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The Basics

Irrespective of the countries we come from, we are taught the Hindu-

Arabic numerals and their place value notation at a very early age.
Thereafter we learn how to add, subtract, multiply, and divide with the
numerals. We are also taught how to write the common fractions and how to
add, subtract, multiply, and divide with them. It was from these basic techniques
that arithmetic developed. Arithmetic is an important subject in our schools as
its applications have become essential in our everyday life; from the
man-in-the-street to the scientist, government officer, and businessman—all of
us need to know arithmetic.

That arithmetic is useful is clear, but the history of the beginnings of the
subject is still obscure. In recent decades, there have been some studies on
Arabic texts related to early arithmetical procedures, and these have helped to
shed some light. When we compare this knowledge with what we know about
the arithmetic of ancient China, what is immediately and impressively apparent
are certain strikingly similar features. The aim of this paper is to draw attention
to these similarities and to show how vital they were in the development of
arithmetic.

The Hindu-Arabic numeral system on which arithmetic is built possesses the
intrinsic property of a place value notation which has ten as base. The digits of a
numeral are arranged from left to right in descending order of ranks. Initially,
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the system employed only nine signs which represented the numbers from one
to nine. For example, the number sixty-five thousand three hundred and ninety-
two was written in the form 65392 so that the signs representing six, five, three,
nine, and two were written in a horizontal line from left to right. The place
occupied by each digit indicated the rank of that digit; in this example, the ranks
of the digits 6, 5, 3, 9, and 2 were ten thousands, thousands, hundreds, tens, and
units, respectively. A number such as sixty-five thousand three hundred and two
was indicated by the appropriate signs for 6, 5, 3, and 2 which occupied their
due places, while the place which represented the tens rank was left vacant. This
blank space was called sunya in India and sifr in the Arab world, both words
meaning empty.! A tenth sign, which was usually in the form of the zero symbol
(occasionally it was a dot), was introduced later to occupy this vacant place.

The rules for manipulating the Hindu-Arabic numerals and the processes of
calculation were known in the West through Latin translations of Arabic
manuscripts from the twelfth century. The procedure of computation was called
“algorism.” This word is generally accepted as associated with the name of
Muhammad ibn Musa al-Khwarizmi of the ninth century. The Latin text of
Cambridge University Library Ms. li.vi.5, dating from the thirteenth century, is
generally accepted as a copy of an earlier Latin translation of an Arabic
manuscript based on the arithmetic text by al-Khwarizmi. The incomplete
manuscript has only sixteen pages? of which the first four and a half pages are
devoted to a description of the Hindu-Arabic numerals with detailed
explanations of the place value notation. Except for the last part on fractions and
two short paragraphs on halving and doubling and casting out nines, the rest of
the manuscript is concerned with the operations of addition, subtraction,
multiplication, and division.

An English translation of the part describing the division of 46468 by 324 is
reproduced below so as to give the reader some idea of how the process of
division was described and performed.3

And know that division is similar to multiplication, but this is done inversely,
because in division we subtract and there we add, i.e., in multiplication is its

I Karl Menninger, Number Words and Number Symbols: A Cultural History of
Numbers, translated by Paul Broneer from the revised 1958 German edition (Cambridge,
Mass.: MIT Press, 1969), pp. 400-401; Tobias Dantzig, Number: The Language of
Science (London: George Allen & Unwin, 1930, 3rd ed. 1947), pp. 29-30; Louis C.
Karpinski, The History of Arithmetic (Chicago: Rand McNally, 1925), p. 41.

2 The manuscript occupies folios 104r-111v, which were previously numbered as 102—
109 in 4 Catalogue of the Manuscripts Preserved in the Library of the University of
Cambridge, vol. 3 (Cambridge: Cambridge Univ. Press, 1858), pp. 500-501.

3 John N. Crossley and Alan S. Henry, “Thus Spake Al-Khwarizmi: A Translation of
the Text of Cambridge University Library Ms. li.vi.5,” Historia Mathematica vol. 17, no. 2
(May 1990), pp. 118-19.
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model. But when we wanted to divide forty-six thousand and four hundred and
sixty-eight by three hundred and XXIIII, we first put eight on the right side, then
we put six toward the left which is sixty, then IIII which is four hundred, then six
which is VI thousand, then IIII which is forty-thousand. Of these places the last
toward the left will be IIII, and the first of them toward the right eight; after this
write under them the number by which you are dividing, and write the last place
of the number by which you are dividing, which is the form of three and is three
hundred, under the last place of the upper number which is IIII, provided that it
is less than that which is above it: and if it were more than it, we shall move it by
one place and put it under the six. After this we shall put in that place, that comes
after the three, the form of two which is XX, beneath the six; then we shall put in
that place, which is beneath the IIII, likewise IIII and this will be their form:

