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Abstract

We construct an identity-based encryption (IBE) scheme that is tightly secure in a very
strong sense. Specifically, we consider a setting with many instances of the scheme and
many encryptions per instance. In this setting, we reduce the security of our scheme to a
variant of a simple assumption used for a similar purpose by Chen and Wee (Crypto 2013).
The security loss of our reduction is O(k) (where k is the security parameter). Our scheme
is the first IBE scheme to achieve this strong flavor of tightness under a simple assumption.

Technically, our scheme is a variation of the IBE scheme by Chen and Wee. However, in
order to “lift” their results to the multi-instance, multi-ciphertext case, we need to develop
new ideas. In particular, while we build on (and extend) their high-level proof strategy, we
deviate significantly in the low-level proof steps.

1 Introduction

Tight security. For many cryptographic primitives, we currently cannot prove security di-
rectly. Hence, we typically reduce the security of a given scheme to the hardness of a compu-
tational problem, in the sense that every successful attack on the scheme yields a successful
problem solver. Now it is both a theoretically and practically interesting question to look at the
loss of such a reduction. Informally, the loss of a reduction quantifies the difference between the
success of a hypothetical attacker on the cryptographic scheme, and the success of the derived
problem solver. From a theoretical perspective, for instance, the loss of a reduction can also
be viewed as a quantitative measure of (an upper bound for) the “distance” between primitive
and assumption. But “tight” (or, “loss-free”) reductions are also desirable from a practical
perspective: the tighter a reduction, the better are the security guarantees we can give for a
specific instance of the scheme. Hence, we can recommend smaller keylengths (which lead to
more efficiency) for schemes with tighter security reduction.

However, in most practical usage scenarios, a cryptographic primitive is used multiple times.
(For instance, in a typical multi-user encryption scenario, many instances of the encryption
scheme are used to produce even more ciphertexts.) Hence, tight security reductions become
particularly meaningful when they reduce an attacker on the whole system (with many instances
of the cryptographic scheme) to a problem solver. In fact, while for many primitives (such
as secret-key [2] or public-key [3] encryption), one-instance security is known to imply multi-
instance security, the corresponding security guarantees for concrete schemes may indeed vanish
in the number of instances [2].

Existing tightly secure schemes. The loss of security reductions has been considered
explicitly by Bellare et al. [2] for the case of encryption schemes. The first “somewhat tight”
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reductions (whose loss is independent of the number of instances of the scheme, but not of
the number of ciphertexts) for public-key encryption (PKE) schemes could be given in [4]. In
the following years, more tight (or somewhat tight) reductions for encryption schemes were
constructed in the random oracle model [14, 10, 7], or from “q-type” assumptions [15, 16].1

However, only recently, the first PKE schemes emerged [18, 1, 20] whose tight security
(in the multi-instance, multi-ciphertext setting) can be proved under simple assumptions in the
standard model.2 Even more recently, identity-based encryption (IBE) schemes with “somewhat
tight” security (under simple assumptions) have been constructed [11, 6]. (This required new
techniques, since it is not clear how to extend the techniques of [18, 1, 20] to the IBE setting.) In
this case, “somewhat tight” means that their security reduction loses only a small multiplicative
factor, but still considers the standard IBE security experiment [9] with one encryption and
one instance of the scheme. Nonetheless, while the IBE schemes from [11, 6] are not proved
tightly secure in a multi-user, multi-ciphertext setting, these schemes imply tightly secure PKE
schemes (even in the multi-user, multi-ciphertext setting) when plugged into the transformations
of [9, 18, 20].3

Our contribution. In this work, we construct the first IBE scheme with an almost tight
security reduction in the multi-instance, multi-ciphertext scenario. Our reduction is only almost
tight, since it loses a factor of O(k), where k is the security parameter. However, we stress that
this loss is independent of the number of ciphertexts, revealed user secret keys, or instances of
the scheme. In our security reduction, we rely on a computational assumption in composite-
order pairing-friendly groups; this assumption is a variant of an assumption used by Chen and
Wee [11] for their IBE scheme, and in particular simple in the above sense. We note that a
conversion to the prime-order setting using the techniques from [17, 21, 13, 19] (see also [5])
seems plausible—specifically since Chen and Wee [11] already describe such a conversion for
their assumption—, but we leave such a conversion as an open problem.

Our approach. Our scheme is a variant of the IBE scheme by Chen and Wee [11] (which is
almost tightly secure in the one-instance, one-ciphertext setting), and our proof strategy draws
heavily from theirs. Hence, to describe our techniques, let us first briefly sketch their strategy.

In a nutshell, Chen and Wee start with a real security game, in which an adversary A receives
a master public key mpk of the scheme, as well as access to arbitrarily many user secret keys
usk id for adversarially chosen identities id . At some point, A selects a fresh challenge identity
id∗ and two messages M∗0 ,M

∗
1 , and then receives the encryption C∗id∗ ← Enc(mpk , id∗,Mb)

(under identity id∗) of one of these messages. After potentially querying more user secret keys
(for identities id 6= id∗), A eventually outputs a guess b∗ for b. If b∗ = b, we say that A
wins. Chen and Wee then show security by gradually changing this game (being careful not to
significantly decrease A’s success), until A trivially cannot win (except by guessing).

As a first preparatory change, Chen and Wee use the user secret key usk id∗ to construct
the challenge ciphertext C∗id∗ . (This way, the encryption random coins for C∗id∗ do not have to
be known to the security game.) Additionally C∗id∗ is now of a special, “pseudo-normal” form
that will later enable a gradual randomization of the encrypted message. The core of the proof
then consists of a number of hybrid steps, in which the distribution of all generated user secret
keys (including the user secret key usk id∗ used to generate C∗id∗) is modified. Concretely, in the

1A “q-type” assumption may depend on the size of the investigated cryptographic system. (That is, larger
cryptographic systems may only be secure under a stronger instance of the assumption.) Hence, a tight reduction
(even in a multi-instance scenario) to a q-type assumption may not yield security guarantees that are independent
of the number of users.

2A “simple” assumption is defined through a security game in which an adversary first gets a challenge whose
size only depends on the security parameter, and must then output a unique solution without further interaction.
Examples of simple assumptions are DLOG, DDH, or RSA, but not Strong Diffie-Hellman [8] or q-ABDHE [15].

3More specifically, Boneh and Franklin [9] mention (and attribute this observation to Naor) that every IBE
scheme can be viewed as a signature scheme. The signature schemes thus derived from [11, 6] are then suitable
for the conversions of [18, 20], yielding PKE schemes tightly secure in the multi-user, multi-ciphertext setting.
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i-th hybrid game, each used usk id contains an additional “blinding term” of the form R(id |i),
where id |i is the i-bit prefix of id , and R is a truly random function. Eventually, each user
secret key usk id will be fully randomized by a truly random value R(id). In particular, at this
point, the key usk id∗ used to prepare C∗id∗ is blinded by a fresh random value R(id∗). By the
special “pseudo-normal” form of C∗id∗ , this means that the corresponding encrypted message is
also blinded, and A’s view is finally independent of the challenge bit b.

We keep this high-level proof structure, extending it of course to multiple ciphertexts and
multiple instances of the scheme. However, as we will explain below, the way Chen and Wee
gradually introduce the blinding terms R(id |i) does not immediately extend to many ciphertexts
or instances; hence, we need to deviate from their proof strategy here.

The problem. Specifically, Chen and Wee move from the (i−1)-th to the i-th hybrid through
a single reduction as follows: first, they guess the i-th bit id∗i of the challenge identity id∗.
Then, they set up things such that
(a) all user secret keys for identities id with id i = id∗i (i.e., that coincide in the i-th bit with

id∗) behave as in the previous hybrid (i.e., carry a blinding term R(id |i−1)),
(b) all user secret keys for identities id with id i = 1− id∗i carry a blinding term of R(id |i−1) ·

R′(id |i−1)). Depending on the input of the reduction, we have either that R′ = 1 (such that
the overall blinding term is R(id |i−1)), or that R′ is an independently random function. (In
particular, all usk id with id i = 1− id∗i contain an embedded computational challenge R′.)

Depending on whether or not R′ = 1, this setup simulates the (i − 1)-th or the i-th hybrid.
However, we remark that the setup of Chen and Wee only allows to generate “pseudo-normal”
challenge ciphertexts C∗id∗ for identities id∗ with the initially guessed i-th bit id∗i . (Intuitively,
any pseudo-normal ciphertext for an identity id with id i = 1− id∗i would “react with” an addi-
tional blinding term R′(id |i−1) in usk id , allowing to trivially solve the computational challenge.)

Hence, in their i-th game hop, only challenge ciphertexts for identities with the same i-th
bit can be generated. Thus, their approach cannot in any obvious way be extended to multiple
challenge ciphertexts for different identities. (For similar reasons, a generalization to multiple
instances of the scheme fails.)

Our solution. In order to move from the (i−1)-th to the i-th hybrid, we thus follow a different
strategy that involves three reductions. The main technical ingredient in our case is the ability
to distribute the blinding terms R(id |i) in user secret keys into two different “compartments”
(i.e., subgroups) of the composite-order group we are working in. (In particular, a term R(id |i)
in one compartment can be changed independently of terms in the other compartment.)

More specifically, recall that in the (i− 1)-th hybrid, all user secret keys carry an additional
R(id |i−1) blinding term, and all challenge ciphertexts are pseudo-normal (in the sense that they
“react with” the blinding terms in user secret keys). In our first step, we move all blinding
terms R(id |i−1) in the usk id into the two compartments, depending on the i-th bit of id . (That
is, if id i = 0, then the corresponding blinding term R(id |i−1) goes into the first compartment,
and if id i = 1, then it goes into the second.)

In our second step, we can now treat the embedded blinding terms for id i = 0 and id i = 1
separately. In particular, since these cases are now “decoupled” by being in different compart-
ments, we can completely re-randomize the underlying random function R in exactly one of
those compartments. (This does not lead to trivial distinctions of the computational challenge
since we do not introduce new blinding terms that would “react with” pseudo-normal cipher-
texts and thus become easily detectable. Instead, we simply decouple existing blinding terms
in different subgroups.) Note however that since now different random functions, say, R̂ and R̃,
determine the blinding terms used for identities with id i = 0 and id i = 1, we essentially obtain
blinding terms that depend on the first i (and not only i− 1) bits of id .

Finally, we revert the first change and move all blinding terms in the usk id into one compart-
ment. In summary, this series of three moves has thus created blinding terms that depend on
the first i bits of id . Thus, we have moved to the i-th hybrid. If we follow the high-level strategy
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of Chen and Wee again, this yields a sequence of O(k) reductions that show the security of our
IBE scheme. (From a conceptual perspective, it might also be interesting to note that none of
our reductions needs to guess, e.g., an identity bit.)

