow
inputDelegation = WorkOrderinpuiDelegation
portContainer = Manage Production

- FlowTargel

FroductUse : ResourceUse WorkOrderFlo

activity = Delver Product

_ perlormedWarkPerlurmingrale
LagisticHandlar : Parformar

collabaration = Fulfilim
method = Fulfiimentiana,
performedWork = Deliver Product
roleAssignment = LogisticHandler&ssignment

roleResource = LogisticHandleresourceinput

gthad

: PortContamerFort

ProductOutput : SutputPort
delegatedOutput = ProductOutputFmminternalDelegation
portContainer = Deliver Product
valugAdd = ShortProduct. T

Products : Stors

containedPart = PilotProductoutput.
ProductToStoreinput, ProductOutput
duration = ProductStorageDuration
resource = Product

storeContext = ManageRelcaseDelCntd,
ManageF ufilmenteCntd

storeCrwner = SE0

suppartedCapabllity = ProductDelvery

. PurtConlainerParl

deliverable = ProductOutput
duration = ProductUseDuration
resource = Productinput

WorkOrderQutpu
OutputP
oulpul = WorldOrderFlow
portContainer = Plan
Fuitillment

DependsntResnurcalisaDelverabie FlowSalrce

PraductOutput : OutputPort
output = FroductF romStoreF low
portContaingr = Products

resourcelse = Productuse
walueAdd = ShorlProductionl T

orderProcessor : Ferformer

method = Fulflimentianagementidathad

OrderProcessorResourcelnpul

roleResourc

: PortContaimerFort P

imentManagementMethod
containedPort = FinalRelcaseinput,
PraductonRepartOu, arkOrdernput
[fanCantext = ManageFraoductionDelCnbd
perfarmingRiale = Producer

performedWorkPerformingRole

[Froducer : Ferfarmer

method = Fulfilimentianagementiathod
perfarmedWark = M Froduction
roleAssignment = Producerssignment

Orderinput : InputPort

g tt=0 P Delegat
partContainer = Flan Fulfiliment
PartCantainerPart

performingRaol
Tesourcels:

. performedWarkP erformingriale

Figure 80. Fulfillment Management method’s activity network objects

The object diagram in Figure 81 contains the objects that define how the Order input and Product output
on the “boundary” of the Fulfillment Management method are delegated to corresponding ports of

Copyright © NEFFICS Consortium 2010-2013 Page 65/ 117

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

activities inside the method. Similar constructs have been discussed in relation to the Innovation
Management and Release Management methods earlier.

Manuu-n iyCa Busness | [Manage Fussimens Delegaeen - reernal ||

FodContansror

CrderinputFM : InpuiPort

aclivity = Plan Fulfiliment, Manage Ploducuon Deliver
Product
businessnam WorkOrder, ProductionReport

PoriConty

PreductOutputFM : OutputPort

tedinpul = OrderinputDel I s Lt delegatedOutput = Produ:lOmpulDalegmlan
Inpu‘lDeIagaiion o P IDelegati ab ole = LagisticHandler outpuiDelegation = Prod ; IDelegat
portC = Fulfill c =0 putFM. ProductOutputFM poriC = Fulfill
A i e valusAdd = ShortProductLT
N flow = WorkOrderFlow, P \ReportFlow, -
-oaufisienatondaucs FinalReleaseFromStoreFlow. ProductFromStoreFlow,
L CollgborationinternatontDelegation | Orderf eFlow, LogisticHandler low | termalPortDelegation |~JutpuiDelegat
internalPortDelegation = O p legati
P o £r
collaboration = Fulfil o~ melhodOwner=S&=Dc _:w;;‘ﬂ-l-gaﬂon
source = OrderinputFM LT Spy e = d
target = Orderinput L source = ProductOutpulFM
perrormel = Producer, OrderProcessor, LogislicHandler target = ProductOutput
| npuDetegabanTarget PP apability = Fulfil g)
- OutpisDislagationTargat
Orderinput : InputPert ProductOutput ; OutputPort
= O N . dOutput =
P Collabarationctivit ollbior aticnAC :
portCentainer = Plan Fulfilment ¢ COBLRATY b orContalner = Deliver Product

PonContanserFart

Plan Fulfillment : Activity

appliedCapabilityOffer = FulfilmentPlanning
Fulfillment Planning

capabiltyRequirement =
= Fulfill

valueAdd = ShortProductL T

| PanCantaineParn

Daliver Produst ; Astivity

.appllodCapabllltyOﬂ'er = ProductDelivery
capabilityRequirement = Product Delivery

containedPort = Orderinput,
WorkOrderOutput,

CrderProcessorResourcelnput

= Orderf

Use = OrderP:

dPart = Py input,

Productinput, Pruuu:loutpm
LogisticHandlerResourcelnput
palformthnic = chlsll:HnndIir

reellse

Isg = |

Use,

Produ:ll._lsa

Figure 81. Fulfillment Management method’s internal delegation objects

The objects in the object diagram in Figure 82 define assignment of Order Processing resource, from the
Order Processing Capacity pool, to the Order Processor performer role in the Fufillment Management
method. Underlying metamodel concepts have been discussed earlier, in relation to similar constructs

in the Innovation Management and Release Management methods.

[o] Jse :
activity = Plan Fulfillment
resource = OrderProcessorResourcelnput

sourceUse

[o] : InputPort
input = OrderProcessorResourceFlow
portContainer = Plan Fulfillment
resourcelse = OrderProcessingResourceUse
role = OrderProcessor

FlowTarget

OrderProcessorResourceFlow : DeliverableFlow

collaboration = FulfillmentManagementMethod

deliverable = OrderProcessingResource
rderProcessorResourceQutput
OrderProcessorResourcelnput

. FlowSource

OrderP: Ry

Output : OutputPort
output = OrderProcessorResourceFlow
pertContainer = OrderProcessingCapacity

[PortCantainerPort

| Object Diagram HyCo Business [[Fulfimert Management Method - Assignmert - Order Processor |] |

ActwvityResourceUse

PortContainerPort

RoleResource

OrderProcessingCapacity : Pool

resource = OrderProcessingResource
storeOwner = S&D
supportedCapability = FulfilmentPlanning

containedPort = OrderProcessorResourceQutput

Plan Fulfilimes ity
appliedCapabilityOffer = FulfillmentPlanning
capabilityRequirement = Fulfillment Planning
collaboration = FulfilmentManagementMethod
containedPort = Orderinput,
WorkOrderOutput,
OrderProcessorResourcelnput
performingRole = OrderProcessor
resourceUse = OrderProcessingResourcelUse

: CollaborationActivity

FulfillmentManagementMethod : CapabilityMethod

acllvﬂy Plan Fulfillment, Manage Production, Deliver Product

per ingRole

= WorkOrder, ProductionReport

collaborationRole = LogisticHandler

'ort = OrderinputFM, ProductOutputFM

OrderProcessor : Performer

ontext = ulfillmentDelCntxt

method = FulfillmentManagementMethod
performeciWork = Plan Fulfilment

flow = WorkOrderFlow, ProductionReportFlow,
FinalReleaseFromStoreFlow, ProductFromStoreFlow,

= OrderP it OrderP: low, LogisticHandlerResourceFlow
roleResource = OrderProcassnrResaur:elnput internalPortD =0r ‘mminternalDelegation,
ProductOutputFmminternalDelegation
: FlowDeliverable methodOwner = S&D
MethodPerformer Sorcer

O

i = OrderP i it
collaborallon S&D

= OrderP) Resource
flow = OrderProcessorResourceFlow
store = OrderP apacity

RoleAssignment

LogisticHandlerAssignment, ProducerAssignment
performer = Producer, OrderProcessor, LogisticHandler
supportedCapability = FulfillmentManagment

dAssignment

ceAssignment

OrderF

urce = OrderP
a55|gneanle OrderProcessor
tion = FulfillmentM;

CallabarationF low

Figure 82. Fulfillment Management method’s Order Processor role assignment objects

Similarly, the object diagram in Figure 83 contains the objects that model assignment of role resource to
the Logistic Handler performer role.

Page 66 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

Object Dlagram MyCo Busness | il FUSEman Managemant Mathed . ASSgrment . Logete Hander |

LagisticHandlerResourcelse : Rescurcellse

activity = Daliver Product
resource = LogisticHandlerResourcelnput

Deliver Product : Activity

_ActiaResourcelistappliedCapabilityOffer = ProductDalivery
capabllityRequirement = Product Delivery
cnllaborutlorl =F g

oM =F

Productl‘npui Producloulplﬂ
LogisticHandlerResourcelnput
performingRole = LogisticHandler

ResourceResouwcellse

Legistic :InputPort

Eulfillmentianagementiethod : CapabiliyMethod
activity = Plan Fulfiliment, Manage Production, Deliver Product
businessitem = WomOrder ProductionReport

ole sticHandler

PonContaineror]

Use = Logistict else,

input = LogisticHandlerResourceFlow
ProductUse

poriContainer = Deliver Producl

role = Logistic Handler

rcellse performedWatkPerformingRale

~BehiBesqurce LogisticHandler : Parformer

collaberation = FulfilmeniManagementMethod
method = FulfilmentManagementMethod
pnrfarrniqurk Deliver Pluducl

| _FlwTarget
LogisticHandlerResou DeliverableFlow
collaboral = FulfillmentManagementMethod
deliverable = LogisticHandlingResource

P

ticHandlerResourceQutput

FlonedDetnverabile™

{r\llahm ationRols

contalnedF'ori OrderinputFM, ProductOutputFM

ontext = ulfillmentDelCnixd
flow = WorkOrderFlow, ProductionReporiFlow,
FinalReleaseFromStoreFlow, ProductFromStoreFlow,
OrdeercessorResourceFluw LogisticHandlerResourceFlow
internalPor
ProdudOLﬂpuiFrnmlntemalDeIegailon
mulhndOwnur =S&D

t = OrderProc

peﬁormer Producel OrderFlocessur Lc:gl.slchandler
suppurtadtapuhlllty FulfillmentManagment

CaollabarationCrwnedAssignmant

Logist T Legist
oulput = Logistict Flow = Loglstick g
poriC: iner = L gCapacity cullahormlon S&D N
= I.v IsticH RoleAssignment
ForContainePart flow = LoglslncHandlerResourcoFlaw
store = LogisticHandlingCapacity
LogisticHandlingCapacity : Pool | Logl
AssignableResourceAssignment
isticHar ireeOutput i Resource = L

= Logistick
sloreOwner = S&D

= Fulfill

us:lgnaﬂRnln = LogisticHandler
i

supportedCapability = ProductDelivery

CaollaborationFlow

Figure 83. Fulfillment Management method’s Logistic Handler role assignment objects

As the object diagram in Figure 84 suggests, the Producer role in the Fufillment Management method is

assigned to the Trailer Plant.

Object Diagram WyCo Business | i Fulfiiment Management Method - Assignmert - Producer U

FulfilimentManagementMethod : CapabilityMethod MethadPerfarmer

Producer : Performer

activity = Plan Fulfillment, Manage Production, Deliver Product
businessitem = WorkOrder, ProductionReport
collaborationRole = LogisticHandler

method = Fu|ﬂ||men1ManégementMe1hod
performedWork = Manage Production
roleAssignment = ProducerAssignment

cuntalnedPorl OrderinputFM, ProductOutputFM
legationContext = M FulfilmentDelCntxt

flow = WorkOrderFlow, ProductionReportFlow,

FinalReleaseFromStoreFlow, ProductFromStoreFlow,

OrderProcessorResourceFlow, LogisticHandlerResourceFlow

internalPortDelegation = OrderinputFmminternalDelegation,

ProductOutputFmminternalDelegation

methodOwner = S&D

ownedAssignment = OrderProcessorAssignment,

: CollaborationOwnedAssignment

: RoleAssignment

ProducerAssignment : Assignment
assignedRole = Producer
collaboration = FulfillmentManagementMethod
participant = TrailerPlant

ParticipantAssignment

LogisticHandlerAssignment, ProducerAssignment
performer = Producer, OrderProcessor, LogisticHandler
supportedCapability = FulfillmentManagment

TrailerPlant : OrgUnit
assignment = Plant1Assignment,
ProducerAssignment
businessitem = ProductionLevel1Resource,
ProductionLevel2Resource
capabilityOffer = ProductionManagement,
ProductionExecution
containingModel = MyCompanyModel
ownedMethod = ProductionManagementMethod
ownedStore = ProductionLevel1CapacityPool,
ProductionLevel2CapacityPool

Figure 84. Fulfilment Management method’s Producer role assignment objects

And this is based on the fact that the Trailer Plant organization unit provides a capability offer for the
Product Management capability (see again the mockup in Figure 39), that is required by the Manage
Production activity, which is performed by the Producer role in the Fulfillment Management method.
The Manage Production activity delegates its work to the Production Management method of the
Trailer Plant, as is defined by the objects in the object diagram in Figure 85. Note that the delegation
involves three port delegations, from ports of the activity to ports on the “boundary” of the Product
Management method. Two of these delegated ports handle inputs: Final Release and Work Order.
One of them handles an output: Production Report.

Copyright © NEFFICS Consortium 2010-2013 Page 67 /117

VDML Manufacturing Use Case c
bmi/2012-11-10

Object Diagram HyCo Business | [Commercial Production Delegalion |

ProductionManagement : Manage Production : Activity
CapabilityOffer + ActivityAppliedCapabilityOffer —_———————————————
CapabilityOffer —————————————— 1 applisdCapabilityOffer = ProductionManagemesnt

applyingActivity = Pilot Production, capabilityRequirement = Production Management
Manage Production collaboration = FulfilmentManagementivethad

capability = Production Management _PanCaniainerad. containedPort = FinalReleaselnput,

capabilityProvider = TrailerPlant . ProductionReportOutput, WorkQrderinput PortContainerPaort
method = ProductionManagementiethad _ PortContainerPart delegationContext = ManageProductionDelCrbd
performingRole = Producer
FinalReleaselnput : InputPort WorkOrderinput : InputPort ProductionReportOutput : OutputPort
input = FinalReleaseFromStareFlow input = WorkOrderFlow output = ProductionReportFlow
inputDelegation = FinalReleaseinputDelegation | iInputDelegation = WorkOrderinputDelegation DelegatedActivityDeleationContext OUIPUIDEIEGATION = PraductionRepartOUtpUtDelegation
portContainer = Manage Production portCantainer = Manage Production portContainer = Manage Praduction
InputDelegationSource - InputDelegationSaurce ‘ OutputDelegationSource
WorkOrderinputDelegation : InputDelegation —‘DE‘E ationContePortDelegation Dele al\’iuﬂcuﬂtEﬁPUﬁDE\E ation ProductionReportOutputDelegation :
OutputDelegation

g e g v a0 30€ BroalictianelC ot ManageProductionDelCntxt : DelegationContext
source = WorkOrderinput

target = ProductionWarkOrderinputPM contextBasedAssignment = CommProdOperatorAssignment source = ProductionReportoutput

contextBasedPortDelegation = WorkOrderinputDelegation, target = ProductionReporOUtpLtPM
FinalReleaseinputDelegation,
ProductionReportOutputDelegation

contextCollaboration = ProductionManagementMethod
contextObservation = ManagePraductionDelCnbxtObservation
delegatedActivity = Manage Production

parentContext = ManageFulfilmentDe|Critxt

FinalR ion : InputD
portDelegationContext = ManageProductionDelcnnd L DelegationContextPortDelegation
source = FinalReleaselinput
target = ReleaseinputPM

InputDelegationTarget : DelegationCantextCallaboration
ProductionWorkOrderinputPM : InputPort ProductionManagementMethod : CapabilityMethod ProductionReportOutputPM : OutputPort
delegatedinput = PilotWorkOrderinputDelegation, activity = Build Product delegatedOutput = PilotProdReportOutputDelegation,
WarkOrderinputDelegation collaborationRale = Operator ProductionReportOutputDelegation
inputDefintion = Productionworkorder containedPort = ProductionRepartOutputPh, outputDefinition = ProductionRepart
inputDelegation = PraductionWorkOrderinputinternalDelegation | | ProductionWorkOrdernputPM, ReleaseinputPiv outputDelegation = ProductionReportOutputinternalDelegation
portContainer = ProductionManagementiMethod delegationContext = ManageProductionDelCntxt, portContainer = PraductionManagementMethod
PilotProductionDelCrtd
\nputDelegationTaraet PUﬂ¢Uﬂta\ﬂErF‘Ul‘l flow = ProductToStareFlow, Productionlevel2ResourceFlow,
nputbelegation Tard=t ProductionLevel1ResourceFlow
ReleaselnputPM : InputPort internalPortDelegation = ProductionReportOutputinternalDelegation,
delegatedinput = IntermediateReleaseinputDelegation, PortContainerPort | ProductionWarkOrderinputinternalDelegation,
FinalReleaselnputDelegation R 1putinternalDelegation
inputDefinition = Release methodOwner = TrailerPlant
inputDelegation = ReleaselnputinternalDelegation perfarmer = Operatar
partContainer = ProductionManagementMethod suppartedCapability = PraductionManagement

portDelegationContext = ManageProductionDelCnbd

QutputDelegationTarget

Figure 85. Delegation to Production Management method, from Manage Production (objects)

Figure 86 shows the activity network mockup of the Production Management method. The small
“bottom-left pyramid” shapes denote ports, two output ports and one input ports on the “boundary” of
the method. Their related connectors denote port delegations from these “boundary” ports to ports of
the Build Product activity.

Production work order

Production report

Operator

Release
Products
Product

Figure 86. Production Management method’s activity network mockup

The objects that define these method-internal delegations are contained in the object diagram of Figure
87.

Page 68/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE{E@,)@S
bmi/2012-11-10

Object Diagram MyCo Business| 8 Production Management Delegation - Internal 1_|

PreductionWorkOrderinputPM : InputPort ProductionManagemaentiMathod : Capabil athod ProductionReportOutputPM : OutputPort
pUt = PllatWork glegation, - partCantaner@art | Bcthvity = Bulld Produc . PoriContainerPort Output = Filot? parOUpDElEgat
WarkCrderinputDelegation = Operator FroductionRepanCutpatDelsgation
inputDefinition = ProductionWorkOrder containedPort = ProductionReportOulputPM, oulpulDefinition = ProductionReport
inputDelegal roduction'WorkOrderinpulinternalDelegation ProductioniWorkOrderinputPM, ReleaseinpulPM outpulDelegation = ProductionRepontQutputinternalDelegation
portContainer = ProductionManagementiethod delegationContest = ManageProductionDelCnbd, portContainer = ProductionManagementiethod
PltProguUCtioNDEICHbL — —
|- InputnelegationSaurce flow = ProductToStoreFlow, ProductionLevelZResourcer low, | CutpuiDelegationSource
t Froductionlevell ResourceFlow
ProductionWorkOrderinputinternalDelegation Intemaart! Productionieparto " on, ™
InputCalngaticn Cnllaborationinges I] CallabarationinternalP arthelegation : QutputDelegation
=F ReleassingutinternalDelegation ; . = =
SoUrce = ProductionWorkOrdernputPi T metnodOwner = TrallerPlant ::l|:E:r:};_:::duza:;iu;:-gdmgunLMcumu
target = ProductiomorkOrdenngut —_— F_‘Gn'o_mﬂl =_UP?W°T_ . . target = ProductionReportOutput
supportedCapabilty = F
ReleaseinputPM : InputPort : ColaborationinternalPornDetegation
= putDelegation,
“InputDelegation
=Rel
inpulDelegation = ReleaseinputinternalDelegation CollaboratanActivity

porContainer = ProguctionManagementiathod

- Inputfleleqatonsaunce

ReleaseinputinternalDelegation :
InputDalsgation

inputDlelagation T arqet =f
source = ReleaseingutPM Build Product : Activi
rarget = Releaseinput =
applisdCapabiityOiter = ProductionExecution
capabilityRequirement = Froduchon Execution
Releaselnput : InputPart ¢ FToouC c ’
B o = ! . PartContainerPort ort = PradustOutput, PartContainerPort ProductionReportOutput : OutputPort
L nternal I 1 g
¥ F . £ F COrderinput, 4 atedOutpul = ProductionReportOutpulinternalD
et L ETUONCL | ProguctionRepartoutput tContainer = Build Product
- e — ProductionLevel1Resourceinput,
. ProductionLevel 2Resourceinputl
F WorkOrderinput : InputPort il
— ~PoncontaingrPort duration = BuildProductDuration
delegatedinput = ProdusbonienkOrdenngutintemalDelegaten | | pertormingRale = Operator
parCantainer = Bulla Product resourcelise = ProductionResourcelse

Figure 87. Production Management method’s internal delegation objects

The objects that define the activity network of the Production Management method in the mockup in
Figure 86 are contained in the object diagram in Figure 88.

Object Diagram WyCo Business| i Production Management Method ||

ProductionManagementMethod : CapabilityMethod
aclivity = Build Product
collaborationRole = Operator
containedPort = ProductionReport M.

CollaborationFlavw

Pr putPM, 1putPM
delegali antext = M ProductionDelCntxd,
PilelProductionDelCntxt
flow = ProductToStoreFlow, ProductionLevel2ResourceFlow,
Lt iy -':VBIIRGSO'_“ Ledud Operator : Performer Products : Stare
ProducicnWorkordernpullemaiDelecation. i collaboration = ProductionM tMethod containedPort = PilotProductOutput,
e alDelegatl = method = ProductionManagementMethod Product ToStoreinput, ProductOutput
methodOwner = TrailerPlant __CollaboratianRole| performedWork = Build Product duration = ProductStorageDuration
performer = Operator I roleAssignment = PilolProdOperatorAssi 1, = Product
b = PilotProdOperatorAssignment2, storeConlext = ManageReleaseDelCnid,
supportedCapability = ProductionManagement
PP 2L : 9 CommProdOperatorAssignment ManageFulfillmentDelCnixd
|- Colaborationtitivity rolef =P Level1f put, storeOwner = S&0
I Build Product : Activity tormediWorkPert Fale P eval2F put supportedCapability = ProduciDelivery
appliedCapabilityOffer = ProductionExecution) [
capabilityRequirement = Production Execution y ””"“""””ll | EotConzne Pot
collaboration = Produc tMethod ProductOutput ; QutputPort ProductToSteraFlow : DaliverablaFlaw ProductToStaralnput :

E‘untnirlsdPurif p’f“f“?“‘"f.‘"_' R L Pontontaneront putput = ProductToStoreFlow | L uclionManagemeniMethod InputBort
Ir’lraduclionﬂepartOMlelr - y poriContainer = Build Product =~ [input = ProductToSloreFlow
' - portContainer = Products
ProductionLeveliResourcelnput, R rorproductiont T elnput
Pr evel2Resol i
duration = E!ulldPrnnu:IDurmEnn _ PortContamerPort FlowDeliverable
performingRole = Operator y Product : Businessitam
PonC T . H
resourceUse = ProductionResourceUse joerlonane o Beleaseinput Inputfot ey S ED)
delegatedinput = ReleaselnputintemalDelegati b =
PortContainerPort poriContainer = Build Product :0""'“;" =|:'°dducltﬁ
ow = PilotProductFlow,
. — of® ProductToStoreFlow,
ProductionWorkOrdarinput : InputPort P put:QupuPon ProductFlow,
g put = Pr p Delegati delegatedOutput = ProductionReportOutp g ProductFromStoreFlow
portContainer = Build Product portContainer = Build Product store = Products

Figure 88. Production Management method’s activity network objects

Note again, that, as three of the four activity ports are delegated from the method’s “boundary” ports,
this object diagram contains just one delivery flow object. This is the flow that delivers the product to
the Products store.