46468
324

After this to begin with let us write one in the column of the first place of the
number by which you are dividing, above the upper number that you are dividing
which is four. And if we had put it beneath the IIII, it would be equally appropri-
ate. Let us multiply it (i.e., one) by three, and we shall subtract it (i.e., 3) from
that which is above it, and there will remain one. Then let us multiply it by two
and subtract it (i.e., 2) from that which is above it, which is VI, and there will
remain IIII. After this let us multiply it again by IIII and subtract it (i.e., 4) from
that which is above it, which is IIII and nothing will remain; and we shall put a
circle in its place. Next move the beginning of the number by which you are
dividing, i.e., IIII, beneath VI and there will be two beneath the circle and III
beneath IIII. Then write in the column of the lower number something in the
column [sic, should be “row”] of the one, i.e., IIII, and multiply it by three and
there will be XII; and subtract it (i.e., 12) from that which is above three which is
XIIII and there will remain II; after this multiply also IIII itself by the two that
follows the three and there will be VIII, and subtract it (i.e., 8) from that which is
above it, that is XX and there will remain XII, i.e., two above the II and one
above the three. Again multiply IIII by IIII which comes next on the right, and
there will be XVI; and subtract it (i.e., 16) from that which is above it which is
CXXVI and there will remain above the IIII a circle and above the two, one, and
above the three, one. Again move the number by which you are dividing, i.c.,
1111, beneath VIII, and there will be two beneath the circle and three beneath the
one; next write three in the column of IIII above the upper number that you are
dividing in the row of IIII and one (i.e., 143), multiply it (i.e., 3) by three, and
there will be IX; and subtract it (i.e., 9) from that which is above three which is
XI and there will remain two above the three. Multiply also the three by the two
that follows the three and there will be VI, and subtract it (i.e., 6) from that
which is above the three, which is XX; there will remain XIIII. Once more
multiply the aforesaid three by IIII that follows the two and there will be XII, and
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subtract it from that which is above it, which is CXXVIII . . . :# and there will
remain six above the IIII, and three above the two, and one above the three. And
there will come out for us what is owed to one from it and this will be CXLIII

136
and CXXXVI parts from CCCXXIIII parts of one (i.e., 1435). And this is

their form:

143
136
324

Vogel® points out that this lengthy description was equivalent to the following
steps or “algorism”:

1 1 14 14 14 14 143 143 143 143
46468 14068 14068 2068 1268 1108 1108 208 148 136
324 324 324 324 324 324 324 324 324 324

The section on division in the manuscript begins with a general description
of the process of division which is illustrated by the above example and
followed by the division of 1800 by 9. Only one method of division is
employed.

In the same vein, only one type of addition method, one type of subtraction
method, and one type of multiplication method are described in the manuscript.®
There are examples to illustrate the multiplication and subtraction methods, but
there is only a general description for the addition method.

Vogel’s summary of the steps for the subtraction of 3211 from 6422 and the
multiplication of 2326 by 214 are shown below:’

6422 3422 3222 3212 3211
3211 211 11 1

-9

4 Tt has been pointed out in Crossley and Henry, “Thus Spake Al-Khwarizmi,” p. 119,
that the text has “CXXVIII” instead of the correct number “CXLVIIL.”

> Kurt Vogel, Mohammed ibn Misa Alchwarizi's Algorismus (Aalen: Otto Zeller
Verlagsbuchhandlung, 1963), p. 47.

6 For an English translation, see Crossley and Henry, “Thus Spake Al-Khwarizmi,” pp.
110-17.

7 Vogel, Mohammed ibn Miisa, pp. 45-46.
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2326 428326 428326 492226 496486 497764
214 214 214 214 214

Each procedure begins from left to right and accuracy in the computation
depends on the correct positioning of the digits of one numeral relative to those
of the other. In the case of multiplication, note that the multiplier, 214, like the
divisor in the above example, is shifted place by place from left to right. Its first
position is such that its units digit, 4, is directly below the first digit from the left
of the numeral to be multiplied. This first digit of the upper numeral is
multiplied by each digit of the lower numeral commencing from the left. It is
erased when the product is written in its place.® The multiplier is then shifted to
the right by one place so that its units digit, 4, is directly below 3. The first digit
from the left of the lower numeral, 2, multiplies 3 and the product is added to
the digit directly above 2, so that the upper numeral is changed to 488326. Next,
1 multiplies 3 and the product is added to the digit directly above 1, so that the
upper numeral is changed to 491326. Finally, 4 multiplies 3, 3 is erased and the
upper numeral is changed to 492226. The multiplier is shifted to the right by
one place so that 4 is now directly below 2. The process continues till all the
digits of the upper numeral are multiplied; the multiplier is then erased leaving
the result.

The Kitab al-Fusul fi al-Hisab al-Hindi, written in Damascus in AD 952-953
by Abu al-Hasan Ahmad ibn Ibrahim al-Uqlidisi, is, according to Saidan, the
earliest extant Arabic work of Hindu-Arabic arithmetic and shows “this system
at its earliest stages and the first steps in its development.”® The manuscript
claimed to have a collection of all past knowledge on arithmetic, a clear
exposition of what was currently known about the subject, adaptations of and
improvements on methods using paper as a medium, and other new
contributions.!? The book therefore has several methods of addition, subtraction,
multiplication, and division; what is significant is that the first method of each
operation!! is the same as that described in the Cambridge manuscript.!2

8 The product is in bold print.

9 A. S. Saidan, The Arithmetic of Al-Ugqlidisi (Dordrecht: D. Reidel, 1978), p. xi.

10 Saidan, The Arithmetic of Al-Uqlidist, pp. 35-36.

11 Saidan, The Arithmetic of Al-Uqlidist, pp. 46-59.

12 The translated passage from Saidan, The Arithmetic of Al-Uglidist, p. 49 shows how
al-Uglidist began his description of the procedure for multiplication:

We start with the multiplication of whole numbers. Multiplication of rubies is
to be started with; that is multiplication of numbers from one to ten, equal or une-
qual. These must be memorized and learnt. Then comes multiplication of two places
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It was quite common for authors in Islam writing on the four fundamental
operations of arithmetic to begin with a detailed description of these original
methods.!3 In his Kifab fi Usil Hisab al-Hind (Principles of Hindu reckoning),
Kushyar ibn Labban (fl. ca. 971—ca. 1029), after introducing the numerals,
launches into a detailed description of the same procedures for addition,
subtraction, multiplication, and division.!# In the second part of his book, he
gives a different set of methods based on sexagesimal numbers.

In his book, al-Uqlidisi pointed out that this first set of methods for
performing the four fundamental operations of arithmetic was done on a
dustboard called the takht.)> Levey and Petruck also mention the use of the same
device for Kushyar ibn Labban’s arithmetic. The dustboard was a writing
surface on which the reckoner spread dust.'® This enabled him to write numbers
with a stylus or with the tip of his finger; manipulation depended on rubbing out
digits.!”

This first set of methods of how to add, subtract, multiply, and divide with
Hindu-Arabic numerals is of historic importance because it is not only the
earliest known in Islam, it is also the earliest known in the history of
arithmetical procedures performed through the Hindu-Arabic numeral system.
The detailed records of the Arabic arithmeticians reveal that the concept of the
numeral system and its accompanying methods of operations were learned step-
by-step as a package. From this foundation, they adapted, modified, and
improved the procedures for a paper and ink medium.!8

The ancient Chinese performed their addition, subtraction, multiplication,
and division using rods made from animal bones or bamboo. Rods were used for
reckoning since the Warring States period (475-221 BC) and possibly earlier,
and through their use a numeral system was developed. The numeral system
possessed the same intrinsic property as the Hindu-Arabic numeral system: it

by one, like multiplying 74 by 9. We draw up the nine under the seven, like this:

74 .
9

Now we multiply 9 by 7 and insert the units of the result in place of seven, and
the tens after it, thus having © 34 .

Then the nine is shifted and set under the four. It is multiplied by four; the units
are inserted in place of four, and the tens are added to the next place. The result is
6 68 which is the result of multiplication.

13 Saidan, The Arithmetic of Al-Ugqlidist, p. 13.

14 Martin Levey and Marvin Petruck, Kishyar ibn Labban: Principles of Hindu
Reckoning (Madison: Univ. of Wisconsin Press, 1965), pp. 48—60.

15 Saidan, The Arithmetic of Al-Ugqlidist, p. 35.

16 T evey and Petruck, Kiishyar ibn Labban, pp. 4-5, 41.

17 Saidan, The Arithmetic of Al-Ugqlidist, p. 13.

18 Saidan, The Arithmetic of Al-Ugqlidist, p. 14.
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used a place value notation with ten as base. The nine signs which represented
the numbers from one to nine were as follows:

1| 1 1 |/ 111

A rod numeral representing a number such as sixty-five thousand three

hundred and ninety-two would appear as | =||| %” . The rods

representing the digits five and nine which occupied places whose ranks were
thousands and tens respectively were rotated through ninety degrees so that a
horizontal rod was turned into a vertical one and a vertical rod was turned into a
horizontal one. The numeral system had a place value notation with ten as base
through this ingenious device of rotating the rods of the digits which occupied
alternate places. The rotated nine signs which occupied places whose ranks were
tens, thousands, hundred thousands, and so forth, were as follows:

T T

=l

A numeral representing a number such as sixty-five thousand three hundred
and two would appear as | =]|| |l : the place that represented the tens

rank was left blank and was called kong 22 (empty).

Among the extant literature, the Sun Zi suanjing #F54#& (The mathemati-
cal classic of Sun Zi) (ca. 400 AD) has the earliest description of how
multiplication and division were performed with the rod numerals. Comparing
this description of the detailed procedures with those described in the Arabic
texts of the earliest known method of multiplication and division leads to a
startling discovery: the step-by-step procedures are the same in spite of the
different media and the vast difference in the dates of the records.

The Sun Zi suanjing gives a general description of the rod numerals and how
to multiply and divide with them. It also provides specific problems to illustrate
the multiplication and division process.!® A translation of a problem on
multiplication is reproduced here. Models of rod numerals?® are constructed to
show the different stages of the performance.

19" Qian Baocong (ed.), Suanjing shi shu & #& + 2 [Ten mathematical classics]
(Beijing: Zhonghua shuju, 1963), pp. 282—85. For an English translation, see Lam Lay
Yong and Ang Tian Se, Fleeting Footsteps: Tracing the Conception of Arithmetic and
Algebra in Ancient China (Singapore: World Scientific, 1992), pp. 32-35, 38—41.

20 These correspond to the lower Roman numerals that have been added in the passage.
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Nine nines are 81, find the amount when this is multiplied by itself.
The answer says: 6561.