Outline of the paper. After introducing some preliminary definitions in Section 2, we
explain the necessary algebraic structure (mentioned in the “compartment discussion” above)
of “extended nested dual system groups” (ENDSGs) in Section 3. (This structure extends
a similar structure of Chen and Wee [11].) In Section 4, we present our IBE scheme from
ENDSGs, and in Section 5, we show how to instantiate ENDSGs in composite-order pairing-
friendly groups.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let k ∈ N be the security parameter. For a
finite set S, we denote by s← S the process of sampling s uniformly from S. For an algorithm
A, let y ← A(k, x) be the process of running A on input k, x with access to uniformly random
coins and assigning the result to y. (We may omit to mention the k-input explicitly and assume
that all algorithms take k as input.) To make the random coins r explicit, we write A(k, x; r).
We say an algorithm A is probabilistic polynomial time (PPT) if the running time of A is
polynomial in k. A function f : N→ R is negligible if it vanishes faster than the inverse of any
polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(k)| ≤ 1/kc). Further, we write vectors in bold font, e.g.,
v = (v1, . . . , vn) for a vectors of length n ∈ N and with components v1, . . . , vn. (We may also
write v = (vi)i∈[n] or even v = (vi)i in this case.) In the following, we use a component-wise
multiplication of vectors, i.e., v · v′ = (v1, . . . , vn) · (v′1, . . . , v′n) = (v1 · v′1, . . . , vn · v′n). Further,
we write vj := (vj1, . . . , v

j
n), for j ∈ N, and v−i := (v1, . . . , vi−1, vi+1, . . . , vn), for i ∈ [n], and

sv := (sv1 , . . . , svn). For two random variables X,Y , we denote with SD (X ; Y ) is the statistical
distance of X and Y . We might also say that X and Y are ε-close if SD (X ; Y ) ≤ ε.
Identity-based encryption. An identity-based encryption (IBE) scheme IBE with identity
space ID and message space M consists of the five PPT algorithms Par,Gen,Ext,Enc,Dec.
Parameter sampling Par(k, n), on input a security parameter k and an identity length param-
eter n ∈ N, outputs public parameters pp and secret parameters sp. (We assume that Ext,
Enc, and Dec have implicitly access to pp.) Key generation Gen(pp, sp), on input pp and sp,
outputs a master public key mpk and a master secret key msk . User secret key extraction
Ext(msk , id), given msk and an identity id ∈ ID, outputs a user secret key usk id associated
with id . Encryption Enc(mpk , id ,M), given mpk , an identity id ∈ ID, and a message M ∈M,
outputs an id -associated ciphertext Cid . Decryption Dec(usk id , Cid ), given usk id for an iden-
tity id , and ciphertext Cid , outputs M ∈ M ∪ {⊥}. For correctness, we require that for any
k, n ∈ N, for all (pp, sp) ← Par(k, n), for all (mpk ,msk) ← Gen(pp, sp), for all id ∈ ID, for
all usk id ← Ext(msk , id), for all M ∈ M, and for all Cid ← Enc(mpk , id ,M), Dec satisfies
Dec(usk id , Cid ) = M . For security, we define multi-instance, multi-ciphertext IBE security,
dubbed (µ, q)-IBE-IND-CPA security, for (µ, q) ∈ N2, as follows.

(Weak) (µ, q)-IBE-IND-CPA security. An IBE scheme IBE defined as above is (µ, q)-
IBE-IND-CPA-secure if and only if any PPT adversary A succeeds in the following experi-
ment only with probability at most negligibly larger than 1/2. Let Enc′(mpk , id , b,M0,M1) be
a PPT auxiliary encryption oracle that, given a master public key mpk , a challenge iden-
tity id ∈ ID, a bit b ∈ {0, 1}, and two messages M0,M1 ∈ M, outputs a challenge ci-
phertext Cid ← Enc(mpk , id ,Mb). First, A gets honestly generated public parameter pp
and master public keys (mpk1, . . . ,mpkµ). During the experiment, A may adaptively query
Ext(msk j , ·)-oracles and Enc′(mpk j , ·, b, ·, ·)-oracles, for corresponding mpk j ,msk j and a (uni-
form) bit b ← {0, 1}, for all j ∈ [µ]. Eventually, A outputs a guess b∗. We say that A
is valid if and only if A never queries an Ext(msk j , ·) oracle on an identity id for which it
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Experiment Exp
(µ,q)-ibe-ind-cpa
IBE,A (k, n)

(pp, sp)← Par(k, n)
(mpk j ,msk j)j∈[µ] ← (Gen(pp, sp))µ

b← {0, 1}
b∗ ← A(Ext(mskj ,·),Enc′(mpkj ,·,b,·,·))j∈[µ](pp, (mpk j)j∈[µ])
if A is valid and b = b∗ then return 1 else return 0

Figure 1: The (µ, q)-IBE-IND-CPA security experiment.

has already queried the corresponding Enc′(mpk j , ·, b, ·, ·) oracle (and vice versa); each mes-
sage pair A selected as input to Enc′ contained only equal-length messages; and A has only
queried its Enc′-oracles at most q times per j-instance. We say that A succeeds if and only
if A is valid and b = b∗. Concretely, the previous described experiment is given in Figure 1

and denoted Exp
(µ,q)-ibe-ind-cpa
IBE,A . Further, we define the advantage function for any PPT A as

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) := |Pr

[
Exp

(µ,q)-ibe-ind-cpa
IBE,A (k, n) = 1

]
− 1/2 |.

Furthermore, we call IBE weakly (µ, q)-IBE-IND-CPA secure if and only if Adv
(µ,q)-ibe-ind-cpa
IBE,A

is negligible for all weak PPT adversaries A. Here, A is weak if it never requests chal-
lenge ciphertexts for the same scheme instance and identity twice (i.e., if it never queries any
Enc′(mpk j , ·, b, ·, ·) oracle twice with the same identity id).

Finally, we remark that the one-instance, one-ciphertext notion (1, 1)-IBE-IND-CPA is the
standard notion of IBE security considered in, e.g., [9, 11, 6].

Pairings. Let G,H,GT be cyclic groups of order N . A pairing e : G × H → GT is a map
that is bilinear (i.e., for all g, g′ ∈ G and h, h′ ∈ H, we have e(g · g′, h) = e(g, h) · e(g′, h) and
e(g, h · h′) = e(g, h) · e(g, h′)), non-degenerate (i.e., for generators g ∈ G, h ∈ H, we have that
e(g, h) ∈ GT is a generator), and efficiently computable.

3 Extended nested dual system groups

(Nested) dual system groups. Nested dual system groups (NDSG) [11] can be seen as a
variant of dual system groups (DSG) [12] which itself are based on the dual system framework
introduced by Waters [21]. NDSGs were recently defined by Chen and Wee and enabled to prove
the first IBE (almost) tightly and fully secure under simple assumptions. In the following, based
on NDSGs, we construct a new notion we call extended nested dual system groups.

A variant of nested dual system groups. We introduce a variant of Chen and Wee’s nested
dual system groups (NDSG) [11], dubbed extended NDSG (ENDSG). (Mainly, we re-use and
extend the notions from [11].) Further, let G(k, n′) be a group generator that, given integers
k and n′, generates the tuple (G,H,GT , N, (gp1 , . . . , gpn′ ), (hp1 , . . . , hpn′ ), g, h, e), for a pairing
e : G×H → GT , for composite-order groups G,H,GT , all of known group order N = p1 · · · pn′ ,
for k-bit primes (pi)i and integer n′ ∈ O(1). Further, g and h are generators of G and H,
and (gpi)i and (hpi)i are generators of the (proper) subgroups Gpi ⊂ G and Hpi ⊂ H of order
|Gpi | = |Hpi | = pi, respectively. In this setting, an ENDSG ENDSG consists of algorithms

SampP,SampG, SampH, ŜampG, S̃ampG:

Parameter sampling. SampP(k, n), given security parameter k and parameter n ∈ N, sam-
ples (G,H,GT , N, (gp1 , . . . , gpn′ ), (hp1 , . . . , hpn′ ), g, h, e) ← G(k, n′), for a constant integer
n′ determined by SampP, and outputs public parameters pp = (G,H,GT , N, g, h, e,m, n,
pars) and secret parameters sp = (ĥ, h̃, p̂ars, p̃ars), where m : H → GT is a linear map,
ĥ, h̃ are nontrivial H-elements, and pars, p̂ars, p̃ars may contain arbitrary additional in-

formation used by SampG,SampH, and ŜampG and S̃ampG.
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G-group sampling. SampG(pp), given parameter pp, outputs g = (g0, . . . , gn) ∈ Gn+1.

H-group sampling. SampH(pp), given parameter pp, outputs h = (h0, . . . , hn) ∈ Hn+1.

Semi-functional G-group sampling 1. ŜampG(pp, sp), given parameters pp and sp, outputs
ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1.

Semi-functional G-group sampling 2. S̃ampG(pp, sp), given parameters pp and sp, outputs
g̃ = (g̃0, . . . , g̃n) ∈ Gn+1.

Correctness of ENDSG. For correctness, for all k ∈ N, for all integers n = n(k) > 1, for all
pp, where pp is the first ouput of SampP(k, n), we require:

Associativity. For all (g0, . . . , gn) ← SampG(pp) and for all (h0, . . . , hn) ← SampH(pp), we
have e(g0, hi) = e(gi, h0), for all i.

Projective. For all s← Z
∗
N , for all g0 which is the first output of SampG(pp; s), for all h ∈ H,

we have m(h)s = e(g0, h).

Security of ENDSG. For security, for all k ∈ N, for all integers n = n(k) > 1, for all
(pp, sp)← SampP(k, n), we require:

Orthogonality. For m specified in pp, for ĥ, h̃ specified in sp, we have m(ĥ) = m(h̃) = 1. For

g0, ĝ0, and g̃0 that are the first outputs of SampG(pp), ŜampG(pp, sp), and S̃ampG(pp, sp),
respectively, we have that e(g0, ĥ) = 1, e(g0, h̃) = 1, e(ĝ0, h̃) = 1, and e(g̃0, ĥ) = 1.

G- and H-subgroups. The outputs of SampG, ŜampG, and S̃ampG are distributed uniformly
over the generators of different nontrivial subgroups of Gn+1 (that only depend on pp) of
coprime order, respectively, while the output of SampH is uniformly distributed over the
generators of a nontrivial subgroup of Hn+1 (that only depends on pp).