Copyright © NEFFICS Consortium 2010-2013 Page 69/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

The next two object diagrams, in Figure 89, and Figure 90, demonstrate how assignment of roles in a
collaboration (here assignment of performer roles in a capability method) can be made dependent on
and specific to the delegation context in which the collaboration (here the capability method) is used.
As the earlier discussed metamodel diagram of Scenario and Analysis Context in Figure 51 suggests, a
delegation context can specify:

o Context based port delegations; these have been applied several times in the use case so-far.

e Context based assignments; these have not been applied to the use case so-far, but will be

discussed here, in relation to the Operator role in the Production Management method.
e As analysis context: a context observation. Observations will be discussed in 3.1.5.

As mentioned earlier, “commercial” production work requires higher operator skills than pilot
production work (i.e. production work in the context of developing new releases). The production
plant’s capability offer is supported by two resource pools (see again the mockup of the Trailer Plant’s
capability offers in Figure 39): Production Level 1 Capacity (non-certified resources), and Production
Level 2 Capacity (certified resources).

When pilot production work has to be conducted, in the context of delegation of the work of the Pilot
Production activity of the Release Management method to the Production Management method,
resource from both pools can be used, but preferably from Production Level 1 Capacity, as these
resources cannot be deployed for “commercial” production work, and they are cheaper also. The
objects in the object diagram in Figure 89 define assignment of the Operator role, to role resource from
both the pools. As the object diagram indicates, these assignments depend on the delegation context
for pilot production. The assignments serve as alternative to each other. Note that there is a single
resource use object that relates to both resources (via the corresponding input ports). Though not
applied here, the resource use could specify for instance the quantity of resource required.
Preferences for both resources, essential to simulation, can be expressed based on the ordering that
is defined for the association between Resource Use and Input Port, as follows from the Activities
metamodel diagram in Figure 65 above.

| opace Biagram uyto Busrass | g Piot Producton Deiegeeen . Assagrment | |

Build Predust : Activity
appliedCapabdityCiifer = ProductionE on
capabilityR e
coRaborato
CONaIneaP;
Proguctionty

Pilot Production : Activity
P Offer

rodReportOutputDelegation,

delegationContest =
| performingRiale = Producer

NAgementMenad
tionDelCnbdObservation

PartContainerFort " | pertarmedwarkP s rtormingrials
p ProductionResaurcelise ~Dee
AT ST E e
ac | PortContainerPart
res sourceinput.
S i a2 ProductionManagementMathad : CapablityMethod
o o - activity = Build Product assignabile
ReSOUrCAREEaUrCaLIEs ResOUrcaRasourcalies collaborationRole = Operator assignedr:

ProducticnLevellResourceinput ; ProductionLevelZResourceinput :

assignmente

Input = Productio wrceFlow

T = Buil

EsoUrcelise

ctionRepartCutputinternalDelegation
|_)'3eleL;_1:|'_'\ 4 B & = Productionlevel JResource

aratar

ProductionLevelZResourceFlow @
DeliverasleFlow

FoleAssignment

RoleAssignment

?roﬂuénonl.woll ResourceOutput ;
outp

art
clIREsoURCEFlow
acyPool

output = ProductionL
ponContaines = Pro

role
Produs

AssignableResourceAssignment

PotContainarPon
avell ol : Poal
ILevel 1 ResourceOutput containedPort ChonLevel2ResourceOutput assignment = PilotProdOperatorassignment ProductionLevellResource
1R ¥ B

‘ool : Pool ProductionLevelZResource : Businessitem Agpign zAssignment

containedPort
resaurcs = Prody
storeOwner = Traller storeOwner = TraillérPlant
supportédCapabiity = ProductionExgcution support&dCapabiity = Productio

11ResoUCE FESOURCE = ProductonLever2Resoun:

F o

FlowDalverable

Figure 89. Production Management method’s Operator role assignment objects (context: pilot production)

Page 70/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

Note that such aspects as costs of resources, and calculations based on these, can be modeled via
measured characteristics of e.g. pools, from where these costs can be further aggregated into
measurements of other measured characteristics. The measurement part of VDML will be
demonstrated in 3.1.5, though only applied selectively, to keep the use case small.

The object diagram of Figure 90 shows how the Operator role is just assigned to role resource from the
Production Level 2 Capacity pool, as only certified resources are supposed to produce a product that

will be exchanged with customers.

Object Diagram MyCo Business [Cumme\ cial Production Delegation - Assignmert U

Build Product : Activity
appliedCapabilityOffer = ProductionExecutic
capabilityRequirement = Production E
Ej\labjratmn PrjﬁuctljnManag—

uctljﬂﬂ—pjrti)utput
esourcelnput,
2Resourcelnput
duration = BuildPraductDuration

ProductionLe:

: performedWarkPerformingRole

Manage Production : Activity

DelegatedActivityDelegationContext

applisdCapabiltyOffer = Procuctionkianagement

(o] dér\nput
uctionDelCntxt

ManageProductionDelCntxt : DelegationContext
contextBasedAssignment = CommProdOperatorAssignment
contextBasedPortDelegation = WorkOrderinputDelegation,
FinalRelzaselnputDelegation,
ProductionReportOutputDelegation
contextCallaboration = ProductionManagementMethod

contextObservation = ManageProductionDelCntxdObservation

performingRo perator
resourcelse = ProductionResourceUse

ActivityResourceUse

ProductionResourceUse : ResourceUse

activity = Build Product
resource = Productionlevel1Resaurcelnput,
ProductionLevel2Resaurceinput
! ResourceResaurcelse
ProductionLevel2Resourcelnput :
InputPort
input = ProductionLevel2ResourceFlow
portContainer = Build Product
resourcelse = ProductionResourcelse
role = Operator

PortContainerPort

RoleResource

FlowTarget
ProductionLevel2ResourceFlow :
3]

eliverableFlow

DelegationCantextCollaboration

ProductionManagementMethod : CapabilityMethod
activity = Build Product
collaborationRole = Operatar
containedPart = ProductionRepartOutputPiv,
ProductionWorkOrderinputPM, ReleaselnputP i
delegationContext =
flow = ProductToStoreFlow, ProductionLevel2ResourceFlow,
Production 1ResourceFlaw
internalPal
ProductionWaorkOrderinputinternalDelegation,
elnputinternalDelegation
Canvr’ = TrailerPlant
pe peratar
suppjl’tw:icapabmw ProductionManagement

MethodPerfarmer

Operator : Performer

collaboration = ProductionManagementMethod
m-thjj PrjjuctljﬂMan Method

. FlowSource

ProductionLevel2ResourceOutput :
QutputPort
output = ProductionLevel2ResourceFlow
portCantainer = ProductionLevel2CapacityFool

| PortContainerFort

ratorAssignment1,

roleResOUrCE = ProductionLevel1ResaLre elnput,
ProductionLevel2Resourcelnput

ManageProductionDelCnixt, PilotProductionDelCnixdt

gation = ProductionReportOutputinternalDelegation,

: RoleAssignment

delegatedActivity = Manage Production
parentCaontext = ManageFulfilmentDelCntxt

: DelegationContextAssignment

CommProdOperatorAssignment : Assignment

assignableResaurce = ProductionLevel2Resaurce
assignedRole = Operator
assignmentContext = ManageProductionDelCnbxd

AssigrjableResourceAssignment

ProductionLevel2Resource : Businessitem

assignment = PilatProdOperatorAssignment2,

FlowDeliverable

CommPradOperatorAssignment
collaboration = TrailerPlant

definition = ProductionResource

flow = ProductionLevel2ResourceFlow
stare = ProductionLevel2CapacityPaoal

ProductionLevelzcagacigFool : Pool

Figure 90. Production Management method’s Operator role assignment objects (context: “commercial” production)

So-far we have discussed the structural and behavioral parts of the business system in the XTrailer
use case example. It is now time to analyze how this business system can create value for the
stakeholders, in this case the transporters market. This will require additional elements, related to the
concept of “value”, as well as the integration with a measurement framework. In the next section we
will analyze these things, based on snippets of examples in the context of the XTrailer use case.

3.1.5 Value

As the VDML ontology diagram in Figure 91 highlights, roles, based on their collaboration with each
other, provide and/or receive value propositions. Value propositions articulate values. A value
proposition is “an expression of the values offered to a recipient in terms of the recipient’'s level of
satisfaction”. In VDML “value” is defined as “a measurable benefit delivered to a recipient in
association with a business item”. Any value should be identifiable and measurable, either objectively
or subjectively. A value may have an objective measure, whereas the measure of the recipient’s level
of satisfaction is subjective. Though values need not be intrinsic in a deliverable, but may often relate
to a transaction, a relationship, a corporate “image” or reputation, etc., values are not actually received
by recipients when there is no deliverable (or business item) exchanged whatsoever. Delivery of
business items is the basis of exchanging values. Note again that deliverables need not be tangible.
They are often intangible. Many values maybe associated with intangibles. As discussed in 3.1.4, roles
perform activity. Activities create and consume value. These concepts will be discussed and analyzed
in detail, based on application to the XTrailer use case example.

Copyright © NEFFICS Consortium 2010-2013 Page 71/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

articulates i
Value Value Proposition

creates and/or |

consumes

T performs
| Activity [< lE’lif\

provides and/or receives

Defines work defines formal | defines informal defines business
collaboration or structural or “weak” collaboration of
requires of collaboration of | collaboration of|

4@ |C0mmunity | | Business Network
supports owns

ECapa@(— Org Unit I

supports owns

provides

Figure 91. VDML high-level ontology: Value highlighted

Figure 92 shows mockups of the XTrailer business network collaboration. The expanded view, being the
actual role collaboration view, has been considered earlier. It shows how party roles exchange
deliverables.

Manufacturer

Xtrailer Proposition

Product

Transporter

Manufacturer

Froposition from Market

Figure 92. Business network: role collaboration view and proposition exchange view mockups

In collapsed view it just shows how party roles exchange value propositions. Of the two value
propositions in Figure 92, we will analyze the XTrailer Proposition, provided by the manufacturer and
received by the transporter, in detail. Later on we will briefly consider the value proposition that the
transporter provides to the manufacturer in return.

As will be discussed in more detail below, a value proposition articulates values, defined as “value
add” elements that are related to the output ports to which the deliverable flows connect. This will
enable “toggling” between the two views in Figure 92.

The objects in the proposition exchange view mockup in Figure 92, that define the exchange of the
XTrailer Proposition, are contained in the object diagram in Figure 93: The value proposition, as well as
the two party roles in the business network, one of which is the provider of the value proposition, and
the other being the recipient. As the metamodel diagram of values and value propositions in Figure 97
indicates, the providing role is also the owner of the value proposition.

Page 72 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram hiyCo Business| [&) XTrailerBusiness - Roles and Proposition u

XTrailerProposition : ValueProposition
component = FairPriceComponent,
MarketDrivenDesignComponent,
FastinnovationComponent,
LateSpecFreezeComponent
propositionValue = XTrailerPropositionValue
provider = Manufacturer
recipient = Transporter
satisfactionLevel = XTrailerPropositionSatisfaction

ProviderProvidedProposition RecipientReceivedPrapasition

Manufacturer : Party Transporter : Party
businessNetwork = XTrailerBusiness businessNetwork = XTrailerBusiness
performedWork = Manage Fulfillment, performed\Work = Submit Idea, Absorb
Manage Innovation Innovation, Buy Product, Operate Product
profit = Profit providedProposition = PropositionFromMarket
providedProposition = XTrailerProposition receivedProposition = XTrailerProposition
receivedProposition = PropositionFromMarket
roleAssignment = ManufacturerAssignment

BusinessMetworkParty

BusinessNetwarkParty
XTrailerBusiness : BusinessNetwork

activity = Operate Product, Buy Product,
Absorb Innovation, Submit Idea, Manage
Innovation, Manage Fulfillment

businessltem = Innovation

containingModel = MyCompanyModel

flow = InnovationFlow, OrderFlow,
ProductFlow, IdeaFlow, OrderFromStoreFlow
ownedAssignment = ManufacturerAssignment
party = Manufacturer, Transporter

scenario = QOverallScenario

Figure 93. Value proposition provided and received (Objects)

In the XTrailer use case we assume that the Transporter cares about the following four values:

Fair Price. This relates to the price that transporters has to pay for a trailer. This value is
measured based on the measure of product price.

Market driven design. This is about the extent to which innovation (design and development of
trailers) is driven by feedback from the transporters. This value is measured based on the
measure of idea productization, i.e. the ratio of ideas that make it to new products, relative to
all ideas that have been received.

Fast innovation. This is about the time it takes to translate transporter's feedback into new
trailers that are available on the market. This value is measured based on the measure of
innovation lead time, which is the time ideas reside in the ideas store(s), plus the duration of
Manage Idea activity, plus the duration of the Release Management method.

Late spec freeze. This is about how flexible a transporter is in making changes to the
specification of trailers that are ordered. The shorter time it takes to actually produce a trailer,
the more flexible the transporter is in making changes to the order, as the specification of the
order is “frozen” at the moment the production starts. Hence this value is measured based on
the measure of product lead time, which is the duration of the Build Product activity, plus the
time a trailer resides in the Products store, plus the duration of the Deliver Product activity.

As indicated in the model view mockup in Figure 94, the value proposition “XTrailer Proposition” consists
of four components, one for each of these four values.

Copyright © NEFFICS Consortium 2010-2013 Page 73/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Fair Price Market driven design Fast innovation Late spec freeze

Product Price Idea Productization Innovation LT Product LT

Satisfaction level: Projection on “pie” sectors
Value measurement: “Needle” position

Figure 94. Value proposition components mockup

Note that, though this mockup is more indicative than “actual”, it suggests that an appropriate view on
a value proposition may also have the quality of “dashboard”, with drill down to underlying details.
Measurement of the “underlying” value, as well as of the level of satisfaction of the recipient with that
value, will be analyzed in detail below.

The mockup diagram in Figure 95 provides a more complete representation of the value proposition in
tabular form. We will refer to this diagram several times below.

Value Propasition Value Satisf. L.
Xtrailer Proposition XX ¥y
Articulated Value Value Measurement
Component Value Add Source Value Unit Satisf. L. | Weight
Fair Price Product Price Manage Fulfillment | - - - -

Market Driven Design | Idea Productization | Manage Innovation | - - - -

Fast Innovation Innovation LT Manage Innovation | - - - -

Late Spec Freeze Product LT Manage Fulfilment | zz days uu v

Figure 95. Value proposition structure mockup

The objects in the object diagram in Figure 96 define the structure of the value proposition in the mockup
in Figure 95: the value proposition consisting of the four components, each of which relates to a
particular value (Value Add object).

Page 74/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case

bmi/2012-11-10

Object Diagram MyCo Business| |5 XTrailerProposition u

PropaositionComponent

FastinnovationCompanent,
LateSpecFreezeComponent

articulatedvalue = FairPrice

proposition = XTrailerProposition

FairPriceComponent : ValueProposi nComponent

measuredCharacteristic = FairPriceWeightedSatisfaction

provider = Manuracturer
recipient = Transpoarter

XTrailerPropo n : ValueProposition

component = FairPriceCompanent,
MarketDrivenDesignCompanent,

propositionvalue = XTrailerPrapositionvalue

satisfactionLevel = XTraillerPropositionSatistaction

PropasitionComponent

PropositionComponent

PropasitionCamponent

FastinnovationComponent :
ValuePropositionComponent
articulatedValue = Fastinnavation
measuredCharacteristic = FastinnovationWeightedSatisfaction
propasitian = XTrailerPropasition

LateSpecFreezeComponent :
ValuePropositionComponent

MarketDrivenDesignComponent :
ValuePropositionComponent

articulatedvalue = LateSpecFreeze

measuredCharacteristic = LateSpecFreezeWeightedSatisfaction
percentageWeight = LateSpecFreezeWeight

proposition = XTrailerProposition

satisfactionLevel = LateSpecFreezeSatisfaction

articulatedValue = MarketDrivenDesign

measuredCharacteristic = MarketDrivenDesignWeightedSatisfaction

propasition = XTrailerProposition

PrapaositionComponentValue

PropositionComponentvalue

PropaositionComponentvalue

_|PropositionComponentyalue

FairPrice : ValueAdd

LateSpecFreeze : ValueAdd

prapositionCompanent = FairPriceCampanent
wvalueDefinition = FairPrice
wvaluePort = ProductOutput

output = ProductFlow

MarketDrivenDesign : ValueAdd

aggregatedFrom = ShortProductl T
propaositionComponent = LateSpecFreezeCompaonent
valueDefintion = LateSpecFreeze
valueMeasurement = Productl T

valuePort = ProductOutput

propaositianComponent = MarketDrivenDesignCompanent

valueDefinition = MarketDrivenDesign
valuePort = InnovationOutput

Fastinnovation : ValueAdd
prapositionComponent = FastinnavationComponent
valueDefinition = Fastinnovation
valuePart = InnovationOutput

ValuePartvalueAdd
ProductOutput : QutputPort

[- valuePortvalueadd

outputDelegation = ProductOutputDelegation
portCantainer = Manage Fuffilment
valueAdd = FairPrice, LateSpecFreeze

PartCaontainerPort

Management

QOrderFromStoreinput

Manage Fulfillment : Activity

appliedCapabilityOffer = FulfilmentManagment
capabilityRequirement = Fulfilment

collabaration = XTrailerBusiness
caontainedPort = ProductOutput,

delegationContext = ManageFulfilimentDelCnod
performingRale = Manuracturer

ValuePortvalueAdd ValuePortvalueAdd
InnovationOutput : QutputPort

output = InnovationFlow

outputDelegation = InnavationCutputDelegation
portCantainer = Manage Innovation

valugAdd = MarketDrivenDesign, Fastinnavation

PartContainerPort

appliedCapablityOffer = InnovationManagement
capabilityRequirement = Innovation
Management

collaboration = XTrailerBusiness

containedPart = Innovationoutput
delegationContext = ManageinnovationDelCrid
performingRole = Manuracturer

Manage Innovation : Activity

Figure 96. Value proposition structure (objects)

The Manage Fulfillment activity contributes to two values: Fair Price and Late Spec Freeze. These are
defined as Value Add objects, associated with the Product output of the activity. This means that these
values are conveyed by the Product flow from the manufacturer (who performs this business network
activity) to the transporter. Similarly, the Manage Innovation activity has the following two Value Add
objects associated with its output port: Market Driven Design and Fast Innovation. These will be
conveyed to the transporter by the Innovation flow in the business network.

Objects
97.

in the object diagram in Figure 96, are instances of classes in the meta-model diagram in Figure

package VOIL[[§] Vakies and Vaiue Proposkions]

MeasurableElement

*+recipient |0..

+rseeivedProposition [0.*

+provider (1

+providedProposition

+proposition |1

+eomponent [0.*

ValueDefinition

o
+proposition +propositionValue
0.1 0.1
+rankedProposition +satisfactionLevel
0.1 0.1

+satistactionLevel

0.1

+weightedvalue

0.1

+percentageWeight

+valueDefinition |0

+valueAdd |0.*

+aggregatedTo

o

+aggregatedFrom [0.*

OutputPort

0.1 0.1
+propositionGomponent +gomponentvalue
0.1 0.1
+propositionComponent o *
+articulatedvalue [1
ValueAdd +benchmarkedvalue +benchmark
0.1 T
+measursdvalue +valusMeasurement
0.1 0.1
+valusAdd [0.*
+valuePort | |

MeasuredCharacteristic

Figure 97. Values and Value Propositions metamodel

Copyright © NEFFICS Consortium 2010-2013

Page 75/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

The various associations to Measured Characteristic, as well as the association between Value Add
and Value Definition, will be discussed below.

The discussion of activity-related metamodel concepts has been completed with the discussion of
Value Add, it might be useful to have a short reflection on the concept of Activity again. Figure 98
provides an informal and schematic representation of an activity, as it is defined in VDML. Most of the
activity-related elements have been analyzed in earlier sections. The related Value Add object has just
been introduced. As VDML also addresses activity modeling, and activity network modeling, the
notations of which having some flavor of “process modeling”, it is sometimes asked whether VDML is
unnecessarily overlapping process modeling language such as specified in BPMN (2011). From the
activity-related concepts, as shown in Figure 98, it is clear that, though both languages, VDML and
BPMN, include the concept of Activity, their viewpoints are very different. Consider also other activity-
related concepts in VDML, defining e.g. what capability an activity requires, and what capability offer is
applied via it, and it is even more clear how different and complementary both viewpoints are. There is
some overlap, but this overlap is rather useful, as it ensures alignment and integration between the
two viewpoints (as will be discussed later).

Business Item Value
Add
Resource] <:>
Use
Activity

Deliverable

Performer
Role

Figure 98. Schematic representation of activity

As the details of the Value Add objects in the object diagram in Figure 96 suggest, per value add a value
definition is defined, which “types” the value add. This instantiates the association between the Value
Add class and the Value Definition class in the metamodel diagram in Figure 97.

Value definitions are maintained in a value library. The objects in the object diagram in Figure 99
represent the content of the value library in the XTrailer use case.

Obiject Diagram 1y Co Business | g ValueLirary (compressed) 1]

FairPrice : ValueDefinition LateSpecFreeze : ValueDefinition MarketDrivenDesign : ValueDefinition Fastinnovation : ValueDefinition
characteristicDefinition = ProductPrice characteristicDefinition = ProductLeadTime characteristicDefinition = IdeaProductization characteristicDefinition = InnovationLeadTime
library = MyCo Value Library library = MyCo Value Library library = MyCo Value Library library = MyCo Value Library
valueAdd = FairPrice valueAdd = LateSpecFreeze valueAdd = MarketDrivenDesign valueAdd = Fastinnovation

ShortProductLeadTime : ValueD

characteristicDefinition = ProductLeadTime
library = MyCo Value Library RepetitiveBusiness : ValueDefinition
;‘:Iu:gdd SicanBroductlT. characteristicDefinition = SalesVolume
ortProductl T library = MyCo Value Library
valueAdd = RepetitiveBusiness

ShortF i eadTime : ValueDefinition
characteristicDefinition = ProductionLeadTime Feedback : ValueDefinition
library = MyCo Value Library library = MyCo Value Library
valueAdd = ShortProductionLT, valueAdd = Feedback

ShortProductionL.T

Payment : ValueDefinition
library = MyCo Value Library
valueAdd = Payment

Figure 99. Value library (objects)

A value library contains a taxonomy of values, consisting of value definitions and categories of them,
and is applied to enforce consistency in the definition of value adds. Multiple value adds that are
associated with the same value definition, are considered similar from the perspective of the library. As
can be observed from the objects’ details in the object diagram in Figure 99, the value definitions “Short
Production Lead Time” and “Short Product Lead Time” are referenced from multiple value add objects.

Page 76 / 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

The objects are instances of classes in the Value Libraries metamodel diagram in Figure 100.

package VOWL[[£] Value Libraries ﬂ

VdmiElement

Gl

+library

7 ValueLibrary

+ibrary
1

+valueDefinition |0. *

+valueCategory [0.*
ValueDefinition +categonyValue *EE‘EQDWJVaIuecategory‘*pa’emca‘egw”
0. 0.*

i
+childCategory [0.*

+valueDefinition +characteristicDefinition | Characteristic

0.+ GRS (SMM)

Figure 100. Value Libraries metamodel

Note that value categories have not been applied in the XTrailer use case.