The method says: Set up the two positions: [upper and lower]?! [i]. The upper 8
calls the lower 8: eight eights are 64, so put down 6,400 in the middle position
[ii]. The upper 8 calls the lower 1: one eight is 8, so put down 80 in the middle
position [iii]. Shift the lower numeral one place [to the right] and put away the 80
in the upper position [iv]. The upper 1 calls the lower 8: one eight is 8, so put
down 80 in the middle position [v]. The upper 1 calls the lower 1: one one is 1,
so put down 1 in the middle position [vi]. Remove the numerals in the upper and
lower positions leaving 6561 in the middle position [vii].

(i] (ii] [iii] [iv]

-1
-1

[v] [vi] [vii]
In Hindu-Arabic numerals, the above stages are as follows:
81 81 81 1 1
64 648 648 656
81 81 81 81 81
[i] [ii] [ii] [iv] [v]

21 How the two rod numerals should be placed in relation to each other has been stated
earlier in the general method; see Lam and Ang, Fleeting Footsteps, p. 32.
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1
6561 6561
81
[vi] [vii]

The Sun Zi suanjing provides a description of the general method for
division (Figure 1) which is translated below:

In the common method of division (fan chu zhi fa JF 2 ), this is the reverse
of multiplication. The dividend (cheng de 31, lit. product) occupies the middle
position and the quotient (chu de & 15) is placed above it. Suppose 6 is the
divisor (fa 1) and 100 is the dividend (shi ). When 6 divides 100, it advances
(jin ) two places [to the left] so that it is directly below the hundreds. This
implies the division of 1 by 6. In this case, the divisor (fa) is greater than the
dividend (shi), so division is not possible. Therefore shift (fui &) [6 to the right]
so that it is below the tens. Using the divisor (fa) to remove the dividend (shi),
one six [is 6] and 100 is reduced to 40, thus showing that division is possible. If
the divisor (fa) is less than [that part of] the dividend [above it] (ski), it should
then stay below the hundreds and should not be shifted. It follows that if the
units of the divisor (fa) are below the tens [of the dividend], the place value [of
the digit of the quotient] is tens; if they are below the hundreds, the place value
[of the digit of the quotient] is hundreds. The rest of the method is the same as
multiplication. As for the remainder of the dividend (ski), this is assigned to the
divisor (vi fa ming zhi ) 45 ) such that the divisor (fa) is called the denomi-
nator (mu £i}) and the remaining dividend (sAi) the numerator (zi ).

The method of division is illustrated by a problem (Figure 2). This is
translated and explained by models of rod numerals.

If 6561 is divided among 9 persons, find how much each gets.
Answer: 729.

Method: First set 6561 in the middle position to be the shi B (dividend). Below
it, set 9 persons to be the fu 3 (divisor)? [i]. Put down 700 in the upper position
[ii]. The upper 7 calls the lower 9: seven nines are 63, so remove 6,300 from the
numeral in the middle position [iii]. Shift the numeral in the lower position one
place [to the right] and put down 20 in the upper position [iv]. The upper 2 calls
the lower 9: two nines are 18, so remove 180 from the numeral in the middle
position [v]. Once again shift the numeral in the lower position one place [to the
right], and put down 9 in the upper position [vi]. The upper 9 calls the lower 9:
nine nines are 81, so remove 81 from the numeral in the middle position [vii].
There is now no numeral in the middle position. Put away the numeral in the
lower position. The result in the upper position is what each person gets [viii].

22 How the two rod numerals should be placed in relation to each other has been stated
in the general method.
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Figure 2

Figure 1

Figure 1 shows the general description of division and Figure 2 shows a

problem on division. Both excerpts are from Sun Zi suanjing; Qian Baocong

(ed.), Suanjing shi shu, pp. 282—-83; 285
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[ii] [iii] [iv]

—
-
—_

=Sl
=1

[vii] [viii]

=
=
e

The above steps are now shown in Hindu-Arabic numerals.

7 7 72 72

6561 6561 261 261 81
9 9 9 9 9
[i] [ii] [iii] [iv] [v]
729 729 729

81

9 9
[vi] [vii] [viii]

The similarity in the step-by-step procedure for multiplication and division in
the Chinese and Arabic texts is remarkable.?

23 There is a slight variation in the multiplication methods: the first two lines of the
Chinese method are merged into a single line in the method of the Arabic manuscripts.
There is evidence in the Yang Hui suanfa 15 %8 &% (Yang Hui’s methods of computation)
that the Chinese also practiced the latter procedure. Lam Lay Yong, A Critical Study of the
Yang Hui Suan Fa: A Thirteenth-century Chinese Mathematical Treatise (Singapore:
Singapore Univ. Press, 1977), pp. 23-24.
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Let me summarize what has been discussed so far. The two arithmetics were
built on numeral systems with the same concept: they used a place value
notation with ten as base and thus depended on only nine signs. The digits of
each numeral in both systems were arranged horizontally from left to right in
descending order of their ranks. If a rod numeral did not have a digit of a
particular rank, the space representing that rank was left empty. The very early
Hindu-Arabic numerals also followed this convention. In the basic arithmetic
operations, both arithmetics used the same detailed procedures for multiplication
and division.2* In view of such similar foundations, how did each arithmetic
evolve? I shall begin with the arithmetic of China.