Non-degeneracy. For ĥ specified in sp and for ĝ0 which is the first output of ŜampG(pp, sp),
it holds that e(ĝ0, ĥ) is uniformly distributed over the generators of a nontrivial subgroup
of GT (that only depends on pp). Similarly, e(g̃0, h̃) is uniformly distributed over the
generators of a nontrivial subgroup of GT (that only depends on pp), where h̃ is specified

in sp and g̃0 is the first output of S̃ampG(pp, sp).

Left-subgroup indistinguishability 1 (LS1). For any PPT adversary D, we have that the
function

Advls1
ENDSG,G,D(k, n) := |Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1] |

is negligible in k, where g← SampG(pp), ĝ← ŜampG(pp, sp).

Left-subgroup indistinguishability 2 (LS2). For any PPT adversary D, we have that the
function

Advls2
ENDSG,G,D(k, n) := |Pr

[
D(pp, ĥh̃,g′ĝ′,gĝ) = 1

]
− Pr

[
D(pp, ĥh̃,g′ĝ′,gg̃) = 1

]
|

is negligible in k, where g,g′ ← SampG(pp), ĝ, ĝ′ ← ŜampG(pp, sp), g̃ ← S̃ampG(pp, sp),
for ĥ and h̃ specified in sp.
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Nested-hiding indistinguishability (NH). For any PPT adversary D, for all integers q′ =
q′(k), the function

Advnh
ENDSG,G,D(k, n, q′) := max

i∈[bn
2
c]

(
|Pr

[
D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h1, . . . ,hq′)) = 1

]
− Pr

[
D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h

′
1, . . . ,h

′
q′)) = 1

]
|
)
,

is negligible in k, where ĝ← ŜampG(pp, sp), g̃← S̃ampG(pp, sp), and

hi′ := (hi′,0, . . . , hi′,n)← SampH(pp),

h′i′ := (hi′,0, . . . , hi′,2i−1 · (ĥ)γ̂i′ , hi′,2i · (h̃)γ̃i′ , . . . , hi′,n),

for ĥ, h̃ specified in sp, for γ̂i′ , γ̃i′ ← Z
∗
ord(H), and for all i′ ∈ [q′].

(Informal) comparison of NDSGs and ENDSGs. Loosely speaking, in contrast to the

NDSGs from [11], ENDSGs have a second semi-functional G-group sampling algorithm S̃ampG
as well as a second nontrivial H-element in sp (i.e., h̃). Further, we omit the SampGT-algorithm.
Concerning the ENDSG properties, we extend the NDSG properties and assumptions appro-
priately and introduce one additional assumption (i.e., LS2).

4 An (almost) tightly (µ, q)-IBE-IND-CPA-secure IBE

A variant of the IBE of Chen and Wee [11]. We are now ready to present our
variant of Chen and Wee’s IBE scheme [11]. As a basic building block we use an ENDSG

ENDSG = (SampP,SampG, SampH, ŜampG, S̃ampG) from Section 3. Besides, for groups GT
(defined below), let UH be a family of universal hash functions H : GT → {0, 1}k such that
for any nontrivial subgroup G′T ⊂ GT , and for H ← UH, X ← G′T , and U ← {0, 1}k, we
have SD ((H,H(X)) ; (H, U)) = O(2−k). Let IBE = (Par,Gen,Ext,Enc,Dec) with identity space
ID = {0, 1}n, for n = n(k), and message space M = {0, 1}k be defined as follows:

Parameter generation. Par(k, n) samples (pp′, sp′)← SampP(k, 2n), for pp′ = (G,H,GT , N,
g, h, e,m, 2n, pars) and sp′ = (ĥ, h̃, p̂ars, p̃ars)), and H← UH, and then outputs the public
and secret parameters (pp, sp), where pp = (pp′,H) and sp = sp′.

Key generation. Gen(pp, sp), given parameters pp and sp, samples msk ← H, and outputs a
master public key mpk := (pp,m(msk)) and a master secret key msk .

Secret-key extraction. Ext(msk , id), given msk ∈ H and an identity id = (id1 . . . idn) ∈ ID,
samples (h0, . . . , h2n)← SampH(pp) and outputs a user secret key

usk id := (h0,msk ·
n∏
i=1

h2i−idi).

Encryption. Enc(mpk , id ,M), given mpk = (pp,m(msk)), an identity id = (id1 . . . idn) ∈ ID,
and a message M ∈ M, computes (g0, . . . , g2n) := SampG(pp; s), for s ← Z

∗
N , and gT :=

m(msk)s (= e(g0,msk)), and outputs a ciphertext

Cid := (g0,
n∏
i=1

g2i−idi ,H(gT )⊕M).
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Decryption. Dec(usk id , Cid ′), given a user secret key usk id =: (K0,K1) and a ciphertext
Cid ′ =: (C0, C1, C2), outputs

M := H

(
e(C0,K1)

e(C1,K0)

)
⊕ C2.

Correctness of IBE. We have

H

(
e(C0,K1)

e(C1,K0)

)
⊕ C2 = H

(
e(g0,msk ·

∏n
i=1 h2i−idi)

e(
∏n
i=1 g2i−id ′i , h0)

)
⊕ H(gT )⊕M (∗)

= H(gT )⊕ H(gT )⊕M,

for id = id ′. (∗) holds due to ENDSG’s associativity and projective properties.

(µ, q)-IBE-IND-CPA security of IBE. We base our high-level proof strategy on the IBE-
IND-CPA proof strategy of Chen and Wee [11], but deviate on the low level. First, we define
auxiliary secret-key extraction Ext and auxiliary encryption Enc, random functions R̂j,i and R̃j,i,
pseudo-normal ciphertexts, semi-functional type-(·, i) ciphertexts, and semi-functional type-i
user secret keys similarly to [11]:

Auxiliary secret-key extraction. Ext(pp,msk , id ;h), given parameter pp, master secret key
msk , an identity id = id1 . . . idn ∈ ID, and h = (h0, . . . , h2n) ∈ (H)2n+1, outputs a user
secret key

usk id := (h0,msk ·
n∏
i=1

h2i−idi).

Auxiliary encryption function. Enc(pp, id ,M ; msk ,g), given parameter pp, identity id =
id1 . . . idn ∈ ID, message M ∈ M, master secret key msk , and g = (g0, . . . , g2n) ∈
(G)2n+1, outputs a ciphertext

Cid := (g0,

n∏
i=1

g2i−idi ,H(e(g0,msk))⊕M).

Random function families. Let id |i := id1 . . . id i be the i-bit prefix of an identity id , and
let ID|i := {0, 1}i. For an instance j and i ∈ [n] ∪ {0}, consider functions R̂j,i : ID|i →
H, id |i 7→ (ĥ)γ̂j,i(id |i) and R̃j,i : ID|i → H, id |i 7→ (h̃)γ̃j,i(id |i), where γ̂j,i : ID|i →
Z
∗
ord(H), id |i 7→ γ̂j,id |i and γ̃j,i : ID|i → Z

∗
ord(H), id |i 7→ γ̃j,id |i are independently and truly

random.

Pseudo-normal ciphertexts. Pseudo-normal ciphertexts are generated as

Cid := Enc(pp, id ,M ; msk ,gĝ)

= (g0ĝ0,
n∏
i=1

g2i−idi ĝ2i−idi ,H(e(g0ĝ0,msk))⊕M),

for uniform g = (g0, . . . , g2n) ← SampG(pp) and ĝ = (ĝ0, . . . , ĝ2n) ← ŜampG(pp, sp).

(Hence, pseudo-normal ciphertexts have G-components sampled from ŜampG.)

Semi-functional type-(∧, i) and type-(∼, i) ciphertexts. Let R̂j,i and R̃j,i be random func-
tions as defined above. Semi-functional ciphertexts of type (∧, i) are generated as

Ĉid := Enc(pp, id ,M ; msk · R̂j,i(id |i) · R̃j,i(id |i),gĝ)

(1)
= (g0ĝ0,

n∏
i=1

g2i−idi ĝ2i−idi ,H(e(g0ĝ0,msk · R̂j,i(id |i)))⊕M)
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while semi-functional ciphertexts of type (∼, i) are generated as

C̃id := Enc(pp, id ,M ; msk · R̂j,i(id |i) · R̃j,i(id |i),gg̃)

(2)
= (g0g̃0,

n∏
i=1

g2i−idi g̃2i−idi ,H(e(g0g̃0,msk · R̃j,i(id |i)))⊕M),

where g = (g0, . . . , g2n) ← SampG(pp), ĝ = (ĝ0, . . . , ĝ2n) ← ŜampG(pp), and g̃ =

(g̃0, . . . , g̃2n)← S̃ampG(pp), while (1) and (2) hold due to ENDSG’s properties.

Semi-functional type-i user secret keys. Let R̂j,i and R̃j,i be defined as above. For h =
(h0, . . . , h2n)← SampH(pp), semi-functional type-i user secret keys are generated as

usk id := Ext(pp,msk · R̂j,i(id |i) · R̃j,i(id |i), id ;h)

= (h0,msk · R̂j,i(id |i) · R̃j,i(id |i) ·
n∏
i=1

h2i−idi).

Theorem 4.1. If ENDSG is an ENDSG system as defined in Section 3 and H is a universal hash
function, then IBE defined as above is weakly (µ, q)-IBE-IND-CPA-secure. Concretely, for any
weak PPT adversary A with at most q′ = q′(k) key extraction queries per instance and running
time t in the (µ, q)-IBE-IND-CPA security experiment with IBE, there are distinguishers D1

on LS1, D2 on LS2, and D3 on NH with running times t′1 ≈ t′2 ≈ t′3 ≈ t + O(µnkc(q + q′)),
respectively, for some constant c ∈ N, with

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,G,D1
(k, 2n) + 2n · Advls2

ENDSG,G,D2
(k, 2n)

+ n · Advnh
ENDSG,G,D3

(k, 2n, µq′) + µq ·O(2−k), (1)

for group generator G defined as above.

Proof. We show the (µ, q)-IBE-IND-CPA security of IBE for any weak PPT adversary A in a
sequence of games where we successively change the games until we arrive at a game where A
has only negligible advantage (i.e., success probability of 1/2) in the sense of (µ, q)-IBE-IND-
CPA. Let SA,j be the event that A succeeds in Game j. We give an overview how the challenge
ciphertexts and user secret keys are generated in Table 1.

Game 0. Game 0 is the (µ, q)-IBE-IND-CPA experiment as defined above.

Game 1. Game 1 is defined as Game 0 apart from the fact that all challenge ciphertexts are
pseudo-normal.

Game 2.i.0. Game 2.i.0 is defined as Game 1 except that all user secret keys are semi-
functional of type (i−1) and all challenge ciphertexts are semi-functional of type-(∧, i−1),
for all i ∈ [n].