We will now demonstrate, based on the XTrailer use case, how value is created by activities,
accumulated over deliverable flows, from activity to activity, possibly via stores, as well as over levels
of delegation, until the points where a value proposition is defined to articulate the values, and where
the accumulated values are conveyed to the recipient of the value proposition. Figure 101 provides a
(simplified) schematic representation of the concept of value contribution.

11—
—> Deliverable flow
E Activity
D Value add
Value Proposition

Figure 101. Value contribution

Note that the accumulation of value, over a “stream” of activities, as indicated in Figure 101, might be
denoted as “value stream”, though this is not a normative term in VDML. Generally known concepts,
such as value chains, value streams and, particularly, value networks, can be applied as views on
parts of value delivery models, as specified by VDML. VDML can support such views, but does not
specify them normatively.

In this section we will deal with measures and measurements. A measure is “a method that is applied
to characterize an attribute of something by assigning a comparable quantification or qualification”.
Attributes that are characterized through measures are called “measured characteristics”. Many
elements in VDML, such as activities, stores, ports, resource use objects, value add objects, value
proposition components and value propositions are so-called measurable elements. Measurable
elements can have measured characteristics, some of which are defined in the meta-model, and
others can be defined as custom measured characteristics by the business analyst. A measurement is
“the result of applying a measure”. Measurements are associated with measured characteristics. A
measured characteristic is “typed” by a characteristic definition in a measure library. The reader might
again refer to the earlier discussed VDML Elements metamodel diagram in Figure 61, which shows
some of these concepts and their relationships. Characteristics that are used in a measure library in
the XTrailer use case are presented in the object diagram in Figure 62, which has been considered
earlier as well. Figure 102 represents a metamodel diagram that shows some of the main concepts in
SMM, and how they are related.

Copyright © NEFFICS Consortium 2010-2013 Page 77/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package SMM[[SMM Wain Cencerﬂsu

SmmModel +model Hibrary Measurelerar\[L Hikrary +meast uemJnmu
(SMM) 1 0 (SMM) [o | (SMM)
UL -_—]

~smmModel [1
| *measure +trat_[characteristic
(SMM) 0.* 1 (SMmM)

+measure |1

+obsenation [0, +obsenedMeasure [0.*

S

—_—
Observation | +observation bsenvedieasure [Obser: e
(SMM) 1 0 (SMM)

+obsenvedMeasure 1

+measurement |0.*

Measurement +measurement +measurand Element
(SMM) .- 1 (CMOF)

Figure 102. SMM main concepts metamodel

This metamodel diagram is abstracted from various details. For a detailed overview of the SMM
metamodel, the reader should refer to SMM (2012). As the diagram shows, an SMM model may
contain measure libraries, as well as observations. A measure library contains measures and
characterstics, which serve as “traits” of the measures. A measure library does contain more detail
than exposed in Figure 102, such as measure categories, but these can be looked up in SMM (2012). An
observation contains “observed measures”, being applications of measures to establish
measurements. Measures are contained in measure libraries, whereas measurements are contained
in observations.

As the earlier discussed Scenario and Analysis Context metamodel diagram in Figure 51 indicates, an
analysis context, and so any scenario and any delegation context may have one observation. This is
the observation that contains the measurements that are specific to that context. Measurements that
are not specific to a particular scenario, are assumed to be contained in the “default scenario”, which is
defined in the same metamodel diagram. An observation can contain measurements for multiple
measured characteristics. When a measured characteristic is associated with multiple measurements,
these measurements are contained in different observations. When for instance a capability method is
analyzed in a particular delegation context, the corresponding context observation provides the
measurements for measured characteristics of the capability method and its contained measurable
elements.

This SMM main concepts metamodel diagram in Figure 102, in combination with the earlier presented
metamodel diagrams of VDML Elements in Figure 61 and Scenario and Analysis Context in Figure 51,
provide a complete overview of the integration between VDML and SMM.

We will nhow demonstrate how measured characteristics of the value proposition (“XTrailer
Proposition”) and its components can be measured, based on measurements of the underlying value
add elements, and how these measurements can be derived from measurements of measurable
elements throughout the business system in the XTrailer use case. As discussed earlier, analysis is
context-based, whereby the context is defined by a scenario, and its tree of delegation contexts for the
various underlying sub-collaborations and stores. Figure 103 shows again the model view mockup of the
context tree in the XTrailer use case, but now with just a subset of it highlighted. In order to keep the
model content as small as possible, and as large as just required to demonstrate essential concepts,
we will only discuss measurements that are contained in the observations of “Overall Scenario”, and
its sub-contexts “Manage Fulfillment Delegation Context” and “Manage Production Delegation
Context”. And in relation to “Overall Scenario”, we will only consider measurements in relation to the
fulfillment part of the business network, and exclude innovation relation measurements.

Page 78/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case Né@

bmi/2012-11-10

Default Scenaric

e e :
Axn v
Business ~
// Jrders Final Releases
e
o
==+ Manage Innovation Del. cntxt | [Manage Fulfiliment Del. Cntxt f4--=-=-=
[!
[3 @ [=re)
{1)
Innovatio | C c Fulfiliment :
tanagem | Management | .
: !
; | inage Release Del. Cntx | 1
l
['
|| Products
s
| Pilot Production Del. Cntxt | == -=-=-1 Manage Production Del. Cntxt |
53 i
A1 jE= ®
S 33
Management

@ Context-based observation
€ Context-based port delegation
i Context-based assignment

Figure 103. Context tree mockup: Fulfillment part partially highlighted

Figure 104 contains a model view mockup of a representative set of measurements that would all be
relevant in the context of analysis of the XTrailer business network, its profit to the MyCompany, and
the XTrailer Proposition as provided by its Manufacturer party role. These measurements together
represent the measurement scope of the “Overall Scenario”.

Gy e |—@

Product price —
® ®)
e

Ny
-
& O

Sales volume

Innov. resource use ——— =)

_"“—"i Customer satisfaction

/@_/

| |dea productization ratio |

@)
b [oommsne |- @

@@ \ Design approval ratio &

@
®
| Idea approval ratio | @)

Innovation frequency

Figure 104. Measurements and measurement influences mockup

Copyright © NEFFICS Consortium 2010-2013 Page 79/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

A subset of the measurements contained in the observations of the highlighted parts in the context
tree in Figure 103 are highlighted in the mockup in Figure 104. Analysis in the remainder of this section will
just focus on this highlighted subset of measurements. Note that the measurements that will actually
be modeled in the use case are a bit more refined than the ones that are presented in the mockup.

As the mockup in Figure 104 suggests, measurements can be dependent on each other. Measurements
can influence other measurements. Some influences are positive, others are negative. A positive
influence indicates that increase of the value of one measurement leads to increase of the value of
another. A negative influence indicates that increase of the value of one measurement leads to
decrease of the value of another. For instance:

e Increase of Product LT (product lead time) leads to decrease of Customer Satisfaction

e Increase of Customer satisfaction leads to increase of Sales Volume, and hence a decrease of
it leads to a decrease of Sales Volume.

e An increase of Sales Volume leads to an increase of Profit, though Profit is also positively
influenced by Margin.

e Anincrease of Margin also increases Product Price
e Increase of Product Price leads to decrease of Customer Satisfaction

Note that the “value” of a measurement should not be confused with the concept of “value” in the
sense of Value Add and Value Proposition. The “value” of a measurement is just a quantity specified,
based on a measure, and against a unit of measure (see SMM (2012) for the detailed metamodel of
SMM).

As will be discussed below, SMM supports measurement dependencies in various ways. Actually the
indication of “structured” in the name “Structured Metrics Metamodel” (SMM), particularly relates to the
fact that SMM specifies in detail how measures can depend on other measures, and how
measurements can be calculated from other measurements accordingly.

As can be noticed from the mockup in Figure 104, measurement dependencies can easily lead, and in
this use case does indeed lead, to circular dependencies, directly or indirectly. This implies that when
measurements are quantified, and calculations take place, iterations will be required to achieve an
equilibrium state in which all measurements have a value that is consistent with each other.
Spreadsheet calculation engines do generally support iterative calculation. Supporting such
calculations is in fact a basic form of model simulation.

Note also that the mockup in Figure 104 provides a convenient way to represent all measurement
information, underlying a scenario, in a single diagram, from where the business analyst can drill down
to related details, and understand the context of measurements in more detail. As the notation in the
mockup is also rather consistent with causal-loop diagrams in System Dynamics (see e.g. Dooley
(2002)), it might also provide an abstraction of underlying value delivery modeling data, which may
serve as input for System Dynamics simulation.

In the remainder of this section we will discuss the modeling of measures and measurements,
including dependencies between them, but will not discuss the actual simulation of the model, and will
not consider any specific calculation results.

We will analyze and discuss the following in particular, in the remainder of this section:

¢ Measurement of Late Spec Freeze value, as discussed earlier, related to the Late Spec
Freeze component in the XTrailer Proposition.

e Measurement of customer (i.e. transporter) satisfaction with the Late Spec Freeze value, as
well as its relative weight to the customer.

e Measurement of overall XTrailer Proposition value, given its components and relative weights
e Measurement of customer satisfaction with the XTrailer Proposition.

e Measurement of the impact of customer satisfaction with the XTrailer Proposition on the sales
volume of trailers in the XTrailer business network.

e Measurement of profit of the Manufacturer party in the business network.

Page 80/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

The measures that will be used to support these measurements are represented by the objects in the
object diagrams in Figure 105 and Figure 106. Together with their related characteristics, as earlier
represented in the object diagram in Figure 62, they form the measure library content that is used in
XTrailer use case.

Object Diagram MyCo Business [[Measure Library - Generic - Dependencies between measures| |J

OrderintervalMeasure : BinaryMeasure

ProfitMeasure : BinaryMeasure baseMeasure1To = RecipientSatisfactionMeasure

baseMeasure1To = SalesVolumeMeasure
baseMeasure2To = SalesMarginMeasure
functar = "product”

library = GenericMeasures
observediMeasure = ObservedProfit

trait = Profit

unit = "Euros”

. RescaleFromRescaleTa

baseMeasure2To = OrderintervalMeasure
functor = "f (baseMeasure1To, baseMeasure2Ta)"
library = GenericMeasures

observedMeasure = ObservedOrderinterval
rescaleTo = SalesVolumeMeasure

trait = Orderinterval

unit = "hours"

BinaryMeasureBaseMeasure2

SalesMarginMeasure :
DirectMeasure

BinaryMeasureBaseMeasure 1

SalesVolumeMeasure :
RescaledMeasure
baseMeasure2From = ProfitMeasure

library = Genericheasures
observedMeasure = ObservedMargin
trait = SalesMargin

unit = "Euros”

baseMeasure 1From = PrafitMeasure
formula = "365 * 24 / rescaleFrom"

library = GenericMeasures
observedMeasure = ObservedSalesVolume
rescaleFrom = OrderintervalMeasure

trait = SalesVolume

unit = "pcs / year"

library = GenericMeasures

rankingTa = RecipientvalusMeasure
trait = RecipientSatisfaction
unit = "satisfaction paints"

".' tValL ire : Coll ure

CollectiveMeasureBasehMeasure accumulator = sum

baseMeasureTo = FairPriceWeightedSatisfactionMeasure,

LateSpecFreezeWeightedSatisfactionMeasure,
MarketDrivenDesignWeightedSatisfactionMeasure,
FastinnovationweightedSatisfactionMeasure
library = GenericMeasures
observediMeasure = ObservedxTrailerPropasitionvalue
rankingFrom = RecipientSatisfactionMeasure
tralt = Recipientvalue
unit = "satisfaction paints"

CollectiveMeasureBaseMeasure

MarketDrivenDesignWeightedSatisfactionMeasure :
BinaryMeasure
baseMeasureFrom = RecipientvalueMeastre
library = GenericMeasures
observedMeasure = ObservedMarketDrivenDesignWeightedSatisfaction
trait = MarketDrivenDesignWeightedSatisfaction
unit = "satisfaction points"

FairPriceWeightedSatisfactionMeasure :
BinaryMeasure
baseMeasureFrom = RecipientvalueMeasure
library = GenericMeasures
observedMeasure = ObservedFairPriceWeightedSatisfaction
trait = FairPriceWeightedSatisfaction
unit = "satisfaction paints"

library = Genericheasures

unit = "satisfaction paints"
DimensionalMeasureRanking
BinaryMeasureB

RecipientSatisfactionMeasure : Ranking
baseMeasure1From = OrderintervalMeasure

observediMeasure = ObservedxTrailerPropositionSatistaction

BinaryMeasureBasehMeasurel

OrderintervalMeasure : DirectMeasure

baseMeasure2From = OrderintervalMeasure
library = GenericMeasures

observedMeasure = ObservedHistoricOrderinterval
trait = Orderinterval

unit = "hours"

‘ BinaryMeasureBasehMeasure?

DimensionalMeasureRankin:

CallectiveMeasureBasenleasure

FastinnovationWeightedSatisfactionMeasure :
BinaryMeasure
baseMeasureFrom = RecipientvalueMeasure
library = GenericMeasures
abservedMeasure = ObservedFastinnovationWeightedSatisfaction
trait = FastinnovationWeightedSatisfaction
unit = "satisfaction paints"

CollectiveMeasureBaseMeasure

LateSpecFreezeWeightedSatisfactionMeasure :
BinaryMeasure
baseMeasure1To = LateSpecFreezeSatisfactionMeasure
baseMeasure2To = LateSpecFreezeWeightMeasure
baseMeasureFrom = RecipientvalueMeasure
functar = "baseMeasure1To * baseMeasure2To / 100"

observedMeasure = ObservedLateSpecFreezeWeightedSatisfaction
trait = LateSpecFreezeweightedSatisfaction

aseMeasure

[— |
|
ProductLeadTimeMeasure : RescaledMeasure LateSpecFreezeSatisfactionMeasure : Ranking

baseMeasure1From = LateSpecFreezeWeightedSatisfactionMeasure
library = GenericMeasures

observedMeasure = ObservedLateSpecFreezeSatisfaction
rankingTo = ProductLeadTimeMeasure

trait = LateSpecFreezeSatisftaction

unit = "satisfaction points"

formula = "rescaleTo/ 8"

library = GenericMeasures

observedMeasure = ObservedProductLT
rankingFrom = LateSpecFreezeSatisfactionMeasure
rescaleTo = ProductLeadTimeMeasure

trait = ProductLeadTime

unit = "days"

1: BinaryMeasureBaseMeasure2

LateSpecFreezeWeightMeasure : DirectMeasure
baseMeasure2From = LateSpecFreezeWeightedSatisfactionMeasure
library = GenericMeasures
observedMeasure = ObservedLateSpecFreezeWeight
trait = LateSpecFreezeWeight
unit = "percent"

Figure 105. Measure Library objects (Measures, part-1)

Copyright © NEFFICS Consortium 2010-2013

Page 81 /117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

Dot Wagram WyCo o | [Weastra Livary - Gener - Dopendersies betwesn measutes2]

ProductLeadTimeMeasure : RescaledMeasure ProductLeadTi e : CollectiveMeasure

accumulator = sum
baseMeasureFrom = ProductLeadTimeMeasure
library = GenericMeasures

formula = "rescaleTo / 8"
library = GenericMeasures
observedMeasure = ObservedProductlLT

teSpecFreezeSati

CollectiveMeasureBaseMeasure

ProductlL eadTimeMeasure : BinaryMeasure
baseMeasure1To = ProductionLeadTimeMeasure
baseMeasure2To = ProduciDeliveryHandlingTimeMeasure

bservedV e = ObservedProductLTC
rescaleFrom = ProductLeadTimeMeasure
trait = ProduclLeadTime
unit = "hours"

[

RescaleFromRescaleTo

gFrom =L I ire asure
rescaleTo = ProductLead TimeMeasure
trait = ProductLeadTime

unit = "days"

ProductionLeadTimeMeasure : CollectiveMeasure

eTo = ProductLeadTimeMeasure

functor = "sum"

library = GenericMeasures

observedMeasure = ObservedProductL TBinaryMeasure
trait = ProductLeadTime

unit = "hours"

BinaryMeasureBaseMeasure 1 ‘ : BinaryMeasureBaseMeasure2
ProductDeliveryHandlingTi

e : DirectMeasure

accumulator = sum

baseMeasure2From = ProductLeadTimeMeasure

baseMeasure 1From = ProductLead TimeMeasure

library = GenericMeasures

baseMeasureFrom = ProductionLeadTimeM e
b A reTo = P| orageDurati e

obser = ObservedProductUseDuration
trait = ProductDeliveryHandlingTime

library = GenericMeasures unit = "hours"
observedMeasure = ObservedProductionL T
trait = ProductionLeadTime

unit = "hours"

CollectiveMeasureBaseMeasure CollectiveMeasureBaseMeasure

ProductStorageDurationMeasure : DirectMeasure eadTimeM : BinaryMeasure
baseMeasureFrom = ProductionLeadTimeM Ire b
library = GenericMeasures

observedMeasure = ObservedProduciStorageDuration
trait = ProductStorageDuration

unit = "hours"

ire1To = BuildProductDurationMeasure
baseMeasureTo = ProductionLeadTimeMeasure
functor = "sum"

library = GenericMeasures

observedMeasure = ObservedProductionL T

frait = ProductionLeadTime

unit = "hours"

BuildProductDurationMeasure : DirectMeasure
baseMeasure 1From = ProductionLeadTimeMeasure
library = GenericMeasures t
observedMeasure = ObservedBuildProductDuration
trait = BuildProductDuration
unit = "hours"

: BinaryMeasureBaseMeasure |

Figure 106. Measure Library objects (Measures, part-2)

These objects are instances of the classes in the Measures metamodel diagram in Figure 107. Note that
these classes are defined by SMM. SMM (2012) specifies the metamodel in detail. The diagrams
below only shows the metamodel in part, and leaves out various details.

The SMM metamodel that is used here is an adaptation of the metamodel as is specified in SMM
(2012). Relationships between classes are straight associations in Figure 107, whereas in SMM (2012)
they involve relationship classes. This simplification has been applied here to avoid exposure of many
objects that do not necessarily add to the understanding of the basic concepts.

As has been mentioned earlier, a revision of SMM is in progress. This revision addresses several
improvements that are required in SMM, to facilitate integration with VDML, as well as to improve the
maintainability and expressiveness of measures. Error! Reference source not found.) lists an
overview of the most important changes that a forthcoming SMM revision will address, together with a
short explanation of why these are required. The meta-model diagrams that we use in this document
do incorporate just some of these changes, in so-far they are essential to demonstrate the application
of SMM measures to the use case.

Page 82 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package SMM| [Measures (simplfied)]
Measure
(SMM)
- +gradeTo
: 0.1
+haseMeasure1To
- M) +rescaleFrom
+unit: String 1
+baseMeasureTo
+baseMeasure2To 4
7 +rankingTo
0.1
‘ ‘ | ‘ | & i - o
Fi T T T
el y e Dir e| [N e e & e Ranking Grade
1Fumm (SMM) (SMM) ‘ (SMM) (SMM) (SMM) (SMM) (SMM)
0+ +functor : String o0* +formula ; String +accumulatar : Accumulator +baseMeasureFrom
e
+operation |0.*
= = +rescaleTo
‘ RatioMeasure ‘ Operation i
‘~ﬂmctur smng:mume‘ +body : String
language : String <enumerations
Accumulator
- sum
AbstractMeasureElement maximum
minimum
average
product
standardDeviation

Figure 107. Measures metamodel (simplified and intermediate version)

The metamodel of measurements, being the application of measures, is structured similarly, and its
diagram is provided in Figure 108.

[T e ———
g Measurement
‘SMMI
+gradaTo
shaseMaeasurement! To (SMM) 0.1
N | sroseaiofrom
01
+bassMeasuromantTo
sbasaMaasurEmEntiTe [~
o3 | | rankingTe
[oa
‘ ‘ ‘ *rankingFrom 0. radeFrom [0.*
*bFsaMiasutsntFrom yMansramant 1 1 A A
N — ?r' (Shand) [(Shahd) (SHIM) (SMM) (SMM) L (SMM)] i (SMM)
—— 53 snasiMiasmimentF rom
=
| | sroscaleTo
RatioMeasuramant | Io~
(SMM)

Figure 108. Measurements metamodel (simplified and intermediate version)

A dimensional measure, e.g. Product Lead Time, might be graded by a grade, being a non-
dimensional measure (i.e. it does not have a unit of measure). Grade’s are associated with intervals,
not shown in the metamodel diagram in Figure 107, but part of the SMM meta-model in SMM (2012). For
example, when Product Lead Time longer than 5 days, it may be graded as “inferior”, whereas Product
Lead Time shorter than 1 day maybe graded as “outstanding”. The picture in Figure 109 suggests a
graphical representation of such grading (see also Figure 94 above).

“Pie” sectors: Intervals of
ranking or grade of
dimensional measure

1

“Needle” position: measurement
value of dimensional measure

Figure 109. Grading or ranking a dimensional measure

Though sometimes very useful, in the XTrailer use case example we will demonstrate the use of
rankings, instead of grades (though both could have been applied in parallel). The difference is that
ranking intervals are associated with values that are expressed against a unit of measure. A ranking is
a dimensional measure, whereas a grade is not. The eye-catching indicator in the graphic in Figure 109

Copyright © NEFFICS Consortium 2010-2013 Page 83/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

is the measurement of the underlying value. The level of the recipient’s satisfaction with it is implied by
the mapping on intervals (“pie” sectors). When rankings are applied, a more direct representation of
the level of satisfaction would be possible, such as is suggested by the graphic in Figure 110, which
provides a view on the value proposition components, as alternative to the one in Figure 94.

Value satisfaction
2,5

satisfaction points =

0‘5 | -

Fair Price Market Driven Innovation LT Product LT
0,5 Design

Figure 110. Satisfaction level as ranking of underlying value measurement

SMM version 1 (SMM (2012)) supports grades, but no rankings yet. As Error! Reference source not
found.) indicates, rankings will be added as part of the revision of SMM. In the discussion in this
section we anticipate on the support of rankings in SMM. The main advantage of a ranking is that it
can itself be ranked or graded by other rankings or grades. This will be demonstrated below.

A “named measure” (see Figure 107), being a subtype of dimensional measure, is different from the
other subtypes of measure, in that it does not specify in any structured way how the value of its
measurements is constructed. After the revision to SMM has been applied, it might have a formal
formula (string), but that would just be text that is interpretable by human readers. It is experienced in
practice that many existing sources of measures, either in public or proprietary bodies of knowledge,
do actually contain “informal” measures, i.e. measures that have a name, a description, some might
have a formula, but not in machine-readable form, whereby such a formula might even relate to some
operands that are not even available as measures, etc. Rigorous measurement, including automated
aggregation of measurements, as well as, ultimately simulation, is not possible based on such
measures. Such informal measures can be stored in SMM-based measure libraries as “named
measures”. When a “structured” measure is required as part of a value delivery model, a business
analyst might select an “informal” measure of choice, and create one or more “structured” measures in
another SMM-based measure library, whereby these measures refer back to the “informal” measure
as source. Actual analysis will make use of the “structured” measures. In the remainder of this section
we will only demonstrate the application of “structured” measures.