The Early Evolution

With rods as tools of operation, arithmetic in ancient China grew from basic
computations. Its growth was stimulated by the demands of the practical needs
of society. The most important of the earliest mathematical writings that has
survived is the Jiu zhang suanshu 1, 3 B ZE (Nine chapters on the
mathematical art). According to Li Yan and Du Shiran, this work is
“representative of the development of ancient Chinese mathematics from the
Zhou and Qin to the Han dynasties (c. 11th century BC—220 AD).”% In spite of
its early date, the mathematics is more advanced than that in the Sun Zi
suanjing. It also assumes that the reader is familiar with the rod numeral system
and the procedures of how to add, subtract, multiply, and divide with rods. The
Jiu zhang suanshu formed the basis for the development of Chinese
mathematics and had a powerful influence on its later development.

The book begins with four problems on finding the area of a rectangular
field, and then turns to fractions. This is an important section with explanations
of how to reduce a fraction to its lowest terms and how to add, subtract,
multiply, and divide with fractions. Furthermore, this section contains problems
on the averaging of fractions and the multiplication of mixed numbers. The
treatment of the common fraction in the Jiu zhang suanshu is valuable not only
because it is systematic and extensive but also because it represents the earliest

24 There is no existing description of how the ancient Chinese added or subtracted with
rod numerals. However, the procedure for multiplication involves addition and that for
division involves subtraction. If we infer the procedures for addition and subtraction from
them, these are then similar to those described in the Arabic texts. See Lam and Ang,
Fleeting Footsteps, pp. 45—47; Li Yan and Du Shiran, Chinese Mathematics: A Concise
History, translated by John N. Crossley and Anthony W. C. Lun (Oxford: Clarendon Press,
1987), pp. 12-13.

25 Li Yan and Du Shiran, Chinese Mathematics, p. 33.
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known record of the manipulation of fractions using methods which are
generally still followed today.

The ancient Chinese were able to develop fractions because they used a
simple rod numeral notation to represent the difficult concept of a fractional part
in relation to its whole. This notation originated from the process of division;
there is a description of it in the Sun Zi suanjing (see Figure 1, above). To give
an illustration, let us consider the division of 6565 by 9. The procedure is the
same as the division of 6561 by 9 (described above) except for the last step
which appears as follows:

T =TI
1
m

1

. . 4 . 4
This shows that the answer is 729 ; and the notation for g is Il

The rod numeral notation for a fraction has a very simple form: the numeral
of the fractional part is placed above the numeral representing the whole. The
notation manifests that the positioning of the numerals relative to each other is
once again an essential factor in the art of reckoning with rods.

A cursory study of the Jiu zhang suanshu would reveal that after the four
fundamental operations of arithmetic, fractions and their operations are essential
knowledge for the development of arithmetic. Two-thirds of the two hundred
and forty-six problems are involved with fractions.

The rod numeral system proved to be an extremely useful invention and
played an important role in the advancement of Chinese civilization. Whenever
computation was needed, the rods would be deployed; the numeral system was
therefore known to a wide circle of people ranging from astronomers,
administrators, and engineers to Buddhist monks and commercial travelers. The
use of the system met the demands of such practical needs as finding the area of
a piece of land, the right amount in an exchange of goods, the amount of tax to
be paid, the interest on an amount of money borrowed, the distribution of goods
among a certain number of people, and so on. The rod numerals were also used
in scientific calculations such as those involving the celestial bodies or land
surveying. Furthermore, the numeral system allowed for computations in a
variety of measures.

The rod numeral system generated a series of mathematical methods:
addition and subtraction led to multiplication and division; the last led to a
simple notation of the common fraction which in turn led to methods on
fractions; the computation of the area of a square led to the search for a method
of finding the side of a square whose area was known, and, when that was
invented, it in turn was extended to the method of finding the cube root of a
number. The method of computing an amount to be received in a barter trade
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established the Rule of Three (see below) which in turn generated other methods
in proportion. These went on—the existing treatises up to the sixteenth century
provide us insight into the continuous development of traditional mathematics
through the rod numeral system.

The exchange of goods in the ancient world led to the use of a method
commonly referred to as the Rule of Three or the Golden Rule. The Chinese
called it jin you 4 15; the Jiu zhang suanshu devotes an entire chapter to it and
its applications. Problems involving partnership and sharing were very popular,
as were problems employing various methods of proportion and inverse
proportion. The subject of arithmetic arose from the needs of quotidian life and
in turn contributed to the advancement of the quality of life. Methods were
formulated and illustrated by problems of a practical nature. Such problems now
provide a rich source for the study of the socioeconomic aspects of life in
ancient China. The first problem of chapter six in the Jiu zhang suanshu is
translated here as an illustration.

Now there is a fair [way of] transporting millet: County A has 10,000 households
and [requires] 8 days’ journey to reach the destination; County B has 9,500
households and [requires] 10 days’ journey; County C has 12,350 households
and [requires] 13 days’ journey; County D has 12,200 households and [requires]
20 days’ journey. The 4 counties transport a total of 250,000 hu fig} as tax and use
10,000 carts. It is desired that the contribution be based on the distances and the
number of households. Find the amount of millet and the number of carts from
each [county].

The answer says: County A: 83,100 hu of millet, 3,324 carts. County B: 63,175
hu of millet, 2,527 carts. County C: 63,175 hu of millet, 2,527 carts. County D:
40,550 hu of millet, 1,622 carts.