Game 2.i.1. Game 2.i.1 is defined as Game 2.i.0 except that if and only if the i-th bit of a
challenge identity is 1, then the corresponding challenge ciphertext is semi-functional of
type (∼, i− 1). (Otherwise, if and only if the i-th bit of a challenge identity is 0, then the
corresponding challenge ciphertext is semi-functional of type (∧, i− 1).)

Game 2.i.2. Game 2.i.2 is defined as Game 2.i.1 except that the challenge ciphertexts are semi-
functional of type (·, i) (where · can be ∧ or ∼ as defined in Game 2.i.1, i.e., depending
on the i-th challenge identity bit) and the user secret keys are semi-functional of type i.

Game 3. Game 3 is defined as Game 2.n.0 except that the challenge ciphertexts are semi-
functional of type (∧, n) and the user secret keys are semi-functional of type n.
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Game Challenge ciphertexts for id∗j,i′ User secret keys for id

G. 0 Enc(mpkj , id
∗
j,i′ ,M

∗
j,i′,b) Ext(mskj , id)

G. 1 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj ,gĝ) Ext(pp,mskj , id ;h)

G. 2.i.0 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj · R̂j,i−1(id∗j,i′ |i−1),gĝ) Ext(pp,mskj · R̂j,i−1(id |i−1) · R̃j,i−1(id |i−1), id ;h)

G. 2.i.1 if id∗j,i′,i = 0 : Ext(pp,mskj · R̂j,i−1(id |i−1) · R̃j,i−1(id |i−1), id ;h)

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj · R̂j,i−1(id∗j,i′ |i−1),gĝ)

if id∗j,i′,i = 1 :

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj · R̃j,i−1(id∗j,i′ |i−1),gg̃)

G. 2.i.2 if id∗j,i′,i = 0 : Ext(pp,mskj · R̂j,i(id |i) · R̃j,i(id |i), id ;h)

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj · R̂j,i(id∗j,i′ |i),gĝ)

if id∗j,i′,i = 1 :

Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj · R̃j,i(id∗j,i′ |i),gg̃)

G. 3 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;mskj · R̂j,n(id∗j,i′ ),gĝ) Ext(pp,mskj · R̂j,n(id) · R̃j,n(id), id ;h)

G. 4 Enc(pp, id∗j,i′ , Rj,i′ ;mskj · R̂j,n(id∗j,i′ ),gĝ) Ext(pp,mskj · R̂j,n(id) · R̃j,n(id), id ;h)

Table 1: Instance-j challenge ciphertexts for challenge identity id∗j,i′ , for g ← SampG(pp), for ĝ ←
ŜampG(pp, sp), for g̃ ← S̃ampG(pp, sp), for Rj,i′ ← {0, 1}k, and for instance-j user secret keys for
identity id , for h← SampH(pp), for all (j, i′, i) ∈ [µ]× [q]× [n]. The differences between games are given
by underlining.

Game 4. Game 4 is defined as Game 3 except that the challenge ciphertext messages are
uniform k-length bitstrings.

Lemma 4.2 (Game 0 to Game 1). If the G- and H-subgroups property and LS1 of ENDSG
hold, Game 0 and Game 1 are computationally indistinguishable. Concretely, for any PPT
adversary A with at most q′ = q′(k) extraction queries per instance and running time t in
the (µ, q)-IBE-IND-CPA security experiment with IBE there is a distinguisher D on LS1 with
running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [SA,0]− Pr [SA,1] | ≤ Advls1
ENDSG,G,D(k, 2n). (2)

Proof. In Game 0, all challenge ciphertexts are normal in the sense of IBE while in Game 1, all
challenge ciphertexts are pseudo-normal. In the following, we give a description and its analysis
of a LS1 distinguisher that uses any efficient IBE-attacker in the (µ, q)-IBE-IND-CPA sense.

Description. The challenge input is provided as (pp,T), where T is either g or gĝ, for

pp = (G,H,GT , N, g, h, e,m, 2n, pars), g ← SampG(pp), and ĝ ← ŜampG(pp, sp). First, D
samples (msk j)j ← (H)µ, sets mpk j := (pp,H,m(msk j)), for all j, for H ← UH, and sends
(mpk j)j to A. During the experiment, D answers instance-j secret key extraction queries to
oracle Ext(msk j , ·), for id ∈ ID, as

Ext(pp,msk j , id ; SampH(pp)),

for all j. (We assume that A queries at most q′ user secret keys per instance.) Then, D fixes
a bit b ← {0, 1}. A may adaptively query its Enc′-oracle; for A-chosen instance-j challenge
identity id∗j,i ∈ ID and equal-length messages (M∗j,i,0,M

∗
j,i,1). D returns

Enc(pp, id∗j,i,M
∗
j,i,b; msk j ,T

sj,i)

to A, for sj,i ← Z
∗
N , for all (j, i) ∈ [µ] × [q]. (We assume that A queries at most q challenge

ciphertexts per instance.) Eventually, A outputs a guess b′. D outputs 1 if b′ = b and A is valid
in the sense of (µ, q)-IBE-IND-CPA, else outputs 0.
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Analysis. The provided master public keys and the A-requested user secret keys yield the
correct distribution and are consistent in the sense of Game 0 and Game 1. Due to ENDSG’s
G- and H-subgroups property, we have that T is uniformly distributed over the generators
of a nontrivial subgroup of G2n+1. Hence, Ts, for s ← Z

∗
N , is distributed uniformly over the

generators of a nontrivial subgroup of G2n+1 and, thus, all challenge ciphertexts yield the correct
distribution in the sense of Game 0 and Game 1. If T = g, then the challenge ciphertexts are
distributed identically as in Game 0. Otherwise, i.e., if T = gĝ, then the challenge ciphertexts
are distributed identically as in Game 1. Hence, (2) follows.

Lemma 4.3 (Game 1 to Game 2.1.0). If the orthogonality property of ENDSG holds, the out-
put distributions of Game 1 and Game 2.1.0 are the same. Concretely, for any PPT adversary
A in the (µ, q)-IBE-IND-CPA security experiment with IBE, it holds that

Pr [SA,1] = Pr [SA,2.1.0] . (3)

Proof. In this bridging step, we argue that each instance-j master secret key msk j , with msk j ←
H, generated as in Game 1 and the (implicit) instance-j master secret keys msk ′j , with msk ′j :=

msk ′′j · R̂j,0(ε) · R̃j,0(ε), for msk ′′j ← H and R̂j,0, R̃j,0 defined as above, generated as in Game 2.1.0,
are identically distributed, for all j. Note that the master public keys for A contain (m(msk j))j ;
but since ((m(msk ′j))j = (m(msk ′′j ))j , which is due to the orthogonality property of ENDSG, no

R̂j,0-information and no R̃j,0-information is given out in the master public keys. Further, since
(msk j)j and (msk ′′j )j are identically distributed, it follows that (3) holds.

Lemma 4.4 (Game 2.i.0 to Game 2.i.1). If the G- and H-subgroups property and LS2 of
ENDSG hold, Game 2.i.0 and Game 2.i.1 are computationally indistinguishable. Concretely,
for any PPT adversary A with at most q′ = q′(k) extraction queries per instance and running
time t in the (µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher D on
LS2 with running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [S2.i.0]− Pr [S2.i.1] | ≤ Advls2
ENDSG,G,D(k, 2n), (4)

for all i ∈ [n].

Proof. In Game 2.i.0, we have semi-functional type-(∧, i − 1) challenge ciphertexts while in
Game 2.i.1, challenge ciphertexts are semi-functional of type (∼, i − 1) if and only if the i-th
challenge identity bit is 1.

Description. The challenge input is provided as (pp, ĥh̃,g′ĝ′,T), where T is either gĝ or

gg̃, for pp as before, for ĥ, h̃ specified in sp, for g,g′ ← SampG(pp), ĝ, ĝ′ ← ŜampG(pp, sp),

and g̃ ← S̃ampG(pp, sp). First, D samples (msk j)j ← (H)µ, sets mpk j := (pp,H,m(msk j)),
for all j, for H ← UH, for m specified in pp, and sends (mpk j)j to A. Further, D defines a

truly random function R : [µ]×{0, 1}i−1 → 〈ĥh̃〉. During the experiment, D answers instance-j
secret key extraction queries to oracle Ext(msk j , ·) as

Ext(pp,msk j · R(j, id |i−1), id ;SampH(pp)),

for id ∈ ID and all j. (Again, we assume that A queries at most q′ user secret keys per instance
and we set id |0 = {0, 1}0 =: ε.) A may adaptively query its Enc′-oracle; for instance-j challenge
identity id∗j,i′ = id∗j,i′,1 . . . , id

∗
j,i′,n ∈ ID and equal-length messages (M∗j,i′,0,M

∗
j,i′,1), D returns

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R(j, id∗j,i′ |i−1), (g′ĝ′)sj,i′ ) if id∗j,i′,i = 0,

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R(j, id∗j,i′ |i−1),Tsj,i′ ) if id∗j,i′,i = 1,
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to A, for b ← {0, 1}, for sj,i′ ← Z
∗
N , for all (j, i′) ∈ [µ] × [q]. Eventually, A outputs a guess b′.

D outputs 1 if b′ = b and A is valid in the sense of (µ, q)-IBE-IND-CPA, else outputs 0.

Analysis. The master public keys yield the correct distribution as well as the requested
user secret keys (which is due to ENDSG’s G- and H-subgroups property, i.e., the output of
SampH is uniformly distributed over the generators of a nontrivial subgroup of H2n+1). For
the challenge ciphertexts, note that g′ĝ′ and T are uniformly distributed over the generators
of their respective nontrivial subgroup of G2n+1 and, hence, (g′ĝ′)s and Ts, for s ← Z

∗
N , are

distributed uniformly over the generators of their respective nontrivial G2n+1-subgroup as well.
If T = gĝ, then the challenge ciphertexts are distributed identically as in Game 2.i.0. Otherwise,
if T = gg̃, then the challenge ciphertexts are distributed identically as in Game 2.i.1 (where,
in both cases, ENDSG’s orthogonality and non-degeneracy properties hold; thus, ĥ and h̃ must
contain coprime nontrivial elements and the challenge ciphertexts yield the correct distribution).
Hence, (4) follows.

Lemma 4.5 (Game 2.i.1 to Game 2.i.2). If the G- and H-subgroups property and NH of
ENDSG hold, Game 2.i.1 and Game 2.i.2 are computationally indistinguishable. Concretely,
for any PPT adversary A with at most q′ = q′(k) extraction queries per instance and running
time t in the (µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher D on
NH with running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [S2.i.1]− Pr [S2.i.2] | ≤ Advnh
ENDSG,G,D(k, 2n, µq′), (5)

for all i ∈ [n].