It is important to note the difference between direct measures and other dimensional measures, such
as binary measures (including ratio measures), collective measures and rescaled measures. Binary
measures are atomic, forming the leaves in a measure hierarchy. Measurements of direct measures
are entered manually (e.g. estimates), or based on queries in a database, e.g. through query services.
Binary measures, collective measures and rescaled measures are applying calculations to create
aggregated or transformed measures, based on other dimensional measures. Binary measures do that
based on two underlying dimensional measures (e.g. calculating their sum, ratio, difference or
product), collective measurements based on a series of them (e.g. calculating their sum, product,
maximum, average, etc.), and rescaled measures “rescale” or transform a single measure. All of these
will be applied below.

We will now model the measurement of Late Spec Freeze value, related to the Late Spec Freeze
component in the XTrailer Proposition (see Figure 94 and Figure 95 above), including how it is derived or
aggregated from underlying measurements. Measurements of measured characteristics that are
involved in this aggregation are define in relation to elements in the sub-scope of the XTrailer business
system that is highlighted in the diagram in Figure 111. Product Lead Time will be constructed from
Production Lead Time (duration of Build Product activity), duration of storage in the Products store,
and the portion of lead time of the Deliver Product activity that is concerned with taking the product
from the store and delivering it. This cumulative lead time will then be propagated further up the
delegation stack, until the point where the Manage Fulfillment activity actually delivers the product to

Page 84 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

the customer, and even further up to the corresponding Late Spec Freeze component of the “XTrailer
proposition”.

v

Manage Product
Fulfillment T

Figure 111. Use case overview: Basis for measurement of Late Spec Freeze value highlighted

Objects in the object diagram in Figure 112 show the bottom part of the measurement aggregation,
starting with the duration of the Build Product activity. Note that we just consider a direct measurement
for this duration, though we could have modeled even this in a more refined way, e.g. by making this
duration itself dependent on availability of production capacity in the pools of the Trailer Plant, or even
on certain custom defined measured characteristics of such pools, e.g. characteristics that express
skill levels or certification levels in more detail. Note that custom measured characteristics of pools
would also support refined cost measurements of activities, e.g. taking into account such pool
characteristics as labor rates. This is all possible in real-world cases, but for sake of keeping the use
case content small, we just focus on some highlights, selectively.

Copyright © NEFFICS Consortium 2010-2013 Page 85/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Obiect Diagram yCo Business | [Products - ValueAdas 1]

Products : Store ProductOutput : QutputPort ShortProductionLT : ValueAdd ProductionLTMeasurement : CollectiveMeasurement
containedPort = PilotProductOutput, autput = ProductFromstareFlow aggregatedFram = ShartProductionLT baseMeasurement2From = ProductLTMeasurement
ProductTaStarelinput, PraductOutput portCantainer = Products aggregatedTo = ShortProductL T baseMeasurementTo = ProductStorageDurationMeasurement,
duration = ProductStarageDuration resourceUse = ProductUse valueDefinition = ShortProductionLeadTime | ProductionLTMeasurement
resource = Product valueAdd = ShaortProductionlL. T valueMeasurement = ProductionL. T observedMeasure = ObservedProductionL. T
storeContext = ManageReleaseDelCnbd, valuePort = ProductOutput
ManageFulfilmentDelCnixt PthCJnIameeri
ERIETMCIEIS S0 st:reDuramn
suppartedCapability = ProductDelivery aluePortvalueAd

ValueAddValueMeasurement CharacteristicMeasurement
w ProductStorageDuration : ProductionLT : MeasuredCharacteristic
ProductToStorelnput i -
Produclt:‘TouStt;;::ln ut Massuradcharactansticl characteristicDefinition = ProductionLeadTime
InputFort characteristicDefinition = ProductStorageDuratian measuredvalue = ShartProductionLT
input = ProductTaStorerlow measurement = ProductStorageDurationMeasurement measurement = ProductionL TMeasurement
partCantainer = Products store = Products
FlowTarget CharacteristicMeasurement
ProductToStoreFlow : DeliverableFlow ProductStorageDurationMeasurement : - CollectiveMeasurementBaseMeasurement
DirectMeasurement —
baseMeasurementFrom = ProductionL TMeasurement
abservedMeasure = ObservedProductStorageDuration
Flowsource | ValueAggregation CollectiveMeasurementB: urement
ProductOutput : QutputPort ShortProductionLT : ValueAdd ProductionLTMeasurement : BinaryMeasurement
output = ProductToStareFlow _ValuePortValueAdd aggregatedTo = ShortProductionL.T baseMeasurement1 To = BuildPraductDurationMeasurement
portContainer = Build Product valueDefinition = ShartProductionLeadTime baseMeasurementFrom = ProductionL TMeasurement
valueAdd = ShortProductionLT valueMeasurement = ProductionLT observedMeasure = ObservedProductionLT
valuePort = ProductOutput
PortContainerPort
}7 \/a\ueAddy‘a\ueMeasurement CharacteristicMeasurement
% BuildProductDuration : ProductionlLT : MeasuredCharacteristic
apphedcapabmtyofferi ProductionExecution MeasuredCharacteristic characteristicDefinition = ProductionLeadTime
capahmt\/l}’qulrement = Production Execution activity = Build Product measuredvalue = ShortProductionLT
collaboration = ProductionManagementietnod measurement = BuildPraductDurationMeasurement measurement = Production_TMeasurement
cantainedPort = ProductOutput,

PraductionWorkOrderinput, Releaselinput, ActivityDurat
ProductionReportOutput, ~ActvityDurafion)

ProductionLevel 1 Resourcelinput,
ProductionLevel2ZResourcelnput

CharacteristicMeasurement

BuildProductDurationMeasurement :

= BinaryiMeasurementBaseMeasurement1
DirectMeasurement

duration = BuildProductDuration
perfarmingRale = Operator baseMeasurement1From = ProductionL TMeasurement

resourceUse = ProductionResourcelse abservedMeasure = ObservedBulldPraductDuration

Figure 112. Aggregation of Short Production Lead Time value (objects)

Storage duration in the Products store is based on a direct measure as well (see Figure 107). The
activity output port carries a value add object that “aggregates” the production lead time (though
actually there is only a single underlying measurement object here). The measurement of the value
add object on the output port of the store, aggregates from both production lead time and storage
duration. Note also that the value add objects refer to value definitions in the same library that has
been presented earlier, in Figure 99.

As can be concluded from the measurements in Figure 112 above, measurements do not refer to
measures directly, but to “observed measures”. As discussed -earlier, observations contain
measurements, via “observed measure” objects that refer to both a measure and their resulting
measurement(s). This is expressed by the objects in the object diagram in Figure 113. It is important to
notice that an observation is set by a context. As is visible in Figure 113, the measurements that relate to
production, are contained in the “Manage Production Delegation context”, which represent production
management in the context of fulfilment. When we would analyze duration of production in the context
of pilot production (as part of release management), a different observation would impose a different
set of measurements to the same elements in production. Performance and value measurement is
notable context-dependent.

Page 86 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

Object Diagram MyCo Business| |5 Manage Production Del Critxt Otiservation]|

ionDelCntxt : D ontext

ContextObservation

contexiBasedAssignment = CommProdOperator’
contextBasedPortDelegation = WorkOr |
FinalReleaselnputDelegation,
ProductionReportOutputDelegation
contextCollab ion = ProductionManag
contextObservation = ManageProductionDelCntxtObservation
delegatedActivity = Manage Production

parentContext = ManageFulfillmentDelCntxt

p

Method

ObservedProductionL

measure = ProductionLeadTimeMeasure
measurement = ProductionL TMeasurement

observation = ManageProd|

ProductionL TMeasurement : Binai
baseMeasurement1To = BuildProductDurationMeasurement
baseMeasurementFrom = ProductionL TMeasurement

ManageF ionDelCntxtO vation : Observation
observedMeasure = ObservedProductionLT,
ObservedBuildProductDuration

smmModel = MyCo specific SMM model

ObservationObservedMeasure ObservationObservedheasure

T : ObservedMeasure ObservedBuildProductDuration : ObservedMeasure

measure = BuildProductDurationMeasure
measurement = BuildProductDurationMeasurement

uctionDelCntxtObservation observation = ManageProductionDelCntxtObservation

w ObservedieasureMeasurement

leasurement BuildProductDurationMeasurement : DirectMeasurement
baseMeasurement1From = ProductionL TMeasurement
observedMeasure = ObservedBuildProductDuration

observedMeasure = ObservedProductionLT

Figure 113. Production lead time measurement in context of Manage Production activity (objects)

Objects in the object diagram in Figure 114 indicate how observations, including the “Manage Production
Delegation Context Observation” is contained in SMM models, here in the “MyCo specific SMM
model”. The measure library that we use is assumably re-usable across multiple value delivery
models, and is hence contained in a separate SMM model, called “Generic Library Model”. There is
also the “Model specific Measures” library, contained in the “MyCo specific SMM model”, but that
library is actually left empty. In 3.1.6 we will consider how the “MyCo specific SMM model”, containing
the observations, is contained in the value delivery model itself, whereas the “Generic Library Model”

model is not.

Object Diagram 1yCo Business | i) SHM Hodels 1]

SmmModel
library = MadelSpecificMeasures

DefaultScenarioObservation,

ModelSpecificMeasures :
MeasureLibrary

madel = MyCo specific SMM model

PilotProductionDelCnbdCbservation,
ManageFulfilmentDelCntdObservati

WMadelObservation

D tC
: Observation

smmiodel = MyCo specific SMM model

M. vation

MaodelCbservation

ManageReleaseDelCntxtObservation :
Observation

smmModel = MyCo specific SMM model

- ModelObservation

PilotProductionDelCntxtObservation
: Observation

smmModel = MyCo specific SMM model

MyCo specific SMM model :
MadelMeasureL by gpservation = OveralliScenarioObservation,
ManagelnnovationDelCnttObservation,

ManageReleaseDelCnbaObservation,

ManageProductionDelCnbtObservation

MaodelObservation

GenericLibraryModel :
SmmModel

library = GenericMeasures

ModelMeasureLibrry

GenericMeasures : MeasureLibrary
measureElement = FairPriceWeightedSatisfaction,
LateSpecFreezeWeightedSatisfaction,
MarketDrivenDesignWeightedSatisfaction,
FastinnovationWeigt i 1,
RecipientSatisfaction, Recipientvalue,
RecipientSatisfactionMeasure,
RecipientvalueMeasure,
FairPriceWeightedSatisfactionMeasure,
LateSpecFreezeWeightedSatistactionMeasure,
MarketDrivenDesignWeightedSatisfactionMeasure,
FastinnovationWeightedSatisfactionieasure,
ProductPrice, ProductLeadTime,
IdeaProductization, InnovationLeadTime,
ProductLeadTimeleasure,
LateSpecFreezeSatisfaction,
LateSpecFreezeSatisfactionMeasure,
LateSpecFreezeWeight,
LateSpecFreezeWeightMeasure,
ProductLeadTimelMeasure,
ProductLeadTimeMeasure,
ProductDeliveryHandlingTime,
ProductDeliveryHandling TimeMeasure,
ProductStarageDuration,
ProductStarageDurationMeasure,
ProductionLeadTime,
ProductionLeadTimeMeasure,
ProductionLeadTimeMeasure,

an,

ModelCbservation
DefaultScenarioObservation :
Observation

smmModel = MyCo specific SMM model

OverallScenarioObservation : Observation

abservedMeasure = Observed<TrailerPropositionSatisfaction,
ObservedxTrailerPropositionvalue,
ObservedFairPriceWeightedSatisfaction,
ObservedLateSpecFr ightedSatisfaction,
ObservedFastinnovationWeightedSatisfaction,
ObservedMarketDrivenDesignWeightedSatisfaction,
ObservedProductl T, ObservedLateSpecFreezeSatisfaction,
ObservedLateSpecFreezeWeight, ObservedSalesVolume,
ObservedOrderinterval, ObservedHistaricOrderinterval,
ObservedMargin, ObservedProfit

smmModel = MyCo specific SMM model

ModelObservation ModelObservation BuildProductDuration,
N N BuildProductDurationMeasure, Salesvolume,
. . ManageFulfilimentDelCntxtObservation : Observation Salesvall Ire. Orderinterval
g g = . .
Hanzi eProduc;l:::?rl;?::tobservatlon abservedMeasure = ObservedProductLTCollectiveMeasure, OrderintervalMeasure, OrderintervalMeasure,
= ObservedProductl TBinaryMeasure, SalesMargin, SalesMarginMeasure, Profit,
observediieasure = ObservedProductionLT, ObservedProductUseDuration, PrafitMeasure, Ideavolume, PaymentAmaunt,
ObservedBuildProductDuration ObservedProductstorageDuratian, ObservedProductionLT IdeaApprovalRatio
smmiodel = MyCo specific SMM model smmiodel = MyCo Specific SMM modsl model = GenericLibraryModel
Figure 114. SMM models (objects)

The objects in the object diagram in Figure 115

demonstrate how Product Lead Time is constructed from

Production Lead Time plus a portion of the duration of the Deliver Product activity, measured as the

duration of the “Product Use” object, being a

resource use object as contained by the Deliver Product

activity. This object connects the input port that denotes the input of the product from the Products
store, to the output port that denotes the delivery of the product by the Deliver Product activity. As the
Activities metamodel diagram in Figure 65 indicates, a resource use object can also contain a duration.
The duration measurement of the “Product Use” object is taken as the measurement of the time it

Copyright © NEFFICS Consortium 2010-2013

Page 87 / 117

VDML Manufacturing Use Case

bmi/2012-11-10

takes to physically handle the product in order to deliver it. The resulting Short Product Lead Time
value is propagated up the delegation stack, from the output port of the activity, to the output port
(“boundary port”) of the Fulfillment Management method.

Object Diagram 11yCe Business | (g5 Manage Fulfiiment - imeral - ‘JMMNU

FulfillmentManagementMethod : CapabilityMethod
activity = Plan Fulfilment, Manage Praduction, Deliver Product
businessitem = WorkOrder, ProductionReport
collaborationRole = LogisticHandler
contalnedPart = OrderinputFM, ProductOutputFm
delegationContext = ManageF ulfilmentDelCnbi
flow = WorkOrderFlow, ProductionReportFlow,
FinalReleaseFromStareFlaw, ProductFromStoreFlow,
OrderProcessorResourceFlow, LogisticHandlerResourceFlow
internalPortDelegation = OrderinputFmminternalDelegation,
PraductOutputFmminternalDelegation
methodOwner = S&D
ownzdAssignment = OrderProcessorAssignment,
LogisticHandlerAssignment, ProducerAssignment
performer = Producer, OrderPraocessor, LagisticHandler
supportedCapability = FulfilmentManagment

CollaborationActivity

D Product : Activity
appliedCapabilityOffer = PraductDelivery
capabilityRequirement = Praduct Delivery
ca = Fulfilimenth
containedPort = ProductionRepoartinput,
Praductinput, ProductOutput,
LogisticHandlerResourcelnput
performingRole = LogisticHand|er
resourceUse = LogisticHandlerResourceUse
ProductUse

| Al:tiwl_\[ResourceU;e i
ProductUse : ResourceUse -ﬂw

: ValuePortvalueAdd

ProductOutputFM : QutputPort

ShortProductLT : ValueAdd

delegatedOutput = ProductOutputDelegation
outputDelzgation = ProductOutputFmminternalDelegation
portContainer = FulfiimentManagementMethod
valueAdd = ShortPraductlLT

aggregatedFrom = ShortProductLT
aggregatedTo = LateSpecFreeze
valugDefinition = ShortProductlead Time
valueMeasurement = ProductLT

ValugAddValueMeasurement

ProductLT : MeasuredCharacteristic
characteristicDefinition = ProductLeadTime
measuredvalue = ShortProductLT
measurement = Productl. TMeasurement

valugPort = PraductOutputFM

- PortContainerPart

OutputDelegationSource

: CollaborationinternalPortDelzgation

ProductOutputFmminternalDelegation :
OutputDelegation
[V=
source = ProductOutputFM
target = ProductOutput

thethod

| CutputDelegationTar
ProductOutput : OutputPort | ValuePortValueAdd

- PortCantainerPort gejegatedOutput = ProductOutputF mminternalDelegation

portContainer = Deliver Product
valueAdd = ShortProductLT

ProductUseDurationMeasurement :
DirectMeasurement

activity = Deliver Product
deliverable = ProductQutput

ProductUseDuration : MeasuredCharacteristic

baseMeasurement1From = Productl

- ValueAggregation

ShortProductLT : ValueAdd
agaregatedFrom = ShortProductionl.T

ValueAddValueMeasurement

: CharacteristicMeasurement

ProductLTMeasurement : CollectiveMeasurement
To = ProductLT t
observedMeasure = ObservedProductLTCollectiveMeasure
rescaleTo = ProductLTMeasurement

CollectiveMeasurementBaseMeasurement
ProductLT : MeasuredCharacteristic

aggregatedTo = ShortProductLT
valueDefinition = ShortProductleadTime
valueMeasurement = Productl T
valuePort = ProductOutput

characteristicDefinition = ProductLeadTime
measuredValue = ShortProductlLT
measurement = ProductLTMeasurement

BinaryMeasurementBaseMeasuremeant

- ValueAggregation
LTMeasurement

observedMeasure = ObservedProductUseDuration

characteristicDefinition = ProductDeliveryHandlingTime

duration = ProductUseDuration | | measurement = ProductUseDurationMeasurement

resource = Productinput resourceUse = ProductUse

Products : Store

containedPort = PilotProductOutput,
ProductTaStareinput, ProductOutput
duration = ProductStorageDuration
resource = Product

storeContext = ManageReleaseDelCntid,
ManageFulfiimentDelCnbt

storeCwner = S&D

supportedCapability = ProductDelivery

PortContainerPort output = ProductFromStoreFlow |

CharacteristichMeasurement

ProductOutput : QutputPort 2

* ValuePortvalueAdd | 5
portContainer = Products
resourceUse = ProductUse Vi

valueAdd = ShortProductionLT

ShortProductionLT : ValueAdd

garegatedFrom = ShortPraductionLT
ggregatedTo = ShortProductLT

alueMeasurement = ProductionL.T

- CharacteristicMeasurement

ProductLTMeasurement : BinaryMeasurement
aseMeasurement1 To = ProductUseDurationMeasurement
aseMeasurement2To = ProductionLTMeasurement

rom = ProductLT ent
observedMeasure = ObservedProductl TBinaryMeasure

‘ BinaryMeasurementBaseMeasurement2

ProductionLTMeasurement : CollectiveMeasurement

baseMeasurement2From = Productl TMeasurement
baseMeasurementTo = ProductStorageDurationMeasurement,
ProductionLTMeasurement

observedMeasure = ObservedProductionL.T

CharacteristicMeasurement

] ProductionLT : MeasuredCharacteristic

characteristicDefinition = ProductionLeadTime
measuredvalue = ShortProductionL.T

valueDefinition = ShartProductionLeadTime | measurement = ProductionLTMeasurement

valuePort = ProductOutput

Figure 115. Aggregation of Short Product Lead Time value (objects)

The objects in the object diagram in Figure 116 demonstrate how the Short Product Lead Time value is
propagated further, from the output port of the Fulfilment Management method to the Late Spec
Freeze value on the output port of the Manage Fulfillment activity in the business network.

Page 88 /117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

| Obicet Diagram 14yCo Business [g5 Manage Fufimen: Deleomion - ValusAdss ||

Pmducmmgut i OMEMPQI‘!
output = ProductFlow

| Manage Fulfillment : ivity
appliedCapabilityOffer = outputDelegation = ProductOutputDelegation
capabiltyRequirement = Fulfillment portContainer = Manage Fulfillment
Management valueAdd = FairPrice, LateSpecFreeze
collaboration = XTrailerBusiness T T
containedPort = ProductOutput, OutputDel¢qat
OrderFromStorelnput

delegationContext = ManageF ulfilmentDelCntxt
performingRole = Manufacturer

PartCantainerPort

ragment

| ~ValuePortValueAdd
LateSpecFreeze : ValueAdd
aggregatedFrom = ShortProductLT

valueDefinition = LateSpecFreeze
valueMeasurement = ProduciLT
valuePort = ProductOutput

| - DelenatednctvinDeieqationConte
ManageFulfilimentDe|Cntxt : DelegationContext

propositionComponent = LateSpecFreezeComponent

ValueAddValueMeasurement

ProductLT : MeasuredCharacteristic
characteristicDefinition = ProductLeadTime
measuredValue = LateSpecFreeze
measurement = ProduciL TMeasurement

CharacteristicMeasurement

1= 0

ProductOutputDelegation textPortDelagation

ValueAggfegation

ProductLTM : RescaledM

contextC =Ft

contextObservation = ManageFulfillmentDelCntxiObservation
contexiStore = Products

delegatedActivity = Manage Fulfillment

delegationtContext = ManageProductionDelCnixt
parentContext = OverallScenario

ProductOutputD
poriDelegationContext = ManageFulfilmentDelCnixt
source = ProductOutput

target = ProductOutputFM

- OutputDy

DelegationContextCollaboration
Fulfill A i
activity = Plan Fulfilment, Manage Production, Deliver Product
businessltem = WorkOrder, ProductionReport
collaborationRole = LogisticHandler
containedPort = OrderinputFM, ProductOutputFM
delegationContext = ManageFulfilmentDelCnixt
flow = WorkOrderFlow, ProductionReportFlow,

ShortProductLT : ValueAdd

F leaseF low, Productf Tow,
OrderProcessorResourceFlow, LogisticHandlerResourceFlow
InternalPortD =0 mminternalD il

valueMeasurement = ProduciLT
valuePort = ProductOutputFM

aggregatedFrom = ShortProductLT
aggregatedTo = LateSpecFreeze
valueDefinition = ShortProductLeadTime

bser @ = ObservedProductLT
rankingFrom = Lali i

p
rescaleFrom = ProductLTMeasurement

RescaleFromRescaleTa

ProductLT :C
baseMeasurementTo = ProductL TMeasurement
observedMeasure = ObservedProductLTCollectiveMeasure
rescaleTo = ProduciL TMeasurement

CharacteristicMeasurement

ProductlLT : MeasuredCharacteristic
characteristicDefinition = ProductLeadTime
measuredValue = ShortProductLT
measurement = ProductL TMeasurement

[- ValuePortValueAdd [

ProductOutputFmminternalDelegation
methodOwner = S&D
ownedAssignment = OrderProcessorAssignment,
LogisticHandlerAssignment, ProducerAssignment
performer = Producer, OrderProcessor, LogisticHandler
supportedCapability = FulfilmentManagment

ProductOutputFM : OutputPort
delegatedOutput = ProductOutputDelegation
outputDelegation = ProductOutputFmminternalDelegation
portContainer = FulfilmentManagementMethod
valueAdd = ShoriProductLT

ValueAddalueMeasurernent

Figure 116. Aggregation of Late Spec Freeze value (objects)

From here on the product is actually delivered to the customer, as this output port connects to the

actual deliverable flow in the business network.

The objects in the object diagram in Figure 117 show how measurements, as modeled above, are
contained in the observation of the delegation context that is set by the Manage Fulfillment activity.