The method of jun shu Y3 #j (fair transportation) says: Divide the number of
households of each county by the number of days for the journey to obtain the
proportional parts. The proportional part for A is 125, for B and C 95 each, for D
61. Duplicate them and add up [one set] to form the fa . Multiply [each nu-
meral of the set] not added by the given number of carts to transport the millet
and let each [product] be the shi & . Divide the shi by the fa to obtain the number
of carts for each [county]. When there are fractions, convert them to integers
[either zero or one] (shang xia bei zhi | | ZE ). Multiply the number of carts
by 25 hu to obtain the amount of millet.

The Jiu zhang suanshu stands out among ancient mathematical works for its
extremely rich variety of subject matter.2® There are problems concerning areas
and volumes of different shapes interweaved with the computation of
manpower; others deal with the subject of relative distance and relative speed. A

26 For a more detailed analysis of the Jiu zhang suanshu, see Lam Lay Yong, “Jiu
Zhang Suanshu (Nine Chapters on the Mathematical Art): An Overview,” Archive for
History of Exact Sciences vol. 47, no. 1 (1994), pp. 1-51.
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whole chapter is devoted to what is called “surplus and deficit,” which involves
the Rule of False Position, and another chapter treats the right-angled triangle.
All computations were performed with rods—the use of the rod numeral system
exhibited its innate potential as it provided the tool for ideas to be expressed and
thus for mathematics to be developed from stage to stage. Manipulations of rod
numerals on the board led to new techniques such as cross-multiplication and
other operations on rows and columns. The complex notion of what is now
called a linear equation was encapsulated in a notation on the counting board;
this in turn led to the expression of a set of simultaneous linear equations and
their solution, which in its turn led to the concept of negative numbers.?’

Since the solution of a problem was derived through the manipulation of rod
numerals, the method written in the text could only be at best a detailed
description of the rod numeral operations. The Jiu zhang suanshu and all other
mathematical treatises record numbers by means of a written number system.
Although this number system has some unique features?® and served its purpose
of recording numbers accurately, it does not possess the place value notation.
The Chinese did not use it for computation.

We now turn our attention to the beginnings of arithmetic through the
Hindu-Arabic numerals. According to Saidan, prior to the introduction of the
Hindu-Arabic numeral system, addition, subtraction, and multiplication in the
Arabic countries depended largely on mental calculation and finger reckoning.?’
As for computation in terms of fractions, there were two major systems. The
first followed from the fact that the Arabic language contained single-word
names for nine fractions only—namely, the unit fractions from one-half to one-
tenth—and that the other fractions were expressed by combinations of these
nine words. The second system circumvented fractions by resorting to
submultiples in the various metrologies or to using the sexagesimal scale.30

From the evidence of the three Arabic manuscripts mentioned above, after
the Arabs learned the step-by-step procedure of the first set of methods for
addition, subtraction, multiplication, and division, they automatically inherited
from the division method the notation for the expression of a common fraction.

4 .
The numeral for 729 5 was written as3!

27 Lam Lay Yong and Ang Tian Se, “The Earliest Negative Numbers: How They
Emerged From a Solution of Simultaneous Linear Equations,” Archives Internationals
d’Histoire des Sciences vol. 37 (1987), pp. 235-41.

28 Lam and Ang, Fleeting Footsteps, pp. 12—19.

29 Saidan, The Arithmetic of Al-Uglidisi, pp. 382, 403—4.

30 Saidan, The Arithmetic of Al-Uglidisi, p. 435.

136
31 See above for the notation of 1433; in the Cambridge manuscript.
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729

4
The initial notation for a fraction, such as ;, was the same as that in rod

numerals with no horizontal line across.3? With the use of this symbol,
al-Uqlidis1 showed the various operations related to fractions; fractions were for
the first time freed from linguistic and metrological restrictions. The operations
are the ones we do today through the use of this symbol; they include the
handling of mixed numbers and improper fractions. Al-Uqlidisi and Kushyar
ibn Labban also described the procedures for square and cube root extractions,
procedures which are structurally similar to those of the Chinese.

Both the Cambridge manuscript and the treatise of al-Uqglidisi began by
attributing the new numerals and arithmetic to the Indians. Saidan states that his
study was unable to answer in full how Hindu arithmetic reached the
Arabic-speaking world. He goes on to say, “It seems plausible that it drifted
gradually, probably before the seventh century, through two channels, one
starting from Sind, undergoing Persian filtration and spreading in what is now
known as the Middle East, and the other starting from the coasts of the Indian
Ocean and extending to the southern coasts of the Mediterranean.” He
continues, “Whatever the case may be, it should be pointed out that Arabic
works give no reference whatsoever to any Sanskrit text or Hindu arithmetician,
nor do they quote any Sanskrit term or statement.”33

There are no descriptions of the Hindu-Arabic numeral system and the
fundamental operations of arithmetic among the early Hindu treatises. With the
exception of the Bakhshali Manuscript, whose date is controversial3* the
treatises do not use the Hindu-Arabic numerals to represent numbers. Rather,

32 Florian Cajori, 4 History of Mathematical Notations; vol. 1: Notations in Elementary
Mathematics (London: Open Court, 1928), p. 269; Saidan, The Arithmetic of Al-Uqlidisi, p.
60.