Proof. In Game 2.i.1, the challenge ciphertexts are semi-functional of type (∧, i− 1) if the i-th
bit of the challenge identity is 0 and semi-functional of type (∼, i − 1) if the i-th bit of the
challenge identity is 1, while in Game 2.i.2, all challenge ciphertexts are of type (·, i).
Description. The challenge input is (pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (T1,1, . . . ,Tµ,q′)), where Tj,i′

equals either

(hj,i′,0, . . . , hj,i′,2n) or (hj,i′,0, . . . , hj,i′,2i−1 · (ĥ)γ̂j,i′ , hj,i′,2i · (h̃)γ̃j,i′ , . . . , hj,i′,2n),

for pp as before, ĥ, h̃ specified as in sp, for ĝ ← ŜampG(pp, sp), for g̃ ← S̃ampG(pp, sp), for
(hj,i′,0, . . . , hj,i′,2n)← SampH(pp), and for uniform γ̂j,i′ , γ̃j,i′ ← Z

∗
ord(H), for all (j, i′) ∈ [µ]× [q′].

D samples (msk j)j ← (H)µ, sets mpk j := (pp,H,m(msk j)), for all j, for H ← UH, for m

specified in pp, and sends (mpk j)j to A. Further, D defines random functions R̂j,i−1, R̃j,i−1 as
above. In addition, for identity id = id1 . . . idn ∈ ID, we will define

R̂j,i(id |i) := R̂j,i−1(id |i−1) and (implicitly) R̃j,i(id |i) := R̃j,i−1(id |i−1) · (h̃)γ̃j,i′ if id i = 0,

R̃j,i(id |i) := R̃j,i−1(id |i−1) and (implicitly) R̂j,i(id |i) := R̂j,i−1(id |i−1) · (ĥ)γ̂j,i′ if id i = 1,

for suitable (j, i′) ∈ [µ] × [q′] as shown below. Further, during the experiment, D returns the
i′-th secret key extraction query in instance j for an identity id , with prefix id |i not a prefix of
an already queried identity in instance j, as

Ext(pp,msk j · R̂j,i(id |i) · R̃j,i−1(id |i−1), id ;Tj,i′) if id i = 0,

Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i(id |i), id ;Tj,i′) if id i = 1,

for all (j, i′). (Note that id |i could be a valid prefix in any other instance different to j. Further,
we assume that A queries at most q′ user secret keys per instance.) For an identity prefixes id |i
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that is a prefix of an already queried identity in instance j, let (j, i′′) ∈ [µ] × [q′] be the index
of that query. In that case, D returns

Ext(pp,msk j · R̂j,i(id |i) · R̃j,i−1(id |i−1), id ;Tj,i′′ · SampH(pp)) if id i = 0,

Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i(id |i), id ;Tj,i′′ · SampH(pp)) if id i = 1,

for all j. (Note that we use SampH to rerandomize the H2n+1-subgroup element of Tj,i′′ .)
Further, A may adaptively query its Enc′-oracle; for A-chosen instance-j challenge identity
id∗j,i′′′ = id∗j,i′′′,1 . . . , id

∗
j,i′′′,n ∈ ID and equal-length messages (M∗j,i′′′,0,M

∗
j,i′′′,1) and returns

Enc(pp, id∗j,i′′′ ,M
∗
j,i′′′,b; msk j · R̂j,i(id∗j,i′′′ |i), (g−(2i−1)ĝ−(2i−1))

sj,i′′′ ) if id∗j,i′′′,i = 0,

Enc(pp, id∗j,i′′′ ,M
∗
j,i′′′,b; msk j · R̃j,i(id∗j,i′′′ |i), (g−2ig̃−2i)

sj,i′′′ ) if id∗j,i′′′,i = 1,

to A, for sj,i′′′ ← Z
∗
N , for g ← SampG(pp), for fixed b ← {0, 1}, for all (j, i′′′). (Note that

a modified Enc-input is provided with only 4n instead of 4n + 2 elements. Nevertheless, the
omitted elements are not needed to generate a valid ciphertext (since it is consistent with the
challenge identities (id∗j,i′′′)j,i′′′). Hence, we assume that Enc works as desired.) Eventually, A
outputs a guess b′. D outputs 1 if b′ = b and A is valid in the sense of (µ, q)-IBE-IND-CPA,
else outputs 0.

Analysis. Note that the provided master public keys yield the correct distribution. For
the A-requested user secret keys, we have that since ĥ and h̃ have nontrivial H-elements of
coprime order (again, this is due to ENDSG’s orthogonality and non-degeneracy properties),
the random functions R̂j,i−1, R̂j,i and R̃j,i−1, R̃j,i yield the correct distributions in the sense of
Game 2.i.1 and Game 2.i.2, respectively. Due to the G- and H-subgroups property of ENDSG,
g−(2i−1) and ĝ−(2i−1) as well as g−2i and g̃−2i are uniformly distributed over the generators of
their respective nontrivial subgroups of G2n and, thus, (g−(2i−1)ĝ−(2i−1))

s and (g−2ig̃−2i)
s, for

s← Z
∗
N , are distributed uniformly over the generators of their respective nontrivial subgroup of

G2n. Further, if id∗j,i′′′,i = 0, then it holds that R̂j,i(id
∗
j,i′′′ |i) = R̂j,i−1(id∗j,i′′′ |i−1) and all required

components ĝ−(2i−1) to create the challenge ciphertexts are given. Analogously, if id∗j,i′′′,i = 1,

then we have R̃j,i(id
∗
j,i′′′ |i) = R̃j,i−1(id∗j,i′′′ |i−1) and all necessary components g̃−2i are provided

as needed. Hence, the challenge ciphertexts and user secret keys yield the correct distribution.
If (Tj,i′)j,i′ = (hj,i′,0, . . . , hj,i′,2n)i′ , then the user secret keys are distributed identically as in

Game 2.i.1. If (Tj,i′)j,i′ = (hj,i′,0, . . . , hj,i′,2i−1 · (ĥ)γ̂j,i′ , hj,i′,2i · (h̃)γ̃j,i′ , . . . , hj,i′,2n)j,i′ , then the
user secret keys are distributed identically as in Game 2.i.2. Thus, (5) follows.

Lemma 4.6 (Game 2.i-1.2 to Game 2.i.0). If the G- and H-subgroups property and LS2 of
ENDSG hold, Game 2.i-1.1 and Game 2.i.0 are computationally indistinguishable. Concretely,
for any PPT adversary A with at most q′ = q′(k) extraction queries per instance and running
time t in the (µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher D with
running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [S2.i−1.2]− Pr [S2.i.0] | ≤ Advls2
ENDSG,G,D(k, 2n), (6)

for all i ∈ [n] \ {1}.

Proof. In Game 2.i−1.2, challenge ciphertexts are of type (·, i−1) and depend on the (i−1)-th
challenge identity bit while in Game 2.i.0, challenge ciphertexts are of type (∧, i − 1). This
proof is very similar to the proof of Lemma 4.4 except that the challenge ciphertexts depend
on the (i− 1)-th instead of the i-th challenge identity bit.
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Lemma 4.7 (Game 2.n.2 to Game 3). If the G- and H-subgroups property and LS2 of
ENDSG hold, Game 2.n.2 and Game 3 are computationally indistinguishable. Concretely, for
any PPT adversary A with at most q′ = q′(k) extraction queries per instance and running
time t in the (µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher D with
running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [SA,2.n.2]− Pr [SA,3] | ≤ Advls2
ENDSG,G,D(k, 2n). (7)

Proof. It is easy to see that Game 3 and a potential Game 2.n+1.0 would be identical. Hence,
we can reassemble the proof of Lemma 4.6 with i := n+ 1 and (7) directly follows.

Lemma 4.8 (Game 3 to Game 4, weak adversaries). Game 3 and Game 4 are statisti-
cally indistinguishable. Concretely, for any PPT weak adversary A on the (µ, q)-IBE-IND-CPA
security of IBE, it holds that

|Pr [SA,3]− Pr [SA,4] | ≤ µq ·O(2−k). (8)

Proof. In Game 4, we replace each challenge message Mj,i′,b, for challenge bit b ∈ {0, 1}, with
a (fresh) uniformly random k-length bitstring Rj,i′ ← {0, 1}k. We argue with ENDSG’s non-
degeneracy property and the universality of H for this change. Concretely, for instance-j Game-3
challenge ciphertexts

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R̂j,n(id∗j,i′), (gĝ)sj,i′ )

= ((g0ĝ0)sj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)sj,i′ ,H(e((g0ĝ0)sj,i′ ,msk j · R̂j,n(id∗j,i′)))⊕M∗j,i′,b),

for g ← SampG(pp), for ĝ ← ŜampG(pp, sp), for sj,i′ ← Z
∗
N , for all i′ ∈ [q], note that

e((ĝ0)sj,i′ , R̂j,n(id∗j,i′)) = e((ĝ0)sj,i′ , ĥ)γ̂j,i′ , for uniform γ̂j,i′ ∈ Z∗ord(H), is uniformly distributed

in a nontrivial subgroup G′T ⊂ GT due to the non-degeneracy property of ENDSG. Further-

more, since A is a weak adversary, all the R̂j,n are for different preimages and thus indepen-
dently random. Hence, since H is a (randomly chosen) universal hash function, we have that
SD ((H,H(X)) ; (H, U)) = O(2−k), for X ← G′T and U ← {0, 1}k. A union bound yields (8).

Lemma 4.9 (Game 4). For any PPT adversary A in the (µ, q)-IBE-IND-CPA security ex-
periment with IBE, it holds that

Pr [SA,4] = 1/2. (9)

Proof. In Game 4, for (uniform) challenge bit b ∈ {0, 1}, we provide A with challenge ciphertexts
that include a uniform k-length bitstring instead of a A-chosen b-dependent message, for each
instance and challenge. Hence, b is completely hidden from A and (9) follows.

Taking (2), (3), (4), (5), (6), (7), (8), and (9) together, shows (1).

From weak to full (µ, q)-IBE-IND-CPA security. The analysis above shows only weak
security: we must assume that the adversary A never asks for encryptions under the same
challenge identity and for the same scheme instance twice. We do not know how to remove this
restriction assuming only the abstract properties of ENDSGs. However, at the cost of one tight
additional reduction to (a slight variant of) the Bilinear Decisional Diffie-Hellman (BDDH)
assumption, we can show full (µ, q)-IBE-IND-CPA security.