Dbject Dlagrarm 0o Busivess{ [Warage Fullimert Do Crixt Gbservatin 1]

ProductL TMeasurement :
rementTo = ProductL TMeasurement

ProductionL TMeasurement
observedMeasure = ObservedProductionL. T

: ObservedMeasureMeasurement

ManageFulfillmentDelCntxt : ontext ObservedProductionLT : ObservedMeasure
edPoriDelegation = OrderinputDelegation, =F eadTimeM =
ProductOutputDelegation measurement = ProductionL TMeasurement

contextCollaboration = FulfilmentManagementMethod
contextObservation = ManageF ulfillmentDelCntxtObservation
contextStore = Products
delegatedActivity = Manage Fulfiliment

ontext = M; ProductionDelCntxt
parentContext = OverallScenario

observation = ManageFulfillmentDelCntxtObservation
ObservationObservedMeasure

ManageFulfillmentDelCntxtObservation : Observation
observedMeasure = ObservedProductLTCollectiveMeasure,

ContextObservation ObservedProductStorageDuration, ObservedProductionl T
smmModel = MyCo specific SMM model

ObservationObservedMeasure

Pri ionl TMeasurement : 1!
baseMeasurement2From = ProductL TMeasurement
baseM To = ProductSt DurationM ement, b

ObservedProductL TBinaryMeasure, ObservedProductUseDuration,

observedMeasure = ObservedProductL TCollectiveMeasure
rescaleTo = ProductL TMeasurement

ObservedMeasureMeasurement

ObservedProductL TC
measure = ProductLeadTimeMeasure

measurement = Productl TMeasurement

observation = ManageFulfilmentDelCnixtObservation

: Obser

- ObservationObservedMeasure

ObservationObservedMeasure

ObservedProductL TBi : O ®

ObservedProductStorageDuration : Obser Oob! : Obser
measure = ProductStorageD:s = ProductDeliveryHandling TimeMeasure
measurement = ProductStorageDuratior it = ProductUseDurationMeasurement

observation = ManageFulfilmentDelCntxtObservation observation = ManageFulfilmentDelCntxtObservation

: ObservedMeasureMeasurement

: ObservedMeasureMeasurement

ProductStorageD: urement : DirectM ProductUseD : DirectM;

measure = ProduciLeadTimeMeasure
measurement = ProductLTMeasurement
observation = ManageFulfillmentDelCntxtObservation

: ObservedMeasuraMeasurement

irement

ProductLT|

baseMeasurementFrom = ProductionL TMeasurement
observedMeasure = ObservedProduciStorageDuration

baseMeasurement1From = ProduciL TMeasurement
observi A ire = ObservedPr JseDuration

baseMeasurement1To = ProductUseDurationMeasurement

b ment2To = Productionl TMeasurement
baseMeasurementFrom = ProductL TMeasurement
observedMeasure = ObservedProductL TBinaryMeasure

Figure 117. Storage and delivery lead time measurement in context of Manage Fulfillment activity (objects)

Having modeled so-far how the Late Spec Freeze value measurement is constructed, we will how
consider how to measure the level of satisfaction of the customer (transporter) with that value, as part
of the value proposition. Objects in the object diagram in Figure 118 represent the Late Spec Freeze
component in the “XTrailer Proposition”, together with its measured characteristics and their related

Copyright © NEFFICS Consortium 2010-2013

Page 89 /117

VDML Manufacturing Use Case
bmi/2012-11-10

measurement objects, as well as how the value proposition component articulates the “underlying”
Late Spec Freeze value as carried by the output port of the Manage Fulfillment activity.

Object Diagram 4yCo Busness[[XTraierProposfionComporents - LateSpecFzeze |]

ValueWeight

LateSpecFreezeWeight :
MeasuredCharactei

| characteristicDefinition = LateSpecFreezeweignt
measurement = LateSpecFreezeWeightMeasurement
weightedValue = LateSpecFreezeComponent

CharacteristicMeasurement

abservedMeasure = ObservedLateSpecFreezeWeight

LateSpecFreezeComponent :
ValuePropositionComponent

- MeasureableElementCharacteristic

LateSpecFreezeWeightMeasurement : DirectMeasurement
baseMeasurement2From = LateSpecFreezeWeightedSatisfactionMeasurement

| BinaryMeasurement

articulatedvalue = LateSpecFreeze

measursdCharactenstic = LateSpecrreezeWelghteasatistaction
percentageWeight = LateSpecFreezeWeight

proposition = XTrailerProposition

measur:
satistactionLevel = LateSpecFreezesatisfaction

L reezeWs

characteristicDefinition = LateSpecFr

MeasuredCharacteristic

BinaryMeasurement

nt = LateSpecFreezeCi

measurement = LateSpecF

ValuePropositionComponentSatistactionLevel

PrapositionCompanentyalue

characteristicDefinition = LateSpecFr
measurement = Lat

rankedvalue = LateSpecFreezeCompanent

LateSpecFreezesSatisfaction :
MeasuredCharacteristic

= = Cl Measurement srement1To = LateSpecFreezeSatisfactionMeasurement
ightedSatisfaction urement2Ta = LateSpecF tMeasurement
nent DaseMeasurementFrom = XTrailerProposinonvaluemeasurement
ightedSatistac ement

abservedMeasure = ObservedLateSpecFreezeWeightedSatisfaction

BinaryeasurementBaseleasurement|

L i ionMeasurement :
Characteristic|

ion urementiFrom = LateSpecf

pec

ionMeasurement

abservedMeasure = ObservedLateSpecFreezeSatisfaction
rankingTo = ProductL TMeasurement

LateSpecFreeze : ValueAdd
aggregatedFrom = ShortProductLT
propositionComponent = LateSpecFreezeCompanent
valueDefinition = LateSpecFreeze
valueMeasurement = ProductlL T

valuePort = ProductOutput

roductLT : MeasuredCharacteristic
characteristicDefinition = ProductLeadTime
measuredValue = LateSpecFreeze
measurement = Productl TMeasurement

Productl TMeasurement : RescaledMeasurement

cl Measurement

observedMeasure = ObservedProductLT

- ValuePortvalueAdd

ProductOutput : OutputPort
autput = PraductFlow
autputDelegation = ProductOutputDelegation
portGontainer = Manage Fulfiliment
valueAdd = FairPrice, LateSpecFreeze

PartContainerPort

Manage Fulfiliment : Activity
appliedCapabilityOffer = FulfillmentiManagment
capabilityRequirement = Fulfilment
Management
callaboration = XTrailerBusiness
cantainedPart = PraductOutput
OrderFromStoreinput
delegationContext = ManageFulfilmentDelCnixt
peﬂnrmmgl?nle = Manufacturer

rankingFrom = LateSpecFreezeSatisfactionMeasurement

rescaleFrom = Productl TMeasurement

Figure 118. Measurements related to value proposition component and related value (objects).

Figure 119 shows how measured characteristics and related measurements from Figure 118 are exposed
in the view mockup (the one that was introduced earlier in Figure 95).

Page 90 /117

Copyright © NEFFICS Consortium 2010-2013

: DimensionalMeasurementRanking

VDML Manufacturing Use Case NE{E@,)@S
bmi/2012-11-10

Object Diagram hyCo Busness| sy (TralerPrapastonCamponants - LiteSpachreee [J

LateSpecFreezewWeight -

MeasuredCharacteristic
e charactenshcDennton = LateSpacFreszeWeign L Cliaractensibeasurement = ;i
measurement = LateSpecFreszeweightMeasurement From = LateSpeck tionMeasurement

observedheasure = ObservedLateSpecFreezeiWeight

weightedvalue = LateSpecFreezeComponent
LateSpecFreezeComponent : i MeasureablsElementCharacteristic
ValuePropositionCompanent 1

[articulatedvialue = LateSpecFresze Lmsaltﬂll!lmﬂmlﬂsﬂiﬁhtﬂﬂﬂ H
measursdCharactznistic = LateSpecFreczeWeightedSatistaction r rasien

inanyWEasuremet eheasurement?

LateSpecFreezeweightedsatistactionMeasurement :
BinaryMeasurement

T = LateSpec

pero ght = LateSpecF characteristicDefintion = LateSpeck I fon urement2To = LateSpecFreszeWeightMeasurement
progosition = XTraberPropastion measurableElement = LateSpecFreezeCompanent biaseMeastgentFrom = XTrailerPropositionValueheasurement
satisfactionLevel = LateSpecFreezeSatistaction measurement = LateSpeck 3 nent

¢ ObservedLateSpecFreszeelightzdSatisaction

ValuePropasitionCompanentSatisfactionL evel

LateSpacFreazeSatistaction :
MeasuredCharacteristic
CharacteristicMeasurement
charactertst:Defintion = LateSpecFreezeSatisfaction L

measurement = LateSpecFreezeSatstactionieasurement
rankedvalue = LateSpecFreezeCompanent

1From = LateSpecFre gasurement
observidheasure = ObservedLateSpecFreezeNgistaction
rankingTa = ProductL TMeasurement

FropositionComponsntyae

Latespectresse Valiekéd

= - gvalsMEasuremant
agyregatedFrom = ShortProduct T ﬂ'm=Ler : MeasuredCharacteristie

propastianCompanent = LateSpecFreszeComponent

DA - LaSpiTs Bt [R R tcsatat
valugPort = Proguctoutput measurement = ProductLTMeasurement
Value Proposition Value Satisf. L.
Xtrailer Proposition XX vy
Articulated Value Value Measurement
Component Value Add Source Value Unit Satisf. L. | Weight
Fair Price Product Price Manage Fulfilment | - - - -
Market Driven Design | Idea Productization | Manage Innovation | - - - -
Fast Innovation Innovation LT Manage Innovation | - - - -
Late Spec Freeze Product LT Manage Fulfilment | zz days uu w

Figure 119. Value proposition component, objects mapped on view

Note the distinction between four different measurements here:
o Measurement of the “underlying” value, via the Product Lead Time value measurement.

o Measurement of the satisfaction level of the customer with the “underlying” value, via a ranking
measurement that ranks the Product Lead Time value measurement.

e A measurement of how important the value is to the customer, relative to the other values in
the value proposition, via Late Spec Freeze Weight Measurement, being a direct
measurement.

e A measurement of the aggregation (actually multiplication) of the both the previous
measurements, via the Late Spec Freeze Weighted Satisfaction Measurement.

The objects in the object diagram in Figure 120 indicate how these four measurements, via their
observed measure objects, are contained in the observation of the “Overall Scenario”.

Copyright © NEFFICS Consortium 2010-2013 Page 91/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram MyCo Business| & Overall Scenario Observation 2]|

L Fr Wi ahtM, ement : Di M ment L F isfactionM : RankingMeasurement
irement2From = LateSpecF igl i i irement baseMeasurement1From = LateSpecFr: i isfacti irement
observedMeasure = ObservedLateSpecFreezeWeight observedMeasure = ObservedLateSpecFreezeSatisfaction

rankingTo = ProductL TMeasurement

ObservedMeasureMeasurement T
: ObservedMeasurehMeasurement

ObservedLateSpecFreezeWeight : ObservedMeasure ObservedLateSpecFreezeSatisfaction : ObservedMeasure
measure = LateSpecFreezeWeightMeasure measure = LateSpecF isfaction! e
= LateSpecFr g irement measurement = L pecFr ement
observation = OverallScenaricObservation observation = OverallScenarioObservation
: ObservationObservedheasure ~ObservationObservedMeasure

OverallScenarioObservation : Observation

observedMeasure = ObservedXTrailerPropositionSatisfaction,
ObservedXTrailerPropositionValue,

°°":a::l“ggl'l"'gd°'“= M‘{?p“’ﬁ”’é““:‘*‘ ObservedFairPriceWelghtedSatisfaction,
conte; ollaboration = rallerBusiness ContextObservation ObservedLat: o = 1 -a edSati

contextObservation = OverallScenarioObservation ObservedFastinnovationWeightedSatisfaction
contextStore = Ideas, Approvedideas, ObservedMarketDrivenDesignWeightedSati 2

FinaIRe_Ieases. arcers . ObservedProduciLT, ObservedL p
delegationtContext = ManagelnnovationDelCntxt, ObservedLateSpecFreezeWeight, ObservedSalesVolume,
ManagsFulfilmentDelCnixt ObservedOrderinterval, ObservedHistoricOrderinterval,
ObservedMargin, ObservedProfit
smmModel = MyCo specific SMM model

OverallScenario : Scenario

| ObservationObservedMeasure - ObservationObservedMeasure.
ObservedProductLT : ObservedMeasure
measure = ProductLeadTimeMeasure measure = LateSpecFr

Ire

g
measurement = ProductL TMeasurement measurement = LateSp ightedSatisfactionMeasurement
observation = OverallScenarioObservation observation = OverallScenarioObservation

ObservedMeasureMeasurement ObservedMeasureMeasurement
ProductlL TMeasurement : RescaledMeasurement LateSpecFreezeWeightedSati i ement : BinaryMeasurement
observedMeasure = ObservedProductLT ement1To = LateSpecFr isfac Irement
rankingFrom = LateSpecFreez: i ionM rrement b ement2To = LateSpecFreezeWeigt ement
rescaleFrom = ProductL TMeasurement ementFrom = XTrailerPropositionValt Irement
observedMeasure = ObservedL. P gl tion

Figure 120. Overall scenario observation measurements, first part (Objects)

As Figure 118 indicates, the “Late Spec Freeze Satisfaction Measurement” is a ranking to the underlying
measurement of Product Lead Time, based on “Late Spec Freeze Satisfaction Measure”, which is
used as measure, according to the observed measure object “Observed Late Spec Freeze
Satisfaction”. This measure, being a ranking, is a dimensional measure, and can itself serve as basis
for further aggregation by other measures, in accordance to its unit of measure, being defined as
“satisfaction points”, as the earlier presented measure library object diagram in Figure 105 indicates.
Note that Figure 110 did already provide a representation of this ranking measurement. The ranking
measurement is multiplied by “Late Spec Freeze Weight Measurement”, conform its related “Late
Spec Freeze Weight Measure”, which is a direct measure, having “percent” as its unit of measure (see
Figure 105 again). The multiplication itself is defined by “Late Spec Freeze Weighted Satisfaction
Measure”, which is the measure that is used to establish the “Late Spec Freeze Weighted Satisfaction
Measurement”, as is indicated by its related observed measure object in Figure 120. As the measure
library object diagram in Figure 105 shows, we defined a “functor” that multiplies both measurements,
and divides it by 100. Though this “functor” is technically valid according to the current SMM version
(see SMM (2012)), it would have to be defined in a slightly further structured way according to the
intended revision of SMM (see Error! Reference source not found.)), namely as “custom” functor,
with a related custom functor operation that defines this multiplication and division. Alternatively, and
equally valid, the measure could be replaced by two measures: a binary measure with standard
functor “product”, doing the multiplication, and a rescaled measure that divides the result by 100. But
the reader will get the idea.

So-far we have focused on the structured and detailed modeling of measurements associated with the
Late Spec Freeze component in the value proposition. The measurement and measurement
aggregation in relation to the other three components could have been modeled in similar ways, which
would also involve consideration of characteristics of different type, such as cost-related, and related
to the performance of transforming ideas into innovations. But in order to keep the model content as
small as possible, we limit ourselves to just incorporating similar weighted satisfaction measurements
for the other three proposition components in the model, and leave modeling of details of how these
measurements are constructed out of consideration.

The object diagram in Figure 121 shows how the measurement of the overall XTrailer Proposition value,
being a collective measurement, is based on the accumulation of the four weighted satisfaction
measurements, associated with the four proposition components. The diagram also shows the ranking

Page 92 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case c ié@
bmi/2012-11-10

measurement, ranking the XTrailer Proposition value. The ranking measurement expresses customer
satisfaction with the XTrailer Proposition.

Figure 121. Measurements related to value propositions and related components (objects)

Figure 122 shows how measured characteristics and related measurements from Figure 118 are exposed
in the view mockup (the one that was introduced earlier in Figure 95).

Objeet Dlagram UyCo Busicss | 5 ¥Trader Propesion - Measuremat | -
MeasuredCharacteristic RankingMeasurement

XTrallerProposition : ValueProposition |PropostanSatsfactiontevel ¢ Defiian = Rec bon I Mzgsun 1Froe = O
———————— =N P obser = QbservedTrailerProp tion
w&;ﬁ;:&iﬂ:ﬂ rankedProposiion = XTraerProposiion ranking To = XTrallerProposiion'alueMeasurement
FastinnavationComponent, sanalilea S ntFankin
Late’SnetFreeaeC:n:\pwelt r ATrailerPropositionValue ; ATrailerPropositionValueMeasurement : CollectiveMeasurement
orovider = Manutacturer | YOUPIOpSBIVNE | MeasuredCharacteristic To=F ig
recpient = Transparter characteristi:Defion = Recipientvalue MarketDrivenD
satistactionLevel = XTralerPropositionSatisfaction /- =y LateSpecF
| proposition = {TrailerProposiion ::“' = RS

Value Proposition Value Satisf. L.

Xtrailer Proposition XX vy

Articulated Value Value Measurement

Component Value Add Source Value Unit Satisf. L. | Weight

Fair Price Product Price Manage Fulfilment | - - - -

Market Driven Deslgn |dea Productization Manage Innovation - - - -

Fast Innovation Innovation LT Manage Innovation | - . - -

Late Spec Freeze Product LT Manage Fulfilment 2z days uu W

Figure 122. Value proposition, objects mapped on view

The objects in the object diagram in Figure 123 indicate how the proposition component-related
weighted satisfaction measurements, as well as the proposition-related measurements, via their
observed measure objects, are contained in the observation of the “Overall Scenario”. As the diagram

Copyright © NEFFICS Consortium 2010-2013 Page 93/ 117

Object Diagram MyCo Busiess | (B 1 Traker Propostion - Measurement | |
0 o s BT) XTrallsrPropositionsatistaction : Keraller? ;
PropostionSatistachonl svel MeasursdCharacteristic RankingMeasurement
[| charactensticDefnnition = ReciplentSatistaction It T15h): I 1From = Qrder
ATrallerProposition : ValusProposition = il ~ s = ObservedXTrailerPropositionSatisfaction
| companent = FairPriceCompanent, = : = i il
|Mmmmenﬂeslgncoﬂwnent. Dimensionaihie surementR anking
| FastinnovationCompanent, a
LateSpecFreezeComponent XTrallerPropositionvaiue ; XTrailerPropositionValueM, :
e = Tt M#asuredcharacteristic _ OnaracteristicMeasyrement Ta=F
provider = Manufacturer Defininon = MarketDrivanD,
recipient = Transporter m)Y 2 LateSy
evel = XTraderf propossion = XTralerProposition Ll == =
v, o al rankingFrom =
FropastionCompanant]
r 1 Collec
EairPriceComponent ; ValusPrepesitionComponent i r
[MeasuredCharacteristic
articulatedvalue = FairPrice Lot b Rl
A\ BinaryMeasursment
-------- = FairPric. tion charactenisbicDefinition = FairPriceWeightedsatistaction '"“__ Asuren et
propasition = XTrailerProposition measur = FairPriceComgs = XTr P
= FairPric of obser = DbservedFairPriceweighteasatistaction
. PropositionComgonent T | P
LateSpecFreezeComponent : - MaasurpableElementCnaracteristic CharacteristicMaasuremsant
ValueProposition LateSpecFreezeWeightedSatistactionMeasurement :
amcuatedvalus = LateSpecFreeze LateSpecFreszeWsightedSatistaction : BINAYAIAS UG TN
teristic = LateSpec g tion MeasuredCharacteristic 1T0 = LateSpeck
percentageWeight = LateSpecFreszeWeight Deefinition = L [2T0 = LateSpecFreezeWeightMeasurement
proposition = XTrailerProposition measurableElement = LateSpecFreszeComponent Tom = XTrallerf
£vel = LateSpecF Satisfaction = LateSpe gt = ObservedLateSpecFreezeWeightedSatstacion
: | e — T I
R e L _MeasureableElementChargctenstic CollectiveMeasirementBaseMeasurement
MarketDrivanDesignCompansnt ; M rivanpash ightedEatist:
el WalusPropasitionCompanant MeasursdCharactanstic Vi i { atist, nMeasurement :
Tam Bi #3azuramant
articulatedvalue = MarketDrivenDesign charactensticDenniton = i >
measuredCharactenstic = MarketDrivenC g Hon = MarketDrivenDesignCompanant = WTraile
proposion = XTraserProposition = MarketDrivenDesignveigl =0 tDrvenD tan
' |] .

Pr ACOMEoner eERmeni haraclert perm—— . CollsctiveldeasurementBasemeasuramant
FastinnovationComponant : FastinnovationWelghtedSatistaction : FastinnovationWelghtedSatistactionMeaturamaent ;
ValuePropesitioncompenent MeasuredCharacteristic BinaryMeasurement

articulatedvalus = Fastinnaovation charactensticDefiniton = FastinnavationWeightaaSatistaction = XTi
teristic = tion =F by = ObservedF:
proposition = xTrallerProposiion =F dsatistac
j — T 1
MeasureabileElementCharacteristic CharactersicMeasurement

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

indicates, the observed measure of XTrailer Proposition Value refers to “Recipient Value Measure” as
the measure that establishes the “XTrailer Proposition Value Measurement”. As the object diagram of
the measure library in Figure 105 indicates, this is a collective measure, against the characteristic
“Recipient Value” as “trait”, “sum” as accumulator, and “satisfaction points” as unit of measure. Its
ranking measure, “Recipient Satisfaction Measure”, contained in the same measure library, has the
same unit of measure and has “Recipient Satisfaction” as “trait”.