33 Saidan, The Arithmetic of Al-Uglidisi, p. 486.

34 The manuscript, written on birch bark, was found at Bakhshali on the northwest
frontier of India in 1881. According to G. R. Kaye, The Bakhshali Manuscript (New Delhi:
Cosmo Publications, 1927, reprint 1981), p. 69, 74—84, R. Hoernle suggested that the work
was written “in the early centuries of our era,” but Kaye himself put forward arguments to
support the dating to the twelfth century. Bibhutibhusan Datta and Avadhesh N. Singh,
History of Hindu Mathematics; part 1: Numeral Notation and Arithmetic (Bombay: Asia
Publishing House, 1935, single vol. ed. 1962), p. 61, dated it at ca. 200 AD and R. Sarkar,
“The Bakhshali Manuscript,” Ganita Bharati vol. 4 (1982), p. 52, dated it “not later than the
fourth century A.D.” See also L. V. Gurjar, Ancient Indian Mathematics and Vedha (Poona:
Ideal Book Service, 1947), p. 52; George G. Joseph, The Crest of the Peacock:
Non-European Roots of Mathematics ( London: Tauris, 1991), p. 241.
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numbers are generally written in Sanskrit in a terse stanza form. The
Aryabhatiya, written by Aryabhata (b. 476 AD), contains a description of an
alphabetic notation for numerals.’> In their discussion of the early Hindu
treatises, commentators and scholars have in general assumed that the medium
of computation is through the Hindu-Arabic numeral system. Datta and Singh
have pointed out that calculations were performed on a board called pati with a
piece of chalk, or on sand spread on the ground.3® Besides the numerals of the
Bakhshali Manuscript, the earliest appearance in India of a symbol for zero in
the Hindu-Arabic numeral system is found in an inscription at Gwalior which is
dated 870 AD.?” Datta and Singh probably had the Bakhshali Manuscript in
mind when they mentioned that “from very early times (c. 200 AD) the Hindus
wrote fractions just as we do now, but without the dividing line.”38

According to al-Uqlidisi, the first set of arithmetical operations were
performed on the dustboard or takht; from then onwards and throughout the
middle ages, Arabic arithmeticians were kept busy modifying and extending the
operations to fit into their current mathematical system and to suit a paper and
ink medium.?® During the period 1200 to 1600, the peoples of Europe
assimilated the Hindu-Arabic numeral system and its accompanying package of
computations in written form. This phenomenal adoption of a new numeral
system sprang not from a need for a new numeral system, but from a need to
learn computations through the new numeral system. Theretofore, the systems
of computation used in Europe had been restricted and difficult.

Knowledge of these computations generated new mathematical methods,
and indeed was essential to the progress of humankind. The early development
of these methods and their related topics were of a nature similar to those in the
Jiu zhang suanshu. Books on the new arithmetic grew exponentially in Europe:
from some thirty books in the year 1500 to a few hundred in the sixteenth
century and well over a thousand in the seventeenth century.*® Since then
arithmetic has been continuously regarded as essential throughout the world
despite the advances in science and technology.

35 Kripa S. Shukla (ed.), Aryabhatiya of Aryabhata (New Delhi: Indian National
Science Academy, 1976), pp. 3—5; S. N. Sen, “Aryabhata’s Mathematics,” Bulletin of the
National Institute of Sciences of India no. 21 (1962), pp. 298-305.

36 Datta and Singh, History of Hindu Mathematics, p. 8.

37 Joseph Needham, Science and Civilisation in China; vol. 3: Mathematics and the
Sciences of the Heavens and the Earth (Cambridge: Cambridge Univ. Press, 1959), p. 10.

38 Datta and Singh, History of Hindu Mathematics, p. 188.

39 Saidan, The Arithmetic of Al-Uglidisi, pp. 13-14, 247.

40 Karpinski, The History of Arithmetic, pp. 6872.
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The Essential Features

Three similar features in the early developments of Chinese and Hindu-Arabic
arithmetic have been identified. These were basic: the growth of both
arithmetics depended on them. First, both arithmetics were built on the
foundation of a numeral system which had a place value notation with ten as
base. Second, both arithmetics began with identical arithmetical procedures for
multiplication and division. Third, both arithmetics employed identical notations
for the complex concept of a common fraction.

The rod numeral system was the only numeral system of antiquity which
used a place value notation with ten as base.*! Those who used such a system
needed to remember only nine signs; furthermore, the unique notation provided
the means to discover a series of new computations and mathematical methods.
The importance of this notation has been aptly described by Whitehead in his
reference to the Hindu-Arabic numeral system:

The interesting point to notice is the admirable illustration which this numeral
system affords of the enormous importance of a good notation. By relieving the
brain of all unnecessary work, a good notation sets it free to concentrate on more
advanced problems, and in effect increases the mental power of the race. Before
the introduction of the Arabic notation, multiplication was difficult, and the
division of integers called into play the highest mathematical faculties.*?