Concretely, in Game 3, challenge ciphertexts for A are prepared using (the hash value
of) e(ĝs0, ĥ

γ) as a mask to hide the plaintext behind. Here, ĝs0 and ĥ are public (as part
of the ciphertext, resp. public parameters), s is a fresh exponent chosen randomly for each
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encryption, and γ is a random exponent that however only depends on the scheme instance and
identity. (Thus, γ will be reused for different encryptions under the same identity). Hence, if
we show that many tuples (ĝsi , e(ĝsi0 , ĥ

γ)) (for different si but the same γ) are computationally
indistinguishable from random tuples, we obtain that even multiple encryptions under the same
identity hide the plaintexts, and we obtain full security.

Of course, the corresponding reduction should be tight, in the sense that it should not
degrade in the number of tuples, or in the number of considered γ.

A (subgroup) variant of the BDDH assumption (s-BDDH). For any PPT adversary
D, we have that the function

Advs-bddh
ENDSG,G,D(k, n) := |Pr

[
D(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc, e(ĝ0, ĥ)abc) = 1
]

− Pr
[
D(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc, e(ĝ0, ĥ)z) = 1
]
|

is negligible in k, for (pp, sp) ← SampP(k, n), for g ← SampG(pp), for ĝ = (ĝ0, . . . , ĝn) ←
ŜampG(pp, sp), for ĥ specified in sp, for e specified in pp, and for (uniform) a, b, c, z ← Z

∗
N .

Rerandomization. Given N ∈ N, g, ĝ,ga, ĝa ∈ Gn+1, ĝb0 ∈ G, ĥ, ĥb, ĥc ∈ H, and T =

e(ĝ0, ĥ)z ∈ GT , for a, b, c, z ∈ Z∗N .

Reranda(N,g,g
a, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc,T) samples r1, t1 ← Z
∗
N and outputs

(gā, ĝā, ĝb0, ĥ
b, ĥc,Ta),

where
gā = (gā0 , . . . , g

ā
n), for

gā0 = (ga0)r1 · gt10 = ga·r1+t1
0 and gāi = (gai )r1 · gt1i = ga·r1+t1

i , for all i ∈ [n],

ĝā = (ĝā0 , . . . , ĝ
ā
n), for

ĝā0 = (ĝa0)r1 · ĝt10 = ĝa·r1+t1
0 and ĝāi = (ĝai )r1 · ĝt1i = ga·r1+t1

i , for all i ∈ [n],

Ta = Tr1 · e(ĝb0, ĥc)t1 = Tr1 · e(ĝ0, ĥ)b·c·t1

If z = abc, then ā is uniformly distributed in ZN and Ta = Tābc. If z 6= abc, then ā
is uniformly distributed in ZN and Ta = e(ĝ0, ĥ)zr1+bct1 , where zr1 + bct1 is uniformly
distributed in ZN .

Rerandb(N,g,g
a, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc,T) samples r2, t2 ← Z
∗
N and outputs

(ga, ĝa, ĝb̄0, ĥ
b̄, ĥc,Tb),

where
ĝb̄0 = (ĝb0)r2 · ĝt20 = ĝb·r2+t2

0 ,

ĥb̄ = (ĥb)r2 · ĥt2 = ĥb·r2+t2 ,

Tb = Tr2 · e(ĝa0 , ĥc)t2 = Tr2 · e(ĝ0, ĥ)a·c·t2 .

If z = abc, then b̄ is uniformly distributed in ZN and Tb = Tab̄c. If z 6= abc, then b̄
is uniformly distributed in ZN and Tb = e(ĝ0, ĥ)zr2+act2 , where zr2 + act2 is uniformly
distributed in ZN .
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Rerandc(N,g,g
a, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc,T) samples r3, t3 ← Z
∗
N and outputs

(ga, ĝa, ĝb0, ĥ
b, ĥc̄,Tc),

where
ĥc̄0 = (ĥc0)r3 · ĥt30 = ĥc·r3+t3

0 ,

Tc = Tr3 · e(ĝa0 , ĥb)t3 = Tr3 · e(ĝ0, ĥ)a·b·t3 .

If z = abc, then c̄ is uniformly distributed in ZN and Tc = Tabc̄. If z 6= abc, then c̄
is uniformly distributed in ZN and Tc = e(ĝ0, ĥ)zr3+abt3 , where zr3 + abt3 is uniformly
distributed in ZN .

Rerandabc(N,g,g
a, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc,T) outputs

(gā, ĝā, ĝb̄0, ĥ
b̄, ĥc̄,Tabc)

by running Reranda(N,g,g
a, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc,T) → (gā, ĝā, ĝb0, ĥ
b, ĥc,Ta) and take this

output as new input (N,g,gā, ĝ, ĝā, ĝb0, ĥ, ĥ
b, ĥc,Ta) for Rerandb. Then take this output

(gā, ĝā, ĝb̄0, ĥ
b̄, ĥc,Tab) as appropriate input for Rerandc to get (gā, ĝā, ĝb̄0, ĥ

b̄, ĥc̄,Tabc).

The input exponents a, b, c and z for all algorithms are required to be uniformly distributed
in Z∗N , but if we reuse the outputs of Reranda and Rerandb, then ā and b̄ are uniformly dis-
tributed in ZN . However, the uniform distribution in ZN is statistically indistinguishable
from the uniform distribution in Z∗N , since for a ← Z

∗
N , ā ← ZN the statistical distance

SD (a ; ā) = 1
2

∑
x∈ZN |Pr [a = x] − Pr [ā = x] | = N−ϕ(N)

N is negligible in k, because for
N = p1 · . . . · pn′ , where n′ ∈ O(1) and ps denotes the smallest k-bit prime factor of N , we

have N−ϕ(N)
N

(∗)
≤ N

N −
N
N +

∑n′

l=1

(
n′

l

)
1
pls
≤ c(n′) · 1

ps
∈ O(2−k), for a constant c(n′) depending

on n′. (Note that (∗) holds due to ϕ(N)
N ≥ N

N +
∑n′

l=1

(
n′

l

)
1
pls

.) So, if z = abc, then ā, b̄, c̄

are uniformly distributed in ZN and Tabc = Tāb̄c̄. If z 6= abc, then ā, b̄, c̄ are uniformly
distributed in ZN and, for za := zr1 + bct1, zab := zar2 + āct2 and zabc := zabr3 + āb̄t3, we
have Tabc = e(ĝ0, ĥ)zabc , where za, zab and zabc are all uniformly distributed in ZN .

Lemma 4.10 (Game 3 to Game 4, full security). Let G be a group generator and Rerandabc,
Reranda rerandomization algorithms, all as defined above. If ENDSG is an ENDSG system, s-
BDDH holds, and H is a universal hash function, Game 3 and Game 4 are computationally
indistinguishable. Concretely, for any PPT adversary A with at most q′ = q′(k) extraction
queries per instance and running time t in the (µ, q)-IBE-IND-CPA security experiment with
IBE, there is a distinguisher D with running time t′ ≈ t + O(µnkc(q + q′)), for some constant
c ∈ N, such that

|Pr [SA,3]− Pr [SA,4] | ≤ Advs-bddh
ENDSG,G,D(k, 2n) + µq ·O(2−k). (10)

Proof. In Game 3, each challenge ciphertext carries a b-dependent A-chosen message, for b ←
{0, 1}, while in Game 4, each challenge ciphertext message is replace by uniform k-length b-
independent bitstring.

Description. D is provided with challenge input (pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ
b, ĥc,T), where T

is either e(ĝ0, ĥ)abc or e(ĝ0, ĥ)z, for (pp, sp) ← SampP(k, 2n), for g ← SampG(pp), for ĝ =

(ĝ0, . . . , ĝn)← ŜampG(pp, sp), for ĥ specified in sp, for e specified in pp, and for a, b, c, z ← Z
∗
N .

First, D samples (msk j)j ← (H)µ, sets mpk j := (pp,H,m(msk j)), for all j, for H ← UH,
for m specified in pp, and sends (mpk j)j to A. Further, D defines a truly random function

R̂ : [µ] × {0, 1}n → 〈ĥ〉. During the experiment, D answers instance-j extraction queries for
id ∈ ID as

Ext(pp,msk j · R̂(j, id), id ;SampH(pp)),
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for all j. Further, A may adaptively query its Enc′-oracle; for A-chosen instance-j challenge
identity id∗j,i′ = id∗j,i′,1 . . . , id

∗
j,i′,n ∈ ID and equal-length messages (M∗j,i′,0,M

∗
j,i′,1) ∈ (M)2,

for all (j, i′) ∈ [µ] × [q]. For each fresh instance-j challenge identity id∗j,i′ (i.e., id∗j,i′ was

not queried before by A in instance j), D computes (gaj,i′ , ĝaj,i′ , ĝ
bj,i′
0 , ĥbj,i′ , ĥcj,i′ ,Tj,i′) ←

Rerandabc(N,g,g
a, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc,T) and returns

((g0ĝ0)aj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,H(e((g0ĝ0)aj,i′ ,msk j) ·Tj,i′)⊕M∗j,i′,b)

to A, for b ← {0, 1}, for sj,i′ ← Z
∗
N , for all (j, i′). For a requeried challenge identity id∗j,i′′ in

instance j (where (j, i′′) ∈ [µ]×[q] is the index of that previous query in instance j), D computes

(g
a′
j,i′′ , ĝ

a′
j,i′′ , ĝ

bj,i′′
0 , ĥbj,i′′ , ĥcj,i′′ ,T′j,i′′)← Reranda(N,g,g

aj,i′′ , ĝ, ĝaj,i′′ , ĝ
bj,i′′
0 , ĥ, ĥbj,i′′ , ĥcj,i′′ ,Tj,i′′)

and returns

((g0ĝ0)
a′
j,i′′ , (

n∏
i=1

g2i−id∗
j,i′′,i

ĝ2i−id∗
j,i′′,i

)
a′
j,i′′ ,H(e((g0ĝ0)

a′
j,i′′ ,msk j) ·T′j,i′′)⊕M∗j,i′′,b)

to A, for all (j, i′′). Eventually, A outputs a guess b′. D outputs 1 if b′ = b and A is valid in the
sense of (µ, q)-IBE-IND-CPA, else outputs 0.