Object Diagram yCo Business [[Overal Soenatio Cbservation |

XTrailerPropositionValueMeasurement : CollectiveMeasurement
baseMeasurementTo = FastinnavationWeightedsatistactionMeasurement,
MarketDrivenDesignweightedSatisfactionMeasurement,
LateSpecFreezeWelghtedsatistactionMeasurement,
FairPriceWeightedsatisfactionMeasurement

FastinnovationWeightedSatisfactionMeasurement :
BinaryMeasurement
baseMeasurementFrom = XTrailerPropositionvalueMeasurement
obser Measure = ObservedFastinnovationWeightedSatisfaction

XtrailerPropositionSatisfactionMeasurement :
RankingMeasurement
baseMeasurementiFrom = OrderintervalMeasurement
observedMeasure = ObservedxTrailerPropositionSatisfaction
rankingTo = XTrailerPropositionvalueMeasurement

observedMeasure = ObservedXTrailerPropositionvalue
rankingFrom = XtrailerPropositionSatisfactionMeasurement

ObservedieasureMeasurement ObservedMeasureMeasurement

ObservedXTrailerPropositionValue :
ObservedMeasure

measure = RecipientvalueMmeasure
measurement = XTrailerPropositionvalueMeasurement
observation = OverallScenarioObservation

ObsegtatmﬂobservedMeasure

OverallScenario : Scenario

ObservedMeasureMeasurement
ObservedXTrailerPropositionSatisfaction :
ObservedMeasure

measure = RecipientSatisfactionMeasure
measurement = XtrailerPropositionSatisfactionMeasurement
observation = OverallScenarioObservation

- ObservationObservedieasure

OverallScenarioObservation ; Observation

ObservedFastinnovationWeightedSatisfaction :
ObservedMeasure
measure = FastinnovationWeightedSatisfactionMeasure
measurement = FastinnovationweightedSatisfactionMeasurement
observation = OverallScenarioObservation

ObservatmnObservedMLasure

observedMeasure = ObservedxTrailerPropositionSatisfaction,
ObservedxTrailerPropositionvalue,
ObservedFairPriceWeightedSatisfaction,
ObservedLateSpecFreezeWeightedSatisfaction,
ObservedFastinnavation\WeightedSatisfaction,
ObservedMarketDrivenDesignWeightedSatisfaction,
ObservedProductLT, ObservedLateSpecFreezeSatisfaction,
ObservedLateSpecFr eight, ObservedSalesvolume,
ObservedOrderinterval, ObservedHistaricOrderinterval,

- ObservationObservedMeasureObservedMargin, ObservedProfit

smmiodel = MyCo specific SMM model

ObservationCbservedVeasure

ObservedLateSpecFreezeWeightedSatisfaction :
ObservedMeasure

containingModel = MyCampanyMode!
contextCollaboration = XTrailerBusiness
contextObservation = OverallScenarioObservation
contextStore = Ideas, Approvedideas,
FinalReleases, Orders

delegationtContext = ManagelnnaovationDelCnixt,
ManageFulfilmentDelCntxt

: ContextObservation

ObservationObservedieasurs

ObservedMarketDrivenDesignWeightedSatisfaction :
ObservedMeasure

ObservedFairPriceWeightedSatisfaction :
ObservedMeasure

measure = FairPriceWeightedSatisfactionMeasure measure = LateSpecFreezeWeightedSatisfactionMeasure
measurement = FairPriceWeightedSatisfactionMeasurement measurement = LateSpecFreezeWeightedSatisfactionMeasurement

observation = OverallScenarioObservation observation = OverallScenarioObservation

ObservedMeasureMeasurement ObservedMeasureMeasurement

FairPriceWeightedSatisfactionMeasurement : LateSpecFreezeWeightedSatisfactionMeasurement :
BinaryMeasurement BinaryMeasurement
hasemeasurementFram = XTrallerPropositionvalueMeasurement baseMeasurement1To = LateSpecFreezesatisfactionMeasurement
observedMeasure = ObservedFairPriceWeightedSatisfaction k rrement2Ta = LateSpecFreezeWeightMeasurement
baseMeasurementFram = XTrailerPropositionalueMeasurement
observedMeasure = ObservedLateSpecFreezeWeightedSatisfaction

measure = MarketDrivenDesignWeightedSatisfactionMeasure
measurement = MarketDrivenDesignWeightedSatisfactionMeasurement
observation = OverallScenarioObservation

ObservedMeasureMeasurement

MarketDrivenDesignWeightedSatisfactionMeasurement :
BinaryMeasurement
baseMeasurementFrom = XTrailerPropositionvalueMeasurement
observedMeasure = ObservedMarketDrivenDesignWeightedSatisfaction

Figure 123. Overall scenario observation measurements, second part (Objects)

Measurement of proposition value, related customer satisfaction, as well as, measurement of value
per each component of the value proposition, its related customer satisfaction and relative weight of
importance to the customer, are important in that they may guide the provider of the value proposition,
here the manufacturer in the business network, in establishing priorities for improvement of capabilities
that contribute to value delivery. Value delivery models support value-driven innovation of the business
system.

The measurement of customer satisfaction with the value proposition can be taken further to analyze
the impact of it on e.g. the sales volume of trailers in the XTrailer business network. This piece of
analysis, based on structured models, would be very relevant to support broader what-if calculations
and simulations of the business system, and is an example of how impact of value can be measured
and analyzed. Impact of customer satisfaction on sales volume will further impact profit that the
manufacturer realizes in the business network. Value-driven innovation of the business would be
short-sighted, when impact of innovations on profit would not be taken into account. One decision
might be to e.g. improve existing or develop new capabilities. Another decision would be to abandon a
capability, or even withdraw from a business network, and therewith abandon a business model.

We will demonstrate below how the impact of customer satisfaction on sales volume can be modeled.
We will also demonstrate the modeling of how the manufacturing party in the business network
realizes profit. The latter aspect comes into what business model frameworks use to indicate as “profit
formula”.

The objects in the object diagram in Figure 124 represent the modeling of how customer satisfaction with
the XTrailer Proposition impacts sales volume of trailers in the XTrailer business network. Consider
that the transporter provides “repetitive business”, as value, in reward, to the manufacturer. Figure 124
shows the corresponding value add object on the output port of the Buy Product activity. This activity is

Page 94/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

performed by the transporter in the business network. This value can be measured via the
measurement of “sales volume”. The value add object has a measured characteristic “Sales Volume”
accordingly, which is associated with the sales volume measurement object.

The sales volume measurement is a rescaled measurement, which rescales the underlying order
interval measurement, associated with the order interval measured characteristic of the Buy Product
activity. As the object diagram in Figure 124 shows, this order interval characteristic serves as
“recurrence interval” to the Buy Product activity. Note also that a recurrence interval, especially when
its measure’s operation denotes a sampler from a stochastic distribution, plays an important role in
discrete event simulation. The measure, used to measure sales volume, has “pieces per year” as unit,
and rescales from the order interval measure according to the formula “365 * 24 / order interval”, the
order interval measures having “hours” as unit. These details can be looked up in the corresponding
measure objects in the object diagram of the measure library as presented earlier in Figure 105. The
measures that are used for these measurements in Figure 124 are the ones that are referenced by their
related observed measure objects as contained in the object diagram in Figure 126 below. As sales
volume is derived from the order interval, we can model the impact of customer satisfaction on sales
volume, by modeling its impact on the order interval. It is reasonable to model the order interval
measure as a function of the historic order interval, being the interval as measured over the recent
past period, and the measure of customer satisfaction, being the measure of satisfaction of the
recipient of the value proposition. This is indicated in the object diagram in Figure 124 by the Order
Interval Measurement, having both the XTrailer Proposition Satisfaction Measurement and the Historic
Order Interval Measurement as base measurements. Corresponding measures, related via their
observed measure objects, can be found in the measure library diagram in Figure 105.

Object Diagram MyCo Business | i SatisfactionDriven Busness |

: R ledMeasurement

baseMeasurement1From = ProfitMeasurement
1To = XirailerPr = , S obser ire = Obser Volum

baseMeasurement2To = HistoricOrderintervalMeasurement e s porcarintarvaiveasurement

observedMeasure = ObservedOrderinterval RescalsFromRescalsTo X
rescaleTo = SalesVolumeMeasurement L. CharacteristicMeasurement

CharacteristichMeasurement

Orderinter : BinaryMea

Orderlnterval : MeasuredCharacteristic SalesVolume : MeasuredCharacteristic
i MaER s SR PR characteristicDefinition = Orderinterval measuredValue = RepetitiveBusiness
measurement = OrderintervalMeasurement | measurement = SalesVolumeMeasurement
scheduledActivity = Buy Product
. ValueAddValuehMeasurement
Bi 8 mentE: ment2

XtrailerP, iti isfaction ement : il ement HistoricOrderintervalMeasurement : DirectMeasurement RepetitiveBusiness : ValueAdd
baseMeasurement1From = OrderintervalMeasurement baseMeasurement2From = OrderintervalMeasurement propositionComponent = RepetitiveBusinessComponent
observedMeasure = ObservedXTrailerPropositionSatisfaction observedMeasure = ObservedHistoricOrderinterval valueDefinition = RepetitiveBusiness

valueMeasurement = SalesVolume
valuePort = OrderOutPut

CharacteristicMeasurement - ValuePortValueAdd

rankingTo = XTrailerPropositionValueMeasurement

. CharacteristicMeasurement

XTrailerPs itis i ion : M dCh HistoricOrderinterval : M OrderQutPut : QutputPort

‘ output = OrderFlow
characteristicDefinition = RecipientSatisfaction ‘ characteristicDefinition = Orderinterval portContainer = Buy Product

measurement = XtrailerPropositionSatisfactionMeasurement measurableElement = Buy Product valueAdd = RepetitiveBusiness,
rankedProposition = XTrailerProposition measurement = HistoricOrderintervalMeasurement Payment
- PropaositionSatisfactionl evel ActivityRecurrencelnterval PortContainerPort

Buy Product : Activity
capabilityRequirement = Product Procurement

XTrailerProposition : ValueProposition

—— .\-\easur:amEE\ementCharaclensu‘:!
component = FairPriceComponent, -

MarketDrivenDesignComponent, collaboration = XTrailerBusiness
FastinnovationComponent, containedPort = OrderOutPut
LateSpecFreezeComponent measuredCharacteristic = HistoricOrderinterval
propositionValue = XTrailerPropositionValue performingRole = Transporter

provider = Manufacturer recurrencelnterval = Orderinterval
recipient = Transporter
satisfactionLevel = XTrailerPropositionSatisfaction

Figure 124. Measurement of impact of customer satisfaction on sales volume (objects)

The objects in the object diagram in Figure 125 represent the structure to calculate profit, in a
straightforward way. This is the profit that the manufacturer makes in the XTrailer business network.
The Business Networks metamodel diagram, as provided earlier in Figure 15, defines “profit” as a
property of a providing party role in the business network. Profit is measured by a binary measure,
which takes the product of margin and sales volume as its base measures. The object diagram in
Figure 126 contains the observed measure objects that associate with the measurements in Figure 125.
The observed measures refer to the corresponding measures in the library. Note for instance that the
profit measure, as represented in the measure library diagram in Figure 105, has functor “product”, and
“euros” as unit.

Copyright © NEFFICS Consortium 2010-2013 Page 95/ 117

VDML Manufacturing Use Case N‘E(E@,)w
bmi/2012-11-10

Margin is measured via a direct measure. The margin measurement is stored as measurement of the
margin measured characteristic of the Final Releases store. Note that this store is the location in which
the final release information of the product resides, and as it relates to the Overall Scenario as its
context, margin measurement is global to the scenario.

Objert iagram 1#7Co Busness | it 1
2

Manufacturer : Party Profit : MeasuredCharacteristic ‘
businessNetwork = XTrailerBusiness | PartyProfit
performedWork = Manage Fulfillment, measurement = ProfitMeasurement
Manage Innovation profitContext = Manufacturer

profit = Profit

: i i o : CharacteristicMeasurement
providedProposition = XTrailerProposition e

, = ProfitMeasurement : BinaryMeasurement
recej 1 = Prop FromMarket -
roleAssignment = ManufacturerAssignment : i ‘1T° Tk 4
2To = g ement
observedMeasure = ObservedProfit
l - BinaryMeasurementBaseMeasurement2 l Bin: nt!
MarginMeasurement : DirectMeasurement :RescaledMeasurement
baseMeasurement2From = ProfitMeasurement baseMeasurement1From = ProfitMeasurement
observedMeasure = ObservedMargin observedMeasure = ObservedSalesVolume
T rescaleFrom = OrderintervalMeasurement
| CharacteristicMeasurement | _Characteristicleasurement
Margin : MeasuredCharacteristic ‘ S istic
characteristicDefinition = SalesMargin dValue = RepetitiveBusi
measurableElement = FinalF = Sales\

ValueAddvalueheasurement

measurement = MarginMeasurement

RepetitiveBusiness : ValueAdd
propositionComp t = Repetiti i p 1t
MeasureableElementCharactenistic | valueDefinition = RepetitiveBusiness

las\ol

valuePort = OrderOutPut

FinalReleases : Store | ValuePortValueAdd Buy Product : Activity
containedPort = FinalReleaseToStorelnput, capabilityRequirement = Product Procurement
FinalReleaseOutput OrderQOutPut : OutputPort . PodCortainePat llaboration = XTrailer
measuredCharacteristic = Margin output = OrderFlow | EoflbonEertot | containedPort = OrderOutPut
resource = FinalRelease portContainer = Buy Product measuredCharacteristic = HistoricOrderinterval
storeContext = OverallScenario valueAdd = RepetitiveBusiness, performingRole = Transporter
storeOwner = R&D Payment recurrencelnterval = Orderinterval

supportedCapability = Engineering

Figure 125. Measurement of profit (objects)

Like various observed measures as encountered earlier, also the observed measures, for the
measurements of sales volume, order interval, historic order interval, margin and profit, are contained
in the observation of the overall scenario, as indicated in the object diagram in Figure 126.

Page 96/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

Object Diagram MyCo Business|[5 Overall Scenario Observation!]J

ProfitMeasurement : BinaryMeasurement
baseMeasurement1To = SalesVolumeMeasurement
b 2To = Margi
observedMeasure = ObservedProfit

ement

ObservedProfit : ObservedMeasure
measure = ProfitMeasure
measurement = ProfitMeasurement
observation = OverallScenarioObservation

_ ObservationObservedMeasure

OverallScenario : Scenario
containir = MyComp
contextCollaboration = XTrailerBusiness
contextObservation = OverallScenarioObservation
contextStore = Ideas, Approvedideas,
FinalReleases, Orders
delegationtContext = ManagelnnovationDelCnixt,
ManageFulfillmentDelCnixt

ContextObservation

} : ObservedMeasureMeasurement

Measurement : RescaledMeasurement
baseMeasurement1From = ProfitMeasurement
observedMeasure = ObservedSalesVolume
rescaleFrom = OrderintervalMeasurement

M: t: DirectMeasurement
baseMeasurement2From = ProfitMeasurement
observedMeasure = ObservedMargin

ObservedMeasureMeasurement ObaervedMessureMeasurement
ObservedSalesVolume : ObservedMeasure
measure = SalesVolumeMeasure
measurement = SalesVolumeMeasurement
observation = OverallScenarioObservation

ObservedMargin : ObservedMeasure
measure = SalesMarginMeasure
measurement = MarginMeasurement
observation = OverallScenarioObservation

ObservatianObservedMeasure

OverallScenarioObservation : Observation

observedMeasure = ObservedXTrailerPropositionSatisfaction,
ObservedXTrailerPropositionValue,

ObservedFairPri igl isfacti
ObservedLateSpecFreezeWeightedSatisfaction,

ObservedFastl i ightedSatisfaction,
ObservedMarketDrivenDesignWeightedSatisfaction, ObservedProductL T,
ObservedLateSpecFreezeSatisfaction, ObservedLateSpecFreezeWeight,
ObservedSalesVolume, ObservedOrderinterval,
ObservedHistoricOrderinterval, ObservedMargin, ObservedProfit

= MyCo specific SMM model

ObservationObservedMeasure

ObservationObgervedMeasure
ObservedOrderinterval : ObservedMeasure
measure = OrderintervalMeasure
measurement = OrderintervalMeasurement
observation = OverallScenarioObservation

: Onserv%dmeasureMeasuremem

OrderintervalMeasurement : BinaryMeasurement

rement2To = H

derinter
observedMeasure = ObservedOrderinterval
rescaleTo = SalesVolumeMeasurement

baseMeasurement1To = XtrailerPropositionSatisfactionMeasurement

: ObservationObservedMeasure

ObservedHistoricOrderinterval : ObservedMeasure
measure = OrderintervalMeasure
measurement = HistoricOrderintervalMeasurement
observation = OverallScenarioObservation

ObservedMeasureMeasurement
HistoricOrderintervalMeasurement : DirectMeasurement

baseMeasurement2From = OrderintervalMeasurement
observedMeasure = ObservedHistoricOrderinterval

Figure 126. Overall scenario observation measurements, third part (Objects)

As suggested earlier, in the XTrailer business network, the transporter party is assumed to provide
value in return to the manufacturer. A value proposition can be defined in relation to this value as well.
An example of its structure is represented in the object diagram in Figure 127. It consists of three
components, articulating three values, one of which is the value of “Repetitive business” as was
introduced earlier, during the discussion of measurement of sales volume (see Figure 124 above). The
other values are “Payment”, being an obvious one, and “Feedback”. “Feedback” is the value that is
conveyed based on the ideas that the transporter provides to the manufacturer. As Figure 127 indicates,
“Repetitive Business” and “Payment” are conveyed based on the orders that the transporter places
with the manufacturer. Note that a payment flow could have been modeled separately as well, but it is
often not wanted to include more detail than is required for the analysis at hand.

Copyright © NEFFICS Consortium 2010-2013 Page 97/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Object Diagram MyCo Busness | =5 Fropostion from Market ||

Manufacturer : Party . . PropositionFromMarket : [Transporter : Party |
T TSN Gor = KT r] " AL b s b b v ValueF iti ProviderProvidedProposition [=XT S
performedWork = Manage Fulfillment, - performedWork = Submit Idea, Absorb
Manage Innovation FeedbackComponent, Innovation, Buy Product, Operate Product
profit = Profit RepetitiveBusinessComponent providedProposition = PropositionFromMarket
provi position = XTr provider = Transporter receivedProposition = XTrailerProposition
receivedProposition = PropositionFromMarket PropositionComponent recipient = Manufacturer

i = i |- ProposiionCompanent PropositionCampagnent
PaymentComponent : RepetitiveBusinessComponent : FesdbackComponent :
ValuePropositionComponent ValuePropositionComponent | ValuePropositionComponent
articulatedValue = Payment articulatedValue = RepetitiveB =Feedb
proposition = positi prop 1 = PropositionFr proposition = positionFromMarket
[w [Fron0siion alue | PropositionC lue
Payment : ValueAdd | RepetitiveBusiness : ValueAdd Feedback : ValueAdd
pr i 1t = Pay p it | | propositi I it = RepetitiveBusinessComponent | ' propositi p t = Feedback ponent
valueDefinition = Payment valueDefinition = RepetitiveBusiness valueDefinition = Feedback
valuePort = OrderOutPut valueMeasurement = SalesVolume valuePort = IdeaOutPut
valuePort = OrderOutPut
La\uepmtvaluendd ValuePartValueAdd ‘ ValuePortValueAdd
OrderQutPut : OutputPort IdeaOutPut : OutputPort
output = OrderFlow output = IdeaFlow
portContainer = Buy Product portContainer = Submit
valueAdd = RepetitiveBusiness, Idea
Payment valueAdd = Feedback
‘ PortContainerPort | PortContainerPort
Buy Product : Activity Submit |dea : Activity
capabilityRequirement = Product Procurement capabilityRequirement = Idea EpETrEr———
A : 8 paa o e gRole
collaboration = XTrailerBusiness Submission e
containedPort = OrderOutPut collaboration = XTrailerBusiness
istic = HistoricOl val containedPort = IdeaOutPut
performingRole = Transporter performingRole = Transporter
recurrencelnterval = Orderinterval erformedWaorkPerformnaRole

Figure 127. Value proposition as provided by the transporter and received by the manufacturer (objects)

Figure 91 suggests that activities do not only create, but also consume value. This is partly obvious, as
deliverables, that flow from activity to activity or from store to activity, convey values. It is also possible
that value consumption is defined with more precision, by defining how measurements of values
received, influence measurements of values created. As a simplistic example, consider the value of
“Feedback”, as part of the value proposition in Figure 127. According to the measurements and
measurement influences mockup in Figure 104, its associated value measurement of “idea volume”
influences the “idea productization ratio”, being the measurement of a value that is received by the
market. When the volume of ideas would just rise, and activities would not perform adequately (i.e. do
not properly consume the value), the value that is expected to be created would drop down. Activities
will have to optimally “consume” feedback and apply it effectively, in order to create the value that is
required. Note that this part of the use case has not been worked out in object models. More refined
examples would be possible in the context of the use case as well. Imagine how the consumption of
“feedback” could lead to measurable lower cost of resources as well as measurable shorter duration of
innovation.

A business network is healthy when each party realizes a “gain” (value received is more than value
provided). Though it might be an explicit strategy, that a party might “loose” (not gain) in one business
network, whereas it gains in others. For instance, the same market or company might be recipient
party (customer) in multiple business networks, some of which have low return, but others are highly
profitable. It might not be a good strategy to eliminate the “low return” business networks, as the
corresponding market or company might only stay in business when a “complete offering” is provided.

There are different ways to measure the “gain” (or lack of it) in a business network (or “business
model”). The metamodel diagram of Business Networks in Figure 15 defines two measured
characteristics, to measure “gain” per party:
o Profit. Above we discussed modeling and measurement of profit. A profit is realized when the
price that the recipient pays is higher than the provider’s cost.

e Value margin. Value margin is the margin that the recipient party in a business network might
realize and can be defined as the difference between proposition value of value propositions
received, and “fair market value”, or as the difference between proposition value and the price
that is paid to providers (providing parties in the same business network) of the corresponding
value propositions.

Page 98/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Profit is defined from the perspective of the provider of a value proposition. Value margin is defined
from the perspective of the recipient of it. Profit alone is not a sufficient indicator for healthiness of the
business network (“business model”). It is possible that a party realizes profit, but is observing a
negative value margin. For instance, when the recipient of the value proposition associates
“equivalent economic value” to a value proposition, lower than the “fair market price”, or in other
words: when the recipient party judges price to pay as higher than the value it receives.

Measurement of value margin requires that proposition value is measured in economic (monetary)
terms. As in the XTrailer use case example, the property “proposition value” was measured in non-
economic terms, a custom-modeled measured characteristic would be required to express this value.
And as such measured characteristics as “fair market value” (of a value proposition, and possibly its
components) and “price” (of the underlying deliverables) are not enforced by the meta-model, custom-
modeled measured characteristics would be required for these also. The VDML metamodel supports
modeling of such custom measured characteristics of measureable elements, such as value
proposition, value proposition component, business item and store (see VDML elements metamodel
diagram in Figure 61).

So-far we explicitly analyzed customer value proposition, and value proposition as received to from the
customer or market. It would also be possible to model other parties, and value propositions in relation
to these. It would be useful to e.g. consider “enterprise value proposition”, articulating such values as

LI

“fast innovation”, “short fulfillment lead time”, “high profitability”, “low cost fulfillment”, etc.

It would even be possible to model a 2-level business network, as indicated in Figure 128, where the top-
level business network represents “the business”, or “business model innovation”, which contains party
roles that are filled by the “actual” business networks, such as the XTrailer business network, which
serve as “business models” to “the business”.

A Business
Maodel Innov
Innovation leader “Business model”
™ :
Leadership 't' é(Tr_alier
Team usiness

Figure 128. Two-level business network structure

The top-level business network may then also contain a leadership role, filled by the leadership team
of the organization. The leadership provides “effort” (intangible) to the “business models”, which
provide “business improvement” (intangible) back to the leadership, conveying such values as just
mentioned, which maybe be articulated by an “enterprise value proposition”, provided by business
model roles to the leadership role.

3.1.6 Model data organization and re-use

So-far we defined what a value delivery model is, we discussed its purpose, and the many model
elements that are involved when doing value delivery modeling. But the metamodel diagrams so-far
did not explicitly show an element called “value delivery model”. As the discussions have clarified, a
value delivery model might involved multiple collaborations, libraries and scenarios. Each of these
contain various detailed model elements, but the set of collaborations, libraries and scenarios
themselves, that are assumed to represent a value delivery model, are not contained in a single model
object. For this reason VDML contains a “value delivery model” class, that serves as the top-level
container of all model elements that are specific to the model.

As the earlier presented metamodel in Figure 102 indicates, SMM specifies a similar class, called “SMM
model”, containing measure libraries and/or observations.

The objects in the object diagram in Figure 129 represent the “MyCompany Model”, which is the value
delivery model in the XTrailer use case. It shows how the various collaborations, libraries and
scenarios are contained in it, as well as how it contains the SMM model that contains the various
observations that the value delivery model uses.