Both numeral systems followed the same convention of arranging the digits
of a numeral from left to right in descending order of their ranks, beginning with
the highest. The ancient Chinese evolved the system through the use of rods,
and each of the nine signs was formed by at most five rods. When a rod numeral
had no digit of a particular rank, the space representing that rank in the numeral
was naturally left blank—this created the concept of what we now called zero. It
is generally accepted that the nine signs of the Hindu-Arabic numeral system
originated from the first nine signs representing numbers one to nine of the
Brahmi numerals. However, it was not uncommon for peoples of different
countries to substitute the signs with symbols that they were more familiar or
comfortable with.*3

Should the concept of the two numeral systems be radically changed, not
only would their respective arithmetics collapse, but their applications would

4l Lam and Ang, Fleeting Footsteps, pp. 136-39.

42 Alfred N. Whitehead, An Introduction to Mathematics New York: Oxford Univ.
Press, 1911, third printing 1961), pp. 39-40.

43 Saidan, The Arithmetic of Al-Uglidisi, pp. 186, 310, 360; David E. Smith and
Jekuthiel Ginsburg, Numbers and Numerals (New York: Teachers College, Columbia
Univ., 1937), p. 20.
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also be eradicated. The enormous significance of the place value notation with
ten as base in the numeral system cannot be overemphasized.

The ancient Chinese evolved the rod numeral system for computation, and
the Hindu-Arabic numeral system was adopted by peoples all over the world for
the same purpose. No other numeral system had such a notation that enabled the
four fundamental operations of arithmetic to be performed with such relative
ease. The phrase “relative ease” is used only in a comparative sense; when the
new arithmetic was introduced into Europe, multiplication and division were
taught at university level and, according to Karpinski, “for several centuries one
who could perform long division was considered an expert mathematician.”**

The notation of the numeral system had the potential for the human mind to
devise numerous ways of adding, subtracting, multiplying, and dividing. These
methods are found in the existing records on early arithmetical procedures in the
Islamic world and Europe.*> Therefore one might not expect the same step-by-
step procedures for multiplication and division with the rod numerals and the
Hindu-Arabic numerals. And yet, the earliest methods in the Arabic texts are the
same as those described in the Sun Zi suanjing. These methods were described
against totally different cultural backgrounds separated by a span of more than
four centuries. This unexpected similarity has provided strong evidence that the
Hindu-Arabic numeral system has its origins in the rod numeral system.*6

Both arithmetics began with the same arithmetical procedures. History has
shown that they provided the foundation for the unleashing of a vast number of
methods which not only sustained the growth of arithmetic but also helped to
pave the way into the realm of algebra.

From the outgrowth of identical methods in division, the two arithmetics
used a simple, elegant notation to represent the complicated concept of a
common fraction. This notation allowed for the development of arithmetic to the
fullest, for the human mind could now compute not only with whole numbers
but also with fractions which were fully and simply expressed and were
independent of metrological units. A study of the struggle in the ancient
civilizations of Egypt, Mesopotamia, and Greece to depict the concept of a

44 Karpinski, The History of Arithmetic, p. 120.

43 See e.g., Henry T. Colebrooke, Algebra, with Arithmetic and Mensuration: From the
Sanscrit of Brahmegupta and Bhascara (London: John Murray, 1817); Georgij de
Hungaria, Arithmeticae Summa Tripartita. Facsimile with introduction by A. J. E. M.
Smeur (1965) (Nieuwkoop, Holland: B. de Graaf, 1499); Baldassarre Boncompagni, Liber
Abbaci di Leonardo Pisano (Rome: Tipografia delle Scienze Matematiche e Fisiche, 1857);
Louis C. Karpinski, “Two Twelfth Century Algorisms,” Isis vol. 3 (1921), pp. 396-413;
Graham Flegg, Cynthia Hay, and Barbara Moss (eds.), Nicolas Chuquet, Renaissance
Mathematician (Dordrecht: D. Reidel, 1985); Robert Steele, The Earliest Arithmetics in
English (London: Oxford Univ. Press, 1922).

46 Lam and Ang, Fleeting Footsteps, pp. 133—48.
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fraction and to invent ways to compute in terms of fractional parts*’ would
further serve to remind us of how, in Whitehead’s words, a good notation could
set the human brain free to concentrate on more advanced problems. It can be
said that without the use of this notation to represent a common fraction, the
growth of both arithmetics would have been stunted.

Founded on these three core features, the Chinese arithmetic which had its
origins in antiquity was continuously developed until the seventeenth century.
As for the Hindu-Arabic arithmetic—we still cannot do without it. The progress
of humankind has very often depended on our ability to compute. In the
evolution of computation, the human race had chosen from the Warring States
period to retain two notations for their reckoning: one to express a numeral and
the other a common fraction. Through the use of these two notations, the science
of arithmetic arose. The language of mathematics is in terms of notations, and
these two notations can be said to be among the earliest, the most useful, and the
most powerful.

47 See e.g., Paul Benoit, Karine Chemla, and Jim Ritter (eds.), Histoire de Fractions,
Fractions d’Histoire (Basel: Birkduser Verlag 1992), pp. 3-168; Richard J. Gillings,
Mathematics in the Time of the Pharaohs (Cambridge, Mass.: MIT Press, 1972), pp. 20-38;
Graham Flegg (ed.), Numbers Through the Ages (London: Macmillan, 1989), pp. 131-62;
Thomas Heath, A History of Greek Mathematics; vol. 1: From Thales to Euclid (Oxford:
Clarendon Press, 1921), pp. 41-45.