Analysis. The master public keys yield the correct distribution as well as the requested user
secret keys. If T = e(ĝ0, ĥ)abc, then the challenge ciphertext exponents (as rerandomized in
Rerandabc and Reranda, respectively) are distributed O(2−k)-close to the challenge ciphertext
exponents in Game 3. (See rerandomization paragraph above.) For a fresh challenge identity
id∗j,i′ , we have that

((g0ĝ0)aj,i′ , (

n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,H(e((g0ĝ0)aj,i′ ,msk j) ·Tj,i′)⊕M∗j,i′,b)

(∗)
= ((g0ĝ0)aj,i′ , (

n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,H(e((g0ĝ0)aj,i′ ,msk j · ĥbj,i′cj,i′ ))⊕M∗j,i′,b),

where (∗) holds due the orthogonality property of ENDSG. Note that we (implicitly) set sj,i′ :=
aj,i′ and γ̂j,i′ := bj,i′ ·cj,i′ . For a requeried challenge identity id∗j,i′ , we rerandomize the previously

used query value aj,i′ , for index (j, i′), and leave γ̂j,i′ fixed. Otherwise, if T = e(ĝ0, ĥ)z, then
the challenge ciphertext exponents are distributed O(2−k)-close to the challenge ciphertext
exponents in Game 4, i.e., we have that

((g0ĝ0)aj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,H(e((g0ĝ0)aj,i′ ,msk j) ·Tj,i′)⊕M∗j,i′,b)

= ((g0ĝ0)aj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,H(e((g0ĝ0)aj,i′ ,msk j · ĥ
z′
j,i′ ))⊕M∗j,i′,b),

for some uniform aj,i′ ∈ Z∗N and z′j,i′ := zj,i′a
−1
j,i′ ∈ Z

∗
N with overwhelming probability. Further,

since H is a (randomly chosen) universal hash function, we have that SD ((H,H(X)) ; (H, U)) =
O(2−k), for X ← G′T and U ← {0, 1}k. Finally, via a union bound, (10) follows.

Corollary 4.11 (Full (µ, q)-IBE-IND-CPA security of IBE). Let G be a group generator as
defined above. If ENDSG is an ENDSG system, s-BDDH holds, and H is a universal hash
function, then IBE is (µ, q)-IBE-IND-CPA-secure. Concretely, for any PPT adversary A with
at most q′ = q′(k) extraction queries per instance and running time t in the (µ, q)-IBE-IND-
CPA security experiment with IBE, there are distinguishers D1 on LS1, D2 on LS2, D3 on NH,
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and D4 on s-BDDH with running times t′1 ≈ t′2 ≈ t′3 ≈ t′4 ≈ t + O(µnkc(q + q′)), respectively,
some constant c ∈ N, with

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,G,D1
(k, 2n) + 2n · Advls2

ENDSG,G,D2
(k, 2n)

+ n · Advnh
ENDSG,G,D3

(k, 2n, µq′) + Advs-bddh
ENDSG,G,D4

(k, 2n)

+ µq ·O(2−k), (11)

for group generator G defined as above.

Proof. Taking (2), (3), (4), (5), (6), (7), (10), and (9) together, yields (11).

5 Instantiations of ENDSGs in composite-order groups

Assumptions in groups with composite order. We slightly modify two (known) dual
system assumptions (i.e., see DS1, DS3 below, and [11]) and define one (new) dual system
assumption (see DS2 below). Further, we give a dual system variant of the Bilinear Decisional
Diffie-Hellman assumption, dubbed DS-BDDH, and argue that DS-BDDH implies s-BDDH
from Section 4. Let G(k, 4) be a composite-order group generator that outputs group parameters
(G,H = G,GT , N, e, g, gp1 , gp2 , gp3 , gp4) with the composite-order groups G,GT , each of order
N = p1 · · · p4, for pairwise-distinct k-bit primes (pi)i. Further, gpi is a generator of the subgroup
Gpi ⊂ G of order pi, and g is a generator of G. More generally, we write Gq ⊆ G for the unique
subgroups of order q. The assumptions in groups with composite order are as follows:

Dual system assumption 1 (DS1). For any PPT adversary D, the function

Advds1
G,D(k) := |Pr

[
D(pars, g′p1) = 1

]
− Pr

[
D(pars, g′p1p2) = 1

]
|

is negligible in k, for (G,GT , N, e, g, (gpi)i)← G(k, 4),

pars := (G,GT , N, e, g, gp1 , gp3 , gp4), and g′p1
g← Gp1 , g

′
p1p2

g← Gp1p2 .

Dual system assumption 2 (DS2). For any PPT adversary D, the function

Advds2
G,D(k) := |Pr

[
D(pars, g′p1p2) = 1

]
− Pr

[
D(pars, g′p1p3) = 1

]
|

is negligible in k, for (G,GT , N, e, g, (gpi)i)← G(k, 4),

pars := (G,GT , N, e, g, gp1 , gp4 , gp1p2 , gp2p3),

gp1p2
g← Gp1p2 , gp2p3

g← Gp2p3 , and g′p1p2
g← Gp1p2 , g

′
p1p3

g← Gp1p3 .

Dual system assumption 3 (DS3). For any PPT adversary D, the function

Advds3
G,D(k) := |Pr

[
D(pars, gxyp2 , g

xy
p3 ) = 1

]
− Pr

[
D(pars, gxy+γ′

p2 , gxy+γ′
p3 ) = 1

]
|

is negligible in k, for (G,GT , N, e, g, (gpi)i)← G(k, 4),

pars := (G,GT , N, e, g, (gpi)i, g
x
p2X̂4, g

y
p2 Ŷ4, g

x
p3X̃4, g

y
p3 Ỹ4),

X̂4, X̃4, Ŷ4, Ỹ4
g← Gp4 , x, y,← Z

∗
N , and γ′ ← Z

∗
N .
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Dual system bilinear DDH assumption (DS-BDDH). For any PPT adversary D, the
function

Advds-bddh
G,D (k) := |Pr

[
D(pars, e(gp2 , gp2)abc) = 1

]
− Pr [D(pars, e(gp2 , gp2)z) = 1] |

is negligible in k, for (G,GT , N, e, g, (gpi)i)← G(k, 4), for

pars := (G,GT , N, e, g, (gpi)i, g
a
p1 , g

a
p2 , g

b
p2 , gp2p4 , g

b
p2p4 , g

c
p2p4),

for gp2p4
g← Gp2p4 , a, b, c, z ← Z

∗
N .

Lemma 5.1 (DS-BDDH implies s-BDDH). For any PPT adversary D with running time
t on s-BDDH there is a distinguisher D′ on DS-BDDH with running time t′ ≈ t such that

Advds-bddh
G,D′ (k) = Advs-bddh

G,D (k, n), (12)

for G as defined above. Hence, s-BDDH holds under DS-BDDH.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is either
e(gp2 , gp2)abc ← Gp1 or e(gp2 , gp2)z, for

pars = (G,GT , N, e, g, (gpi)i, g
a
p1 , g

a
p2 , g

b
p2 , gp2p4 , g

b
p2p4 , g

c
p2p4),

for gp2p4
g← Gp2p4 , and for a, b, c, z ← Z

∗
N . First, D′ sets the public parameter as pp :=

(G,H := G,GT , N, g, e,m, n, pars ′), for m : h′ 7→ e(g1, h
′), pars ′ := (gp1 , gp4 , g

w
p1 , h := g, hw), for

w← (Z∗N )n, and for some integer n determined by D′. Then, D′ sends

(pp,g := (gsp1 , g
s·w
p1 ),ga, ĝ := (gŝp2 , g

ŝ·w
p2 ), ĝa, gb·ŝp2 , gp2p4 , g

b
p2p4 , g

c
p2p4 ,T),

for s, ŝ← Z
∗
N , to D. Finally, D outputs a value which D′ forwards to its own challenger.

Analysis. Note that pp is distributed as defined in s-BDDH. If T = e(gp2 , gp2)abc, then
Pr
[
D′(pars, e(gp2 , gp2)abc) = 1

]
= Pr

[
D(pp,g,ga, ĝ, ĝa, gbŝp2 , gp2p4 , g

b
p2p4 , g

c
p2p4 , e(gp2 , gp2)abc) = 1

]
follows. Otherwise, if T = e(gp2 , gp2)z holds, then we have that Pr [D′(pars, e(gp2 , gp2)z) = 1] =
Pr
[
D(pp,g,ga, ĝ, ĝa, gbŝp2 , gp2p4 , g

b
p2p4 , g

c
p2p4 , e(gp2 , gp2)z) = 1

]
. Hence, (12) follows.

ENDSGs in groups with composite order. Let G(k, 4) be as defined above. For simplicity,
we write gi := gpi and gij := gpipj , for all (i, j) ∈ [4]× [4]. We instantiate ENDSGs ENDSGco =

(SampP, SampG,SampH, ŜampG, S̃ampG) in composite-order groups as follows:

Parameter sampling. SampP(k, n), given k and n, samples (G,H,GT , (pi)i, e, g, h, (gi)i) ←
G(k, 4) and outputs pp := (G,H,GT , N, g, e,m, n, pars) and sp := (ĥ, h̃, p̂ars, p̃ars), for

• m : H → GT , h
′ 7→ e(g1, h

′),

• pars := (g1, g4, g
w
1 , h, h

w ·R4), for w← (Z∗N )n, R4
g← (Gp4)n,

• ĥ g← Gp2p4 , h̃
g← Gp3p4 ,

• p̂ars := (g2, g
w
2 ), p̃ars := (g3, g

w
3 ).

G-Group sampling. SampG(pp), on input pp, samples s← Z
∗
N and outputs (gs1, g

s·w
1 ).

H-Group sampling. SampH(pp), on input pp, samples r ← Z
∗
N and outputs (hr, hr·w ·R′4),

for R′4
g← (Gp4)n.

Semi-functional G-group sampling 1. ŜampG(pp, sp), on input pp and sp, samples s← Z
∗
N

and outputs (gs2, g
s·w
2 ).
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Semi-functional G-group sampling 2. S̃ampG(pp, sp), on input pp and sp, samples s← Z
∗
N

and outputs (gs3, g
s·w
3 ).

Correctness of ENDSGco. For all k, n ∈ N and group parameters (G,H,GT , N, e, g, h, (gi)i)←
G(k, 4), we have:

Associativity. For all s, r ← Z
∗
N , for all (gs1, g

s·w
1 ) ← SampG(pp; s), for all (hr, hr·w ·R′4) ←

SampH(pp; r), for R′4 = (R′i)i ∈ (Gp4)n, it holds that e(gs1, h
r·wi · R′i) = e(gs1, h

r·wi) =
e(gs·wi1 , hr)for all i ∈ [n], and for w = (w1, . . . , wn) ∈ (Z∗N )n.

Projective. For all s← Z
∗
N , for all h′ ∈ H, it holds that m(h′)s = e(g1, h

′)s = e(gs1, h
′). (Note

that gs1 is the first output of SampG(pp; s).)

Security of ENDSGco. Let G be a composite-order group generator as defined above, for all
k, n,∈ N, for all (pp, sp)← SampP(k, n), we have:

Orthogonality. For ĥ, h̃ specified in sp, we have m(ĥ) = e(g1, ĥ) = e((gp2p3p4)γg1 , (gp1p3)γĥ) =
1, m(h̃) = e(g1, h̃) = e((gp2p3p4)γg1 , (gp1p2)γh̃) = 1for suitable exponents γg1 , γĥ, γh̃ ∈ Z

∗
N .