Copyright © NEFFICS Consortium 2010-2013 Page 99/ 117

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

Object Diagram MyCo Business|

falue Delivery Mode! U

MyCo Capab Library :
CapabilityLibrary

capability = Innavation, Acquisition,
Fulfilment, Exploitation, Idea
Submission, Innovation Management,
Innovation Absorbtion, Product
Procurement, Fulfilment
Management, Product Operation,

MyCo Value Library : ValueLibrary

containingModel = MyCompanyMadel

valueDefinition = MarketDrivenDesign,

Fastinnovation, LateSpecFreeze,
FairPrice, ShortProductLeadTime,
ShortProductionLeadTime,
RepetitiveBusiness, Payment,
Feedback

DefaultScenario : Scenario

OverallScenario : Scenario

containingModel = MyCompanyMadel

cantextObservation = DefaultScenarioObservation

cantainingModel = MyCompanyiaodel
contextCallaboration = XTrailerBusiness
contextObservation = OverallScenariocObservation

ModelScenario

MadelScenari

Release Management, ldea
Management, Production, Praduction
Management, Engineering, Release
Planning, Marlket Introduction,
Production Execution, Fulfilment
Planning, Product Delivery
containingModel = MyCompanyMadel

MyCo Bus Item Library :
BusinessitemLibrary

Library
_ Iy N
businessitemDetinttion = Innavation, —iodetBusInessemUBIEN 404 ijtyiibrary = MyCo Capab Library

SalesOrder, Product, Idea,
ProductManagementResaurce,
EngineeringResource, Release,
EngineeringWorkorder,
ProductionWarkOrder,
ProductionRepart,
ProductionResource,
OrderProcessingResource,
LogisticHandlingResource
containingModel = MyCompanyMade|

. ModelCapabilityLibrary

: MadelvalueLibrary

MyCompanyModel :
ValueDeliveryModel

businessitemLibrary = MyCo Bus ltem

collaboration = MyCompany,
XTrallerBusiness, R&D, S&D, TrailerPlant
metricsModel = MyCo specific SMM model
scenario = OverallScenaria,

DefaultScenaria
valueLibrary = MyCo Value Library

MyCompany : OrgUnit

—ModelCaollaboratio

assignment = ManufacturerAssignment
containingMadel = MyCompanyMadel
ownedAssignment = Department1Assignment,
Department2Assignment, Plant1 Assignment
pasition = Department!, Department2, Plant1

MaodelCallaboration

TrailerPlant : OrgUnit
assignment = Plant1Assignment,
ProducerAssignment
businessitem = ProductionLevel 1Resource,
ProductionLevel2Resource
capabilityOffer = ProductionManagement,
ProductionExecution
containingModel = MyCompanyMadel
ownedMethod = ProductionManagementMethod
ownedStare = ProductionLevel1 CapacityPool,

MadelMetricsiodel

contextstore = Ideas, Approvedideas,
FinalReleases, Orders

delegationtContext = ManagelnnovationDelCnbd,
ManageFulfillmentDelCnbd

MyCo specific SMM mode|
SmmModel

library = ModelSpecificMeasures
abservation = OverallScenarioObservation,
ManagelnnovationDelCnttObservation,
DefaultScenarioObservation,
ManageReleaseDelCntdObservation,
PilatProductionDelCnbaObservation,
ManageFulfilmentDelCnbdObservation,
ManageProductionDelCntdObservation

XTrailerBusiness : BusinessNetwork

: ModelCallabaration

| ModelCallabaration

: ModelCallabaration

activity = Operate Praduct, Buy Praduct,
Absorb Innovation, Submit Idea, Manage
Innovatian, Manage Fulfilment

businessitem = Innovation

containingMadel = MyCompanyMadel

flow = InnovationFlow, OrderFlow,
PraductFlow, IdeaFlow, OrderFromStoreFlow
ownedAssignment = ManufacturerAssignment
party = Manufacturer, Transporter

scenario = OverallScenario

R&D : OrgUnit

S&D : OrgUnit

assignment = Department2Assignment
businessitem = Order, Product,
OrderProcessingResaurce,
LagisticHandlingResource

capabilityOffer = FulfilmentManagment,
ProductDelivery, FulfilmentPlanning
containingModel = MyCompanyMadel
ownediethod = FulfilmentvanagementMethod
ownedStore = Orders, Products,
OrderProcessingCapacity,

FroductionLevel2CapacityPool

LogisticHandlingCapacity

assignment = Department1Assignment, ReleaserAssignment
businessitem = Idea, Approvedidea, ProdMgmtResource,
EngineeringResource, IntermediateRelease, FinalReleass
capabilityOffer = InnovationManagement, IdeaManagement,
ReleaseManagement, ReleasePlanning, Marketintroduction,
Engineering

containingModel = MyCompanyModel

ownediethad = InnavationManagementiethod,
ReleaseManagementiMethod

ownedStare = Ideas, Approvedideas,
ProductManagementCapacity, EngineeringCapacity,
IntermediateReleases, FinalReleases

Figure 129. Value delivery model as top-level model elements

container (objects)

Note that the “MyCo specific SMM model”, containing the observations, is contained in the value
delivery model itself, whereas the “Generic Library Model” (see Figure 114) model is not. The latter
library is meant as generic library, re-usable across potentially many value delivery models, and is
hence not specific to the “MyCompany Model”. Note however that we did not consistently apply this
rule to all libraries. The capability, business item and value libraries, though they are assumably re-
usable, are directly contained in the “MyCompany Model”. In a real world modeling situation there
would be more conscious library maintenance, keeping model specific libraries separate from generic

libraries.

The objects in Figure 129 are instances of classes in the value delivery models metamodel diagram in

Figure 130.

Page 100/ 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

package VDNL[\ﬁi’«‘ Value Delivery Models | L |

ibrary | ibrary ValueDeliveryModel
G

4 + Jcollaboration

‘ CapabilityLibrary ||=* +
N Jor

‘ValuTmrvL +valueLibrary +
——— To-

+containingMode! +actor JW|
1 os

‘ PracticeLibrary L+pract\celerary +
lox 1

+cantainingModel [1 +containingModel 0.1

+SCENANo 1. +metricshodel |0."

Scenario SmmModel

+ype : String (SMM)
+isDefault: boolean

Figure 130. Value delivery models (as top-level containers) metamodel

Packaging value delivery modeling elements into value delivery models, does not imply that the entire
business system has to be defined by a single value delivery model. As there might be different people
(business analysts) responsible for modeling and analysis of different sub-scopes of the business
system, and models of different sub-scopes of the business system might have their own life cycles,
versions, etc. It is possible therefore that elements in one value delivery model, representing a part of
the business system, are associated with elements in other value delivery models.

Various associations in VDML can be across value delivery model boundaries. Examples of these
associations are:

o Libraries. One value delivery model might use elements from libraries that are contained in
other value delivery models and/or SMM models.

e Collaborations. A delegation context in one value delivery model might relate to a collaboration
in another.

e Stores. A deliverable flow in one value delivery model might associate to a store, via one of its
ports, in another value delivery model

3.2 VDML advanced elements

In 3.1 we discussed the basic structure of value delivery models, based on the XTrailer use case. We
briefly mentioned some advanced elements, but didn't apply them to the use case. These elements
have been incorporated in the metamodel, in particular to support model-based business simulation.

Automated simulation support is not an achievable outcome of NEFFICS. It will require ongoing
research beyond NEFFICS. But as, ultimately, VDML should support simulation, it is required to
assure that the metamodel is robust. Making VDML “simulation-complete” in a later stage should not
require fundamental refactoring of the metamodel. It is required therefore that the metamodel is
designed with its application to simulation in mind, and that key elements to support simulation, are
covered by it.

Most of these elements aren’t exclusive to simulation, but are useful for other purposes as well, such
as:

e Improving the opportunities for measurements-based manual analysis based on VDML
models.

e Enable more extensive transformation of VDML models, or parts of it, to executable models,
such as application models and process models, and enable resource management in real-
world implementation (in Table 5 we refer to this as “implementation”)

e Extend the business know-how that can be captured in VDML models.

Copyright © NEFFICS Consortium 2010-2013 Page 101 /117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

Table 5 provides an overview of advanced elements, whereby we indicate per element what its purpose
is in relation to simulation, as well as how it may serve other purpose. For definitions and detailed
semantics of the elements the reader can refer to the VDML 1.0 specification.

Most of the advanced elements as listed in Table 5 are required in particular for Discrete Event
Simulation. In 2.4 we discussed the various types of simulation. As far as VDML is concerned, Monte
Carlo simulation would not require more than its basic structure provides. Monte Carlo simulation does
require stochastic enabling of SMM though. In Error! Reference source not found.) we will indicate
how a revision of SMM will support this. More research is required on the relationship between VDML
and System Dynamics simulation, although a basic fit is provided by the basic structure of VDML, and
VDML-as-integrated-with-SMM. The basic patterns of System Dynamic, such as “stock and flow” and
“causal loop” can be recognized in basic patterns in VDML (and SMM), such as decoupling of activity
networks by stores, and the measurement dependencies in SMM (see Figure 104), though VDML (and
SMM) provide more refined structures. In Error! Reference source not found.) we will indicate how a

revision of SMM will provide support for System Dynamics-style causal loops (see Figure 104).

Element

Reference

Simulation purpose
(mainly Discrete
Event)

General purpose

Calendars of
participants and pools

Collaborations
metamodel in Figure 16

Stores metamodel in
Figure 36

Determine resource
availability

Implementation

Business item being

“fungible”, “sharable”

Business ltems
metamodel in Figure 18

Input Port correlation
expression

Port Containers
metamodel in Figure 45

Proper tracking of
business item
instances through
stores;

General business
know-how

Release Control, as
defined by Capability
Offer, and as imposed
by Scenario

Organizations and
capabilities metamodel
in Figure 35

Scenario and Analysis

Context metamodel in
Figure 51

Determine priority of

work to be performed
by activities to which

the capability offer is

applied

Implementation

Inventory level of Store
(and Pool) and pool

Stores metamodel in
Figure 36

Determine resource
availability

Manual analysis based
on average (i.e. non-

size of Pool stochastic)
measurements
Port offset Port Containers Duration calculations Manual analysis based

metamodel in Figure 45

Duration of Activity,
and Resource use

Activities metamodel in
Figure 65

Duration of Store

Stores metamodel in
Figure 36

Duration of Deliverable
Flow

Deliverable Flows
metamodel in Figure 17

on average (i.e. non-
stochastic)
measurements; in
particular network
planning and critical
path analysis;
Implementation
(understanding
whether e.g. an input
arrives as intermediate
event)

Recurrence interval of
Activity

Activities metamodel in
Figure 65

Port batch size

Port Containers

Proper generation and
handling of business
item instances
throughout networks of

Manual analysis based
on average (i.e. non-
stochastic)
measurements;

Page 102 /117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case

bmi/2012-11-10

NEFEICS

Port condition

metamodel in Figure 45

activities and stores

Proper routing of
business item
instances

Implementation (flow-
based decisions)

Scenario horizon

Scenario and Analysis

Context metamodel in
Figure 51

Simulation horizon

Manual analysis based
on average (i.e. non-
stochastic)
measurements

Specification of
resource (per
Resource Use) as
“input driven” versus
“output driven”

Resource Use quantity

Specification of
resource (per
Resource Use) as
“exclusive” versus
“inclusive”

Resource Use
condition

Ordered set of
resources per
Resource Use

Specification of
resource (per
Resource Use) as
“consumed” versus
“used”

Activities metamodel in
Figure 65

Amongst others
specifying the proper
coordination between
activities and stores, at
the resource instance
level

Proper handling of
alternative resources,
at the resource
instance level

Proper handling of
business item
instances by activities

General business
know-how

Table 5. Some advanced VDML elements

Error! Reference source not found.) lists some functional changes that will be applied to the
November 2012 VDML submission, and which have not been applied in this document.

Copyright © NEFFICS Consortium 2010-2013

Page 103 /117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

4 How VDML addresses requirements

4.1 How VDML addresses specific requirements

Table 6 indicates, per each of the requirements as described in 2.2 and 2.3.8, how VDML addresses the

particular requirement, based on the explanation of VDML in 3.1 and 3.2.

A detailed mapping of

elements of business model frameworks (as discussed in 2.2.2) will be provided in Error! Reference

source not found..

Value Delivery Model

“Motivated by Business Values”

| Requirement

| Resolution (VDML)

Value identification

Identify any form of value, financial and
non-financial, tangible and non-tangible

Values, defined as Value Add objects (and
“typed” by value definitions), conveyed by
deliverable flows, tangible or non-tangible

Definable types of value

Value definitions in Value Library

Value flow, intra and inter-enterprise

Value creation, distribution (or “delivery”)
and consumption

Activities use / consume resources and produce
deliverables, received and sent by deliverable
flows, which also convey associated values.
Measurements of values used or consumed can
influence measurements of values produced.

By and between an unlimited number of
roles, attached to an unlimited number of
organizations

Roles perform activities, and may be assigned to
different organizations (Org Units), or are part of
different organizations or capability methods of
different organizations.

Link value flow within the business to value
flow with customers and business partners

Flows of deliverables and associated values can
occur between activities and/or stores, whereby
different organizations (or parts of them) perform
these activities and own these stores

Activities and activity networks

Value is created, distributed and consumed
by activities

See “Value creation, distribution (or “delivery”)
and consumption”

A value may depend on a single activity or
on a combination (or network) of activities

Value (Value Add) can be the result of a single
activity, but can also aggregate results from
multiple activities, typically forming a network, and
contained by possibly different collaborations

Value measurement

Value and aspects of value creation,
distribution and consumption, should be
measurable, based on definable types of
measures

Characteristics of values (Value Adds), and of
measureable elements of the value creating,
distributing and consuming system, such as
activities, deliverable flows, resources uses,
stores and other elements, can be measured
based on definable types of measures in measure
libraries

“Supports Business Model”

Customer, market segments and other stakeholders

Identify customers, market segments and
stakeholders, other than customers, and
business relationships with them, to which
parties the business provides value

Business networks, as collaborations, define
party roles, which can be assigned to
organizations (e.g. companies), communities (e.g.
market segments) or consumers (modeled as
actors, such as persons). Their patterns of
collaboration can be defined via the exchange of
propositions and/or deliverables.

Value proposition

Define value propositions, related to the
products and services that are offered to

Value propositions, related to deliverables that
are exchanged, via the values (Value Adds) that

Page 104 /117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

these parties, and which articulate the
values that are delivered to them, in terms
that relate to how their needs are satisfied

are delivered based on these deliverables,
whereby the value proposition expresses the
importance of these values to the recipient, as
well as the recipient’'s level of satisfaction with
them.

Resources and activities

Identify the resources and the activities that
they perform or are used by, which are
required to apply the functions that are
needed to create the value that is required

Activities are associated with the capability offers
that are applied, as well as with capability
methods and/or resources (via stores or pools)
that support these capability offers. It is also
possible to define resource use in measurable
terms.

Network partners

Identify network partners, such as suppliers
and others, and business relationships with
them, via which these parties contribute
value, that is part of the overall value that
the business provides

Business networks, as collaborations, define
party roles, which can be assigned to
organizations (e.g. network partner companies),
communities (e.g. supply markets) or persons (as
individual ~ suppliers). Their patterns of
collaboration can be defined via the exchange of
propositions and/or deliverables. Value delivered
by network partners can be further aggregated (in
measurable ways) into value delivered to e.qg.
customers.

Profit and value calculations

Define the structures and related
computation mechanics that can determine
all relevant measurements of cost, revenue,
as well as, more generally, value provided,
value received, and, though maybe
subjectively, “value margin”, related to the
operations of the business, in the context of
the business model

Value delivery model scenarios enable a
measurement framework, in relation to
measurable elements. This enables
measurement of performance or other
characteristics, as well as measurement of value
contributions (Value Add) based on these.
Analysis of value provided versus value received
is enabled via value proposition related
measurements. Some measurements, such as a
measurement of value contribution, recipient’s
satisfaction, profit, and value margin are
predefined in the meta-model. The framework
supports definition of any additional
measurement.

“Discovers Process and Service Models”

Capabilities and interfaces of capabilities

Support services as mechanisms to enable
access to one or more capabilities, via
prescribed interfaces.

Capability offers can be supported by capability
methods, which may have input and output ports.
Capability methods may represent business
processes. Capability method input and output
ports can be interpreted “interface inputs and
outputs”. A delegation context (in which the
capability method is used) delegates (maps)
activity inputs and outputs to inputs and outputs
of the capability method. Different contexts might
relate to different subsets of inputs and outputs.
An implementation of VDML, or integrated VDML
modeling support, may provide transformation of
delegations to capability methods to service
interfaces, and might associate service interfaces,
which are themselves complementary to the
VDML specification, with capability methods, their
input and output ports and with delegation
context.

Be able to use capabilities to identify
needed services, and to organize them into

Capabilities are maintained in a capability library.
Organizations provide capability offers, providing

Copyright © NEFFICS Consortium 2010-2013

Page 105 /117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

catalogs in order to communicate the needs
and capabilities of a service area, and
whereby participants that provide a service
must have a capability to provide it, and
whereby different providers may have
different capabilities to provide the same
service. Capabilities can be seen from two
perspectives, capabilities that a participant
has that can be exploited to provide
services, and capabilities that an enterprise

and managing the capabilities in their particular
way. Activities define their capability requirements
(in terms of references to capabilities in a library),
based on which matching capability offers can be
found.

business processes support the capabilities
that provide the provider’s services.

needs that can be used to identify
candidate services.
Enable that the capability provider's | Capability methods can be considered abstraction

of processes. When containing sufficient structure
in their activity network, they may be transformed
to and associated with business process models.

Collaboration to engage capabilities

Capabilities offered are used
interaction between participants.

through

Collaboration defines how roles interact, whereby
participants in roles apply their capabilities,
through activities, which consume or use and
produce deliverables that are exchanged.

A collaboration defines a pattern of
interaction between roles, whereby entities
or participants (e.g. persons, organizations,
or systems) ‘“‘play a role” in a the
collaboration

Collaboration in VDML supports this.
Organizations are specialized collaborations by
themselves, called org units. Persons are actors.
Systems might be actors, or they are modeled as
capability methods to support capability offers of
organizations. All of these can play roles.

Organizational alignment of capabilities, activities

and resources

Capabilities and services are possessed
and provided by organizations

Organizations (org units) provide capability offers,
which might be supported by capability methods,
which can be considered as exposed via service
interfaces. The capability methods might be
owned by the capability providing org units, or by
other org units.

Capabilities require a combination of
organization, people, processes, and
technology

Capability offers, being provided by organizations,
and being supported by capability methods
(which maybe abstractions of processes) and
resources, modeled via stores, pools and
associations of positions to pools. Capability
methods might also be associated with method
resources directly, which are resources that
generally accelerate methods, and for which it is
not useful to have individual activities accounting
for their use. Examples are patents and
technologies such as ERP suites and BPM
technology.

A process view, as complementary to a
service view focuses on what activities
parties perform to provide and use services

Capability methods, as collaboration, typically
contain (a network of) activities, whereby the
activities are performed by collaboration roles
(typically capability method performers).

Loose coupling of activity networks through store

S

From above it is clear that processes or
activity networks support capabilities, which
are provided as services, and that
capabilities are involved through activities
as well. This implies many dependencies in
the business system. These dependencies
cannot all be activity-based however, as
this would lead to a representation of a
business as one vast activity network. This

VDML supports stores. Deliverables might flow
from activity to activity, from activity to store and
from store to activity.

Page 106 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

is not realistic. A business comprises many
activity networks, which are loosely
coupled, via decoupling buffers, in this
document further denotes as stores

Monitoring-based scenarios and measurements

Processes and services, as discovered,
and implemented, will be executed, and it is
required to be able to feed measurements
from monitoring of implemented processes
and services back to the value delivery
model, as input for next cycles of innovation

Capability methods maybe transformed into
executable processes or interfaces to applications
that are implemented in the real-world
organization (“process automation”). Such
processes and applications (including system
functions in enterprise applications), when
implemented and executed, will generate
business data, including performance data.
Measured characteristics of measureable
elements in value delivery models can be
measured based on “direct’” measures,
maintained in libraries of measures, which “direct”
measures are associated with operations that
maybe implemented as query services that query
business data from operational business process
and application databases.

As-monitored measurements, based on as-
implemented parts of a value delivery
model should be distinguishable from e.g.
to-be scenarios, with estimated, planned or
simulated measurements. It is essential that
scenario-based analysis can be applied,
based on the same value delivery model

Different scenarios might analyze the same value
delivery models (in total or in parts), whereby
each scenario, directly or indirectly (via delegation
contexts in its context tree) comes with its own
set of measurements for measured
characteristics of measurable elements in the
value delivery models. Different measurements
might be determined by different measures, or by
the same measures under different
circumstances. “Direct” measures are the “leaves”
in the measurement hierarchy, which require
“external inputs”, such as query results, or
stochastic samples or just manual entry by
business analysts. Other measures aggregate or
grade or rank “direct” measures. VDML integrates
with and applies a complete measurement
framework, in a way that supports scenario-based
analysis and simulation.

Leveraging Existing Approaches”

Value flow through role collaboration

The concept of role collaboration and
exchange of deliverables that convey
tangible and intangible value

This is the concept of collaborations in VDML.

The concept of reciprocity in collaborations
or value exchanges (something received
compensating for something provided)

The scope of a collaboration, typically a business
network, defines the scope of reciprocity. Its roles
provide value propositions to and receive value
propositions from other roles in the collaboration.
Each role (party in the business network), is
supposed to get compensation for what it
provides to others, and may only maintain its role
in the collaboration sustainably, if it “gains” from
the collaboration.

Capability and value stream / chain analysis

Define capabilities and apply them in value
chains or value streams

The activity network of a collaboration, possibly
extended with activity networks of other
collaborations, linked via stores, can be
considered a value chain or value stream. The
contribution of activities to value, and the
aggregation of value (Value Add) over a stream of

Copyright © NEFFICS Consortium 2010-2013

Page 107 / 117

VDML Manufacturing Use Case
bmi/2012-11-10

NEFEICS

activities, completes the notion of a value stream.
Capabilities (capability offers) are applied through
activities.

Libraries for standardized reference model
elements, such as capabilities and related
measures, resources or deliverables and
practices)

VDML supports libraries of capabilities, business
items (serving as resources or deliverables,
dependent on the situation in which they occur),
values, measures and practices. Elements in
these libraries can be used to guide modeling, as
well as enforce consistency in across models.

Explicit modeling of resources, resource stores, resource use and deliverables

Explicit modeling of resources and
deliverables

Explicit modeling of resource stores and
how resources are consumed and
produced or received

Distinction between the role resource

(“agent”) and other resources that are
actually transformed or exchanged by the
role resource

Business items that are conveyed via deliverable
flows, and which may serve as resources (used
or consumed by activities) or deliverables
(produced by activities), and which maybe kept in
stores or pools (the latter for re-usable
resources). Stores or pools or resources may
support capability offers. Pools of resources might
be reconciled with individual actors or roles of
actors (positions). Resources may also be
defined at the level of capability methods, in case
they cannot wusefuly be said to be
used/consumed or produced by individual
activities. Resources maybe also act as role
resources, performing activities.

The concept of stores, as buffers that
decouple or link value streams

See “Loose coupling of activity networks through
stores”

Emphasis on measurement of performance and value, also applied in scenario-based analysis

Aggregation of performance measurement,
with distinction between added value and
waste (as lean value stream maps do with
lead time)

VDML comes with an integrated and integral
measurement framework, that is applied to
measure performance and value. Measurements
of performance characteristics, e.g. throughout a
stream or network of activities, can be
aggregated, whereby the aggregated result can
be defined as Value Add. Value propositions can
grade or rank (aggregated) value. Grade
measurements or ranking measurements can
clarify to which extent results (Value Adds) are
denoting “actual value” or “waste”. Waste might
be represented a component of value proposition
that's requiring significant effort from the provider,
but is dissatisfying and/or is irrelevant to the
recipient. VDML provides the structure to analyze
these aspects.

Support for rather complex aggregations of
measurements (cost-related, and more)

This is supported by the integrated measurement
framework of VDML (based on integration of
VDML and SMM).

Support for quantitative what-if analysis or
simulation of profit, based on cost and
revenue in complex exchanges (n-ary
business relationships), also based on
demand forecasts of the parties involved

The explicit definition of scenarios, to
enable what-if simulation of different
scenarios, based on the same model

Scenario-based analysis can be applied, whereby
different scenarios may apply different (or partly
different) measurements for the same measured
characteristics of measurable elements in value
delivery models. Scenarios might typically
separate analysis results that originate from
different measurements, such as from manual
input (“guesstimates”), querying real-world
performance, or automated simulations. Different
scenarios might separate analysis results that
have been created under different circumstances,
such as different demand rates, different material
or resource costs, different customer priorities or
satisfactions, different behaviors and availabilities

Page 108 / 117

Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

of resources, etc. (different simulations). Some
measured characteristics are pre-defined in the
meta-model, such as “profit”, “recurrence interval”
(the inverse of “rate”, e.g. demand rate),
“resource use”, “duration”, “value measurement”,
“value satisfaction”, “proposition value”, etc. The
user might define any other measured
characteristic, of measurable elements, as useful
for a particular analysis or concern. Libraries
support the user in defining measured
characteristics and applying measures that are
meaningful and standardized in a particular
industry or company or for a particular modeling
concern.

Table 6. VDML response to requirements

Error! Reference source not found. provides a mapping between (or alignment of) VDML and other
approaches in the value delivery modelling domain, as have been discussed in 2.3.

4.2 How VDML meets motivation

As indicated in Figure 3, business models motivate value delivery models, and support “business
models”. Figure 131 suggests how value considerations are underlying VDML-based analysis, and how
such analysis might typically start at the level of a business network, which also aligns with the notion
of “business model” in business model frameworks (see the mapping in Error! Reference source not
found..

Business Network Profit, value margin gap

)
I
1

P
j.’ opportunity
implication ,’

- -
Value Proposition < Value satisfaction gap

f)
‘.’ opportunity
/

"

implication
<

Activity Value contribution gap

"

o>
f’ opportunity
impiication
<
f}
.,’ opportunity
mpiicgfion !

s’
Capab. Method |<°

ﬁ
Business design, analysis & simulation

10

Capability

I

Performance gap

Process & service discove

Figure 131. Value-driven innovation

Parties in a business network exchange value propositions, and, based on that observe profit (or loss),
and a value margin (or lack of it). As explained in 3.1.5, a value margin is the net result that a recipient
observes between the value received and the price paid for deliverables underlying the value
proposition. When a party doesn't get a “gain” from collaboration in the network, due to situation of
loss or negative value margin, that party might accept this situation, as, in a portfolio of multiple
business networks (“business models”) there is a balance, e.g. “gain” in some business models
outweighs the “loss” in others. Or that party might withdraw from a business network (dismantle a
“business model”), or seeks for opportunity to improve the results of the business network, which will
lead to implications for value propositions.

For instance, in relation to the “enterprise value proposition” of the business network to the enterprise
or leadership (see 3.1.5), that party might want to have a more satisfactory cost level. This would have
implications for activities that contribute to cost. Or that party might want, in relation to value
propositions provided, in the business network, to other parties, to increase the satisfaction of these

Copyright © NEFFICS Consortium 2010-2013 Page 109/ 117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

recipient parties with values that are important for them, to increase their observation of value margin,
or their willingness to pay for the value they get, or even pay more. Also this would lead to implications
of activities that contribute to the values of concern. Activities that insufficiently or even negatively
contribute to certain values, provide opportunities to abandon, subcontract, or improve capabilities, or
even develop new ones. Improving capabilities is about transforming the way these capabilities are
managed, so that the application of them leads to better performance, as far as the characteristics
performance are associated with the values of concern. And this, in turn will typically lead to
improvements of capability methods and/or resources, so that they contribute to the right levels of
performance and so value. Improving capability methods, in many cases, is about improving or further
innovation processes and services. As suggested by Figure 131, this all is about “value driven
innovation”, starting from business model innovation, and translating down to process and service
innovation. Analysis is also possible the other way round, bottom-up: given the place and purpose of
e.g. a process, as part of a business system, it can be analyzed to which extent that process
contributes to value in order to meet expectations.

As typically led by value and business model considerations, value delivery modeling supports model-
based business design and analysis (and simulation to analyze with more rigor), both top-down and
bottom up, whereby the business system might be (re)designed and analyzed in completion or, most
often, in parts, dependent on where the innovation priority is.

Analysis and (re) design, based on value delivery models, that leads to improved or new capabilities,
their interfaces and capability methods, can be considered “discovery” of new services and processes,
or of opportunities to further innovate them.

Page 110/ 117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

5 Conclusion

5.1 Summary of results

VDML is a modeling language that supports business design, driven by analysis of business value.

VDML models (or value delivery models) can provide a detailed and structured foundation for
“business models”. VMDL-based designs of the business may express how the business, supporting
the “business models”, is structured (or should be structured) and operates (or should operate). In
particular, VDML models may express how the business consumes, creates and delivers business
value, both intra- and inter-enterprise.

VDML also provides a structured model-based approach for discovery of and/or alignment with
process and service models. VDML bridges the gap between “business model” and the layer where
parts of the operation are automated and managed based on process models and service models.

VDML models can include the measurements (of performance and value) required for quantitative
analysis, and eventually also for automated business simulation.

Libraries of standardized model elements, such as capabilities, business items, etc., can facilitate
common vocabulary amongst the business users that are involved in value delivery modeling or using
value delivery models. A value delivery modeling tool can also use such libraries to guide the modeling
user in productively discovering activities, capability offers, capability resources as well as inputs and
outputs that capability methods need to handle, given the capability that they support. The linkage
between capability offer and capability will also provide the opportunity to rationalize capability offers,
by e.g. combining them to improve economy-of-scale.

Though VDML supports business design, which might be concerned with modeling both as-is, and
scenarios of to-be states of the business, the “process of business innovation”, and its related
elements of strategy and tactics, are not explicitly covered by VDML, but are complementary to it.
Though VDML models can also be used to design and express the “system of business innovation” (its
capabilities, collaborations, etc.).

VDML provides a more integral and multi-faceted and structured-modeling based approach than other,
existing, approaches in the area of value delivery modeling. The modeling that is required for some of
these approaches is subsumed by VDML. For other approaches, there is no 1-1 mapping, but what
can be modeled by these other approaches, can also be modeled based on VDML, though with more
universal and less dedicated means (and notation). VDML will provide practitioners of these other
approaches a way to align with or migrate to a standard structured modeling approach, which can be
implemented as integrated with existing main stream modeling approaches, such as for process and
service modeling. VDML-based modeling may also provide disparate communities of these
practitioners a common denominator or modeling kernel, based on an integrated set of modeling
concepts that can be aligned with counterparts in their various approaches.

5.2 Future Work

Here are some future work that is being considered:

e Further extension and elaboration of user interface (and notation) paradigms for
measurements-based analysis.

e Further efforts on tooling support

e Application of VDML to other use cases. Effort is ongoing to e.g. applying VDML to a use case
in healthcare (which is also the domain that is covered NEFFICS).

e Mapping VDML to SoaML (see SoaML (2012), most likely as part of work in NEFFICS.

e Providing automated business simulation support, based on VDML models.

Copyright © NEFFICS Consortium 2010-2013 Page 111 /117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

6 References

Allee, V., The Future of Knowledge: Increasing Prosperity through Value Networks, Butterworth-
Heinemann 2003.

Allee, V., Value Network Analysis and Value Conversion of Tangible and Intangible Assets, Journal of
Intellectual Capital, Volume 9, issue 1, pp 5-24, January 2008,
http://www.vernaallee.com/images/VAA-VNAandValueConversionJIT.pdf .

Allee, V., Value Networks and the True Nature of Collaboration, ValueNet Works, 2011,
http://www.valuenetworksandcollaboration.com.

Ballantyne, D., Varey, R.J., Frow, P. and Payne, A., Service-dominant logic and value propositions:
Re-examining our mental models, Otago Forum 2, Paper no: 5, 2008,
http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otagqo%20
Forum%20Paper%205 Ballantyne.pdf .

Bolstorff, P. and Rosenbaum, R., Supply Chain Excellence: A Handbook for Dramatic Improvement
Using the SCOR Model, AMACOM, a Division of the American Management Association, 2003.

BPMM, Business Process Maturity Model, Version 1.0, Object Management Group, Release Date:
June 2008, http://www.omg.org/spec/BPMM/1.0/PDF/ .

BPMN, Business Process Model and Notation, Version 2.0, Object Management Group, Release
Date: January 2011, http://www.omg.org/spec/BPMN/2.0/ .

Brodie, L. and Gilb, T., Values for Value, AgileRecord, October 2010, http://www.gilb.com/dl448

Cummins, F. A. and De Man, H., Capability Analysis with the Value Delivery Modeling Language,
Cutter IT Journal, April 2011.

Dooley, K., Simulation Research Methods, Companion to Organizations, Joel Baum (ed.), London
Blackwell, 2002, http://www.public.asu.edu/~kdooley/papers/simchapter.PDF .

Fowler, M., UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison-Wesley,
2004

Joseph, F., The IT Supply-Chain SCORcard, BPTrends, March 2007,
http://www.bptrends.com/publicationfiles/NINE-03-07-COL-ITSupplyChainSCORcard-
Managing%20BPM-Francis-Final.pdf .

Gane, C. and Sarson, T, Structured Systems Analysis: Tools and Technigues, Prentice-Hall Software
Series, Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

Gilb, T., Value Delivery in Systems Engineering, October 2007, Published and used by INCOSE with
permission, http://www.gilb.com/dI137

Gilb, T. and Gilb, K., Done should mean value delivered to Stakeholders, AgileRecord, October 2011,
http://www.qgilb.com/dl484 .

GoldSim, Summary of Major New Features and Changes, Version 10.1, GoldSim Technology Group,
February 2010, http://www.goldsim.com/downloads/Documents/Version101Summary.pdf .

GoldSim, Probabilistic Simulation Environment, User's Guide, Version 10.5, GoldSim Technology
Group, December 2010, http://www.goldsim.com/downloads/Documents/Version101Summary.pdf .

Gordijn, J. and Akkermans, H., Value based requirements engineering: Exploring innovative e-
commerce ideas. In Requirements Engineering Journal, Vol. 8(2):114-134, 2003,

Page 112 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2003e3value.pdf, or a popular version of it:
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2001e3value.pdf .

Harmon, P., Business Process Change: A Guide for Business Managers and BPM and Six Sigma
Professionals, Morgan Kaufman, 2007.

Hruby P., Kiehn J. And Scheller C.: Model-Driven Design Using Business Patterns, Springer-Verlag,
2006.

Hubbard, D. W., How to Measure Anything, Finding the Value of “Intangibles” in Business, John Wiley
& Sons, New Jersey, 2010.

ITIL, Service Design, ITIL Version 3, August 2011, http://www.best-management-
practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/ .

Johnson, M. W., Christensen, C. M., and Kagermann, H., Reinventing Your Business Model, Harvard
Business Review on Business Model Innovation, Harvard Business School Publishing Corporation,
2010.

Kaplan, R. and Norton, D., The Balanced Scorecard, Harvard Business School, 1996.

Krohn, D., A Capability-Based Approach to Strategic Transformational Initiatives, Cutter IT Journal,
November 2011.

Mercer, T., Groves D. and Drecun, V., BPTF Framework 2010, Part 1, BPTrends, September 2010,
http://www.bptrends.com/publicationfiles/09-14-10-ART-BPTF%20Mercer%20et%20al-Final.pdf .

Mercer, T., Groves D. and Drecun, V., Part Il - BPTF Architectural Overview, BPTrends, October
2010,
http://www.bptrends.com/publicationfiles/ THREE%2010-05-10-ART-BPTF%20Framework-Part%202-

finall.pdf .

Mercer, T., Groves D. and Drecun, V., Part lll — Practical BPTF Application, BPTrends, November
2010,
http://www.bptrends.com/publicationfiles/FOUR%2011-02-10-ART-BPTF%20Framework--Part%203-
Mercer%20et%20al%20--finall.pdf .

NEFFICS DoW, Description of Work, Annex 1 to Proposal 258076 (STREP), April 2010.

NEFFICS D1.3, Initial Release of the Virtual Extended Factory, April 2011.

NEFFICS D3.2, Definition of Business Values, June 2012.
NEFFICS D3.3 — Part A, Value Delivery Model and Methods, June 2012.

NEFFICS D3.3 — Part B, Value Delivery Modeling Language (VDML), Version 0.2, Object
Management Group, Submission for May 21, 2012.

NEFFICS D4.1, Baseline for Networked Innovation Models, April 2011.
NEFFICS D4.3, Models for Network-based Open Business Model Innovation, June 2012.

Osterwalder, A., The Business Model Ontology- A Proposition in a Design Science Approach, Thesis,
University of Lausanne, 2004,
http://www.hec.unil.ch/aosterwa/PhD/Osterwalder PhD_BM Ontology.pdf .

Osterwalder, A. and Pigneur, Y., Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers, John Wiley & Sons, 2010.

Copyright © NEFFICS Consortium 2010-2013 Page 113 /117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

PMBOK, A Guide to the Project Management Body of Knowledge (PMBoK Guide), Project
Management Institute (PMI), 2000,
http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf

Porter, M. E., Competitive Advantage: Creating and Sustaining Superior Performance, The Free
Press, New York, 1985.

Rother, M. and Shook, J., Learning to See. Lean Enterprise Institute, 1998.

SMM, Software Metrics Meta-Model, Version 1.0, Object Management Group, Release Date: January
2012, http://www.omg.org/spec/SMM/1.0/ .

SoaML, SOA Modeling Language, Version 1.0, Release Date: March 2012,
http://www.omg.org/spec/SoaML/1.0/ .

SOA-RA, SOA Reference Architecture, The Open Group, December, 2011,
https://collaboration.opengroup.org/projects/soa-ref-arch/.

SOA-RM, Reference Model for Service Oriented Architecture 1.0, OASIS, October 2006,
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

Sowa, J. F. and Zachman, J. A., Extending and formalizing the framework for information systems
architecture, IBM Systems Journal, vol 31, no 3, 1992,
http://www.zachman.com/images/Z| Plcs/ibmsj1992.pdf .

Ulrich, W. and McWhorter, N., Value Streams: Business Architecture’s Guidepost to Business-IT
Transformation, Cutter IT Journal, April 2011.

UML, Unified Modeling Language, Superstructure, Version 2.4.1, Object Management Group, Release
Date: August 2011, http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/ .

Vervest, P. H.M., Van Liere, D. W. and Zheng, Li (Eds.), The Network Experience, New Value from
Smart Business Networks, Springer, 2009,
http://www.erim.eur.nl/ERIM/publications/book_releases/Release?p item id=5157588&p pg_id=93

WEeill, P. and M. R. Vitale (2001). Place to space: Migrating to eBusiness Models. Boston,
Harvard Business School Press.

Whittle, R., and Myrick, C.B., Enterprise Business Architecture: The Formal Link Between Strategy
and Results, CRC Press, 2005.

Zachman, J. A., A framework for information systems architecture, IBM Systems Journal, vol 26, no
3, 1987, http://www.cesames.net/wp-content/uploads/2010/04/ibmsj2603e.pdf .

Page 114 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

7 Glossary

7.1 Justification of terms and definitions

Some terms in VDML are specific to VDML. They denote VDML-specific, and merely metamodel-
technical concepts. These aren't listed in the Glossary. Terms that are listed in the glossary denote
commonly known concepts, that have origins from outside VDML. VDML does not intend to introduce
new terms unnecessarily, but to re-use terms that people can relate to.

When these terms aren’'t normatively defined by VDML, we adopt definitions from outside VDML, and
we provide a reference to an outside source. When VDML introduces normative VDML-specific
definitions for these terms, we adopt these definitions, with reference to the VDML 1.0 specification.

The reason for VDML to introduce VDML-specific normative definitions for these terms is as follows:
VDML applies and integrates several known concepts in new ways, introducing semantics that is
tuned or specific to VDML. VDML then also introduces VDML-specific definitions for terms that indicate
these concepts, to ensure sufficient alignment with VDML-specific semantics, and to ensure that
definitions of terms of concepts that are integrated with each other in VDML are sufficiently consistent
with each other.

7.2 Terms and definitions

Activity. Work contributed to a collaboration by a participant in a role of the collaboration. A role may
contribute to multiple activities in the same collaboration (source: VDML; example of use of term
outside VDML: Osterwalder (2004)).

Actor. An individual (indivisible) participant, which might be human (a person) or non human (e.g. a
software agent or machine) (source: VDML; example of use of term outside VDML: Gordijn and
Akkermans (2003)).

Analysis Context. An analysis context defines the set of measurements of a particular use of one or
more collaborations or a store when used as a decoupling point between collaborations. When a
collaboration is used by an activity, a context also defines the delegations of activity inputs and/or
outputs to/from collaboration inputs and/or outputs, and may define assignments of roles within the
collaboration (source: VDML).

Business Item. A business item is anything that can be acquired or created, that conveys information,
obligation or other forms of value and that can be conveyed from a provider to a recipient. For
example, it includes parts, products, units of fluids, orders, emails, notices, contracts, currency,
assignments, devices, property and other resources (source: VDML).

Business Model. A business model describes the rationale of how an organization creates, delivers,
and captures value (source: Osterwalder and Pigneur (2010)).

Business Network. A collaboration between independent business (or economic) entities, potentially
companies, agencies, individuals or anonymous members of communities of independent business
entities, participating in an economic exchange (source: VDML; example of use of term outside VDML
Vervest et al. (2009)).

Capability. Ability to perform a particular kind of work and deliver desired value (source: VDML,
examples of use of term outside VDML: Osterwalder (2004), SoaML (2012), ITIL (2011)).

Capability Method. A reusable template for a collaboration configured for participants to perform
activities to deliver a capability and to contribute value in a particular situation (source: VDML).

Characteristic. Distinguishing feature or quality that can be qualified or quantified by applying a
measure (source: popularized version of definition in SMM (2012)).

Copyright © NEFFICS Consortium 2010-2013 Page 115/117

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Collaboration. Collection of participants working together for a shared purpose (source: VDML,;
examples of use of term outside VDML: SoaML (2012), BPMN (2011)).

Community. A collaboration of participants with similar interests that work together for some shared
purpose such as sharing knowledge (source: VDML; examples of use of term outside VDML: Weill
and Vitale (2001)).

Delegation Context. A specialized Analysis Context, set by an activity and in which the activity
delegates its work to a collaboration. A delegation context also defines the delegations of activity
inputs and/or outputs to/from collaboration inputs and/or outputs, and may define assignments of roles
within the collaboration (source: VDML).

Deliverable. Product or service produced by an activity or delivered from a store that can be conveyed
to another activity or store (source: VDML; example of use of term outside VDML: Allee (2008), ITIL
(2011)).

Deliverable Flow. The transfer of a deliverable from a provider (or producer) to a recipient (or
consumer) (source: VDML).

Intangible. Deliverable that represents something that is unpaid or non-contractual that makes things
work smoothly or efficiently (as opposed to Tangible) (source: VDML; example of use of term outside
VDML: Allee (2008)).

Measure. A method that is applied to characterize an attribute of something by assigning a
comparable quantification or qualification (source: popularized version of definition in SMM (2012)).

Measurement. The result of applying a measure (source: popularized version of definition in SMM
(2012)).

Organization. An administrative or functional structure normally interpreted as a network of
Organization Units at a higher level in an organizational hierarchy (source: VDML; ; example of use of
term outside VDML ITIL (2011)).

Organization Unit (or: Org Unit). An administrative or functional organizational collaboration, with
responsibility for defined resources, including a collaboration that occurs in the typical organization
hierarchy, such as business units and departments (and also the company itself), as well as less
formal organizational collaboration such as a committee, project, or task force (source: VDML;
example of use of term outside VDML: Zachman framework, as introduced by Zachman (1987), and
Sowa and Zachman (1992), though a formal definition of the term seems to be omitted).

Participant. Anyone or anything that can fill a role in a collaboration. Participants can be actors
(human or automatons) or collaborations or roles of actors or collaborations (source: VDML; example
of use of term outside VDML Allee (2008)).

Pool. A store that contains re-usable resource, i.e. resource that is returned to the pool after having
been used, so that it is again available for use (source: VDML; example of use of term outside VDML
PMBOK (2000)).

Practice. Proven way to handle specific types of work and that have been successfully used by
multiple organizations (source: VDML; examples of use of term outside VDML: BPMM (2008), ITIL
(2011)).

Process. A sequence or flow of Activities in an organization with the objective of carrying out work (
source: BPMN (2011)).

Resource. Anything that is “used” or “consumed” in the production of a deliverable (source: VDML;
example of use of term outside VDML: Hruby et al. (2006)).

Page 116 /117 Copyright © NEFFICS Consortium 2010-2013

VDML Manufacturing Use Case NE(@
bmi/2012-11-10

Role. An expected behavior pattern or capability profile associated with participation in a
collaboration—role participants working together with a common interest or purpose (source: VDML,
example of use of term outside VDML.: Allee (2008)).

Scenario. A scenario defines a consistent business use case of a VDML model by specifying a,
possibly recursive, analysis context for elements in scope of that use case. The nesting of
contexts allows a collaboration to be used as a sub-collaboration by more than one activity, each of
which sets its particular context and measurements (source: VDML).

Service. A service is a mechanism to enable access to one or more capabilities, where the access is
provided using a prescribed interface and is exercised consistent with constraints and policies as
specified by the service description (source: SOA-RM (2006)).

Store. Represents a container of resource. The resource that is received or provided is identified by a
business item (source: VDML; common concept in data flow diagrams (DFD), also known as Gane-
Sarson diagrams, as proposed and applied by Gane and Sarson (1979); common construct in
simulation systems, such as GoldSim, as explained in GoldSim (2010, 1) and GoldSim (2010, 2); data
store in BPMN (2011) is a similar construct, though with a more narrow meaning).

Tangible. Deliverable that represents something that is contracted, mandated or expected by the
recipient and which may generate revenue (as opposed to Intangible) (source: VDML; example of use
of term outside VDML.: Allee (2008)).

Value. A measurable benefit delivered to a recipient in association with a business item (source:
VDML; example of uses of term outside VDML: Brodie and Gilb (2010), Gilb (2007), Gilb and Gilb
(2011)).

Value Chain. Set of activities that an organization carries out to create value for its customers (source:
Porter (1985)).

Value Delivery Model. Model that supports business analysis and design based on evaluation of
performance and stakeholder satisfaction achieved through the activities and interactions of people
and organizations using business capabilities to apply resources and deliver stakeholder values
(source: VDML).

Value Network. Any set of roles and interactions in which participants engage in both tangible and
intangible exchanges to achieve economic or social good (source: Allee (2008)). Or: Any web of
relationships that generates both tangible and intangible value through complex dynamic exchanges
between two or more individuals, groups or organizations (source: Allee (2003)).

Value Proposition. Expression of the values offered to a recipient in terms of the recipient’s level of
satisfaction (source: VDML; examples of use of term outside VDML: Ballantyne et al. (2008),
Osterwalder (2004), Johnson et al. (2010)).

Value Stream. End-to-end collection of activities that create a result for a customer, who may be the
ultimate customer or an internal end user of the value stream (source: Whittle and Myrick (2005)).

Copyright © NEFFICS Consortium 2010-2013 Page 117 /117