Further, for gs1, gs
′

2 , and gs
′′

3 that are the first outputs of SampG(pp; s), ŜampG(pp, sp; s′),

and S̃ampG(pp, sp; s′′), for s, s′, s′′ ← Z
∗
N , we have e(gs1, ĥ) = e(gs1, h̃) = e(gs

′
2 , h̃) =

e(gs
′′

3 , ĥ) = 1.

G- and H-subgroups. Since g1, g2, and g3 are generators of subgroups Gp1 , Gp2 , and Gp3 of

coprime order, the outputs of SampG, ŜampG, and S̃ampG are uniform over the generators,
which generates nontrivial subgroups of G of coprime order. Since h is a generator of
H and R′4 is uniform over the generators of (Gp4)n, the output of SampH is uniformly
distributed over the generators of H.

Non-degeneracy. For the first output gs2 of ŜampG(pp, sp; s) (with uniform s ∈ Z∗N ), and for

ĥ ∈ Gp2p3 as specified in sp, it holds that e(gs2, ĥ) = e(g2, ĥ)s is uniformly distributed

over the generators of the subgroup generated by e(g2, ĥ). Similarly, for the first output

gs3 of S̃ampG(pp, sp; s), it holds that e(gs3, h̃) = e(g3, h̃)s is distributed uniformly over the

generators of the subgroup generated by e(g3, h̃).

Left-subgroup indistinguishability 1. We prove the following lemma

Lemma 5.2 (DS1 implies LS1). For any PPT adversary D with running time t on
LS1 of ENDSGco as defined above there is a distinguisher D′ on DS1 with running time
t′ ≈ t such that

Advds1
G,D′(k) = Advls1

ENDSGco,G,D(k, n), (13)

for G as defined above. Hence, LS1 holds under DS1.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is
either g′1 ← Gp1 or g′12 ← Gp1p2 , for pars = (G,GT , N, e, g, g1, g3, g4). First, D′ sets the
public parameter as pp := (G,H := G,GT , N, g, e,m, n, pars ′), for m : h′ 7→ e(g1, h

′),
pars ′ := (g1, g4, g

w
1 , h := g, hw), for w ← (Z∗N )n, and for some integer n determined by

D′. Then, D′ sends (pp,T,Tw) to D. Finally, D outputs a value which D′ forwards to
its own challenger.

Analysis. Note that pp is distributed as defined in LS1. If T = g′1, then (g′1, (g
′
1)w)

is distributed as the output of SampG(pp) as needed and, hence, Pr [D′(pars, g′1) = 1] =
Pr [D(pp, (g′1, (g

′
1)w)) = 1] follows. Otherwise, if T = g′12, then (g′12, (g

′
12)w) is distributed

as SampG(pp) · ŜampG(pp, sp), for suitable sp, as desired and, hence, we have that
Pr [D′(pars, g′12) = 1] = Pr [D(pp, (g′12, (g

′
12)w)) = 1]. As a consequence, (13) follows.
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Left-subgroup indistinguishability 2. We prove the following lemma

Lemma 5.3 (DS2 implies LS2). For any PPT adversary D with running time t on
LS2 of ENDSGco defined as above there is a distinguisher D′ on DS2 with running time
t′ ≈ t such that

Advls2
ENDSGco,G,D(k, n) = Advds2

G,D′(k), (14)

for G as defined above. Hence, LS2 holds under DS2.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is either
g′12 ← Gp1p2 or g′13 ← Gp1p3 , for pars = (G,GT , N, e, g, g1, g4, g12, g23). First, D′ defines
the public parameter as pp := (G,H := G,GT , N, g, e,m, n, pars ′), for m : h′ 7→ e(g1, h

′),
pars ′ := (g1, g4, g

w
1 , h := g, hw), for w ← (Z∗N )n, and for some integer n determined by

D′. Then, D′ sends (pp, g23g
γ
4 , g12,T,T

w), for γ ← Z
∗
N , to D. Eventually, D outputs a

value which is forwarded by D′ to its own challenger.

Analysis. Note that pp is distributed as defined in LS2. If T = g′12, then (g′12, (g
′
12)w) is

distributed as SampG(pp) · ŜampG(pp, sp), for suitable sp, as needed and, hence, we have
that Pr [D′(pars, g′12) = 1] = Pr [D(pp, g23g

γ
4 , g12, (g

′
12, (g

′
12)w)) = 1] follows. Otherwise, if

T = g′13, then (g′13, (g
′
13)w) is distributed as SampG(pp) · S̃ampG(pp, sp), for suitable sp, as

desired and, hence, Pr [D′(pars, g′13) = 1] = Pr [D(pp, g23g
γ
4 , g12, (g

′
13, (g

′
13)w)) = 1] holds.

As a consequence, (14) follows.

Nested-hiding indistinguishability. We prove the following lemma

Lemma 5.4 (DS3 implies NH). For any PPT adversary D with running time t on NH
of ENDSGco there is a distinguisher D′ on DS3 with running time t′ ≈ t such that

Advnh
ENDSGco,G,D(k, n, q′) ≤ Advds3

G,D′(k), (15)

for q′ ∈ N and G as defined above. Hence, NH holds under DS3.

Proof. The proof follows the same strategy as shown in Chen and Wee’s work [11] except
that we have to integrate two coprime-order semi-functional generators ĥ and h̃ instead
of just one as in [11].

Description. The challenge input to D′ is provided as (pars,T), where T := (T̂, T̃) is

either (gxy2 , gxy3 ) or (gxy+γ′

2 , gxy+γ′

3 ), for

pars =: (G,GT , N, e, g1, g2, g3, g4, g
x
2 X̂4, g

y
2 Ŷ4, g

x
3 X̃4, g

y
3 Ỹ4),

for X̂4, Ŷ4, X̃4, Ỹ4
g← Gp4 , x, y ← Z

∗
N , and for γ′ ← Z

∗
N . Furthermore, D′ receives an

auxiliary input i ∈ [bn2 c], for some integer n ∈ N determined by D′. First, D′ samples

r, r̂, r̃, ŝ, s̃← Z
∗
N , R′4

g← (Gp4)n, w′ ← (Z∗N )n, and sets

h := (g1g2g3g4)r, ĥ := (g2g4)r̂, h̃ := (g3g4)r̃,

ĝ−(2i−1) := (gŝ2, g
ŝw′
2 )−(2i−1), g̃−2i := (gs̃3, g

s̃w′
3 )−(2i),

where h, ĥ, and h̃ are generators of G, Gp2p4 , and Gp3p4 . Then, D′ defines public parameter
as

pp := (G,H := G,GT , N, g, e, n,m, pars ′),
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for m : h′ 7→ e(g1, h
′) and

pars ′ := (g1, g4, g
w′
1 , h, hw

′
(gy2 Ŷ4)re2i−1(gy3 Ỹ4)re2iR′4) = (g1, g4, g

w
1 , h, h

wR4),

where ej is the j-th unit vector of length n and, implicitly, we have

w =


w′ mod p1p4

w′ + y · e2i−1 mod p2

w′ + y · e2i mod p3

and R4 = R′4 + Ŷ r
4 · e2i−1 + Ỹ r

4 · e2i.

Now, by running the algorithm from [12, Lemma 6] on input (1q
′
, (g2, g4, g

x
2 X̂4, g

y
2 Ŷ4, T̂))

and on input (1q
′
, (g3, g4, g

x
3 X̃4, g

y
3 Ỹ4, T̃)), D′ generates tuples

(g
r̂j
2 X̂4,j , T̂j)

q′

j=1 and (g
r̃j
3 X̃4,j , T̃j)

q′

j=1,

respectively, where

T̂j =

{
g
r̂jy
2 · Ŷ4,j , if T̂ = gxy2

g
r̂jy
2 · Ŷ4,j · g

γ̂′j
2 , if T̂ = gxy+γ′

2

, T̃j =

{
g
r̃jy
3 · Ỹ4,j , if T̃ = gxy3

g
r̃jy
3 · Ỹ4,j · g

γ̃′j
3 , if T̃ = gxy+γ′

3 .

Further, D′ samples r′j ← Z
∗
N , X′4,j

g← (Gp4)n, for all j ∈ [q′], and sends

(pp, ĥ, h̃, ĝ2i−1, g̃2i, (T1, . . . ,Tq′))

to D, where

Tj = (hr
′
j · gr̂j2 X̂4,j · g

r̃j
3 X̃4,j , (h

r′j · gr̂j2 X̂4,j · g
r̃j
3 X̃4,j)

w′ ·
((gy2 Ŷ4)r

′
jrT̂j)

e2i−1 · ((gy3 Ỹ4)r
′
jrT̃j)

e2iX′4,j)

=

{
(hrj , hrj ·w ·X4,j) if T̂j = g

r̂jy
2 · Ŷ4,j , T̃j = g

r̃jy
3 · Ỹ4,j

(hrj , hrj ·w · gγ̂je2i−1

2 · gγ̃je2i3 ·X4,j) if T̂j = g
r̂jy
2 · Ŷ4,j · g

γ̂j
2 , T̃j = g

r̃jy
3 · Ỹ4,j · g

γ̃j
3

for hrj := hr
′
j · gr̂j2 X̂4,j · g

r̃j
3 X̃4,j and X4,j := X′4,j + Ŷ

r′jr

4 e2i−1 + Ỹ
r′jr

4 e2i implicitly and w
as above.

Analysis. Note that pp is distributed as defined in NH. If T = (gxy2 , gxy3 ), then T̂j =

g
r̂jy
2 · Ŷ4,j and T̃j = g

r̃jy
3 · Ỹ4,j , for all j ∈ [q′], and, thus, (T1, . . . ,Tq′) is distributed as

(h1, . . . ,hq′), for suitable sp, as needed. Otherwise, if T = (gxy+γ′

2 , gxy+γ′

3 ), then T̂j =

g
r̂jy
2 ·Ŷ4,j ·g

γ̂j
2 and T̃j = g

r̃jy
3 ·Ỹ4,j ·g

γ̃j
3 for all j ∈ [q′], and, thus, (T1, . . . ,Tq′) is distributed as

(h′1, . . . ,h
′
q′), for suitable sp, since (ĥ, g

γ̂j
2 ·Ŷ4,j) and (h̃, g

γ̃j
3 ·Ỹ4,j) are identically distributed

as (ĥ, (ĥ)γ̂j · Ŷ4,j) and (h̃, (h̃)γ̃j · Ỹ4,j), respectively, for γ̂j , γ̃j ← Z
∗
N , Ŷ4,j , Ỹ4,j

g← Gp4 , for
all j ∈ [q′].
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