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Abstract. We present PASSSign, a variant of the prior PASS and PASS-2
proposals, as a candidate for a practical post-quantum signature scheme. Its

hardness is based on the problem of recovering a ring element with small norm

from an incomplete description of its Chinese remainder representation. For
our particular instantiation, this corresponds to the recovery of a signal with

small infinity norm from a limited set of its Fourier coefficients.

The key improvement over previous versions of PASS is the introduction
of a rejection sampling technique from Lyubashevsky (2009) which assures that

transcript distributions are completely decoupled from the keys that generate

them.
Although the scheme is not supported by a formal security reduction, we

present extensive arguments for its security and derive concrete parameters

based on the performance of state of the art lattice reduction and enumeration
techniques.

1. Introduction

In the late 1990s two authors of the present paper proposed authentication and
signature schemes based on the problem of recovering a polynomial with tightly
concentrated coefficients given a small number of evaluations of that polynomial.
The heuristic justification for the security of the scheme was that the uncertainty
principle severely restricts how concentrated a signal can be in two mutually inco-
herent bases.

An early incarnation of the scheme is found in [12], and a later version, called
PASS-2 was published in [13]. A rough description goes as follows. Let N be a
positive integer, and choose a prime q = rN + 1, with r ≥ 1. We will denote by
Rq the ring Zq[x]/(xN − 1), though we will often treat elements of Rq as vectors in
ZNq equipped with the ?-multiplication of Rq. To avoid confusion, we will denote
component-wise multiplication of vectors by �. For any β, with (β, q) = 1, it follows
from Fermat’s little theorem that βrN ≡ 1 (mod q). Consequently, the mapping
f → f(βr) is well defined for any f in Rq. In addition to being well defined, it is
also a ring homomorphism, for the simple reason that for any f1,f2 ∈ Rq,

(f1 + f2)(βr) = f1(βr) + f2(βr) and (f1 ? f2)(βr) = f1(βr)� f2(βr).
1
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More generally, for any Ω = {βr1 , βr2 , . . . , βrt }, the mapping F : Rq → Ztq given by

FΩf = (f(βr1),f(βr2), . . . ,f(βrt ))T

is a ring homomorphism, with addition and �-multiplication modulo q done on the
right hand side. This is an example of the more general phenomenon of the ring
homomorphism mapping functions to their Fourier transforms.

In the above setting, the uncertainty principle implies that a ring element with
a coefficient vector drawn from a small region of ZNq will have widely dispersed dis-
crete Fourier coefficients. For instance a vector with small infinity norm, e.g. with
coefficients in {−1, 0, 1}, will likely be supported on all powers of a primitive N th

root ω and will have Fourier coefficients which are essentially uniformly distributed
in Zq.

The hard problem in PASS can be stated as the following underdetermined
linear inversion problem, which we will refer to as the partial Fourier recovery
problem. Let ω be a primitive N th root of unity modulo q. We define the discrete

Fourier transform over Zq to be the linear transformation Ff = f̂ : ZNq → ZNq
given by

(F)i,j = ωij .

Furthermore, let FΩ be the restriction of F to the set of t rows specified by an
index set Ω,

(FΩ)i,j = ωΩij .

The partial Fourier recovery problem is: given an evaluation f̂ |Ω ∈ Ztq, find x

with small norm such that x̂|Ω = f̂ |Ω (mod q).

The problem of recovering a signal from a restricted number of its Fourier
coefficients is well studied and known to be quite difficult in general. The restricted

image f̂ |Ω is expected to contain very little information about the unobserved
Fourier coefficients (the evaluations of f on ωi for i not in Ω), and often the only way
to recover f will be an expensive combinatorial optimization procedure. However,
there are cases (some quite surprising) in which the problem is known to be easy.

Certainly, if t log q is small, brute force search over f ′ with appropriate norm
may be a viable solution – each randomly chosen candidate having essentially a q−t

chance of evaluating to f̂ |Ω.
The problem is trivial in the large t regime, t ≥ N , since any rank N submatrix

of the chosen Vandermonde matrix will be invertible. As t decreases slightly below
N , or we allow some portion of the coefficients to be corrupted, the problem essen-
tially becomes that of decoding Reed-Solomon codes and we can expect to recover
f by list-decoding or similar techniques. Efficient recovery of general signals when
t is much less than N would have significant coding theoretic implications.

For t in an intermediate range, say t ≈ N/2, the situation is more complicated.
Were one to consider the complex Fourier transform rather than the number theo-
retic transform, one might be able to apply techniques from the field of compressed
sensing. Recent work in this field has delineated cases in which a sparse signal can
be recovered from a limited number of its (complex) Fourier coefficients by an L1

optimization procedure. For this to be successful the signals must be very sparse,
having a number of non-zero coefficients which is less than |Ω|/2. [2]. It is not clear
how these results translate into the finite field setting.
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As far as we are aware, the best technique for solving the partial Fourier re-
covery problem is by solving an associated closest vector problem. Specifically, let
Λ⊥(FΩ) be the lattice of vectors in the kernel of FΩ. That is,

Λ⊥(FΩ) =
{
a ∈ ZNq : FΩa = 0 (mod q)

}
.

If, given y ∈ ZNq , a point x ∈ Λ⊥(FΩ) can be found such that ‖y − x‖∞ ≤ β, then
FΩ(y − x) = ŷ|Ω and ‖y − x‖∞ ≤ β. Since one can easily find (large) y such that

ŷ|Ω = f̂ |Ω for any evaluation set f̂ |Ω, the ability to solve CVP in Λ⊥(FΩ) implies
the ability to solve arbitrary partial Fourier recovery instances

While there is no known reduction from standard lattice problems to the partial
Fourier recovery problem, there is at very least a superficial relationship between
finding short preimages of FΩ and another well studied hard problem. A great deal
of the research in lattice based cryptography throughout the last decade has focused
on a type of underdetermined linear inverse problem referred to as the small integer
solution (SIS) problem.

SIS is the problem of of finding a vector y in the kernel of a specified linear
transformation A : Znq → Zmq such that y is small with respect to a given norm.
That is, the goal is to solve

Ay = 0 (mod q) and ‖y‖ ≤ β.

Ajtai showed in [1] that, for certain parameters and uniform random A, SIS
enjoys a remarkable average-case correspondence with worst-case lattice problems.
That is to say that the ability to solve random SIS instances with non-negligible
probability implies an ability to find short vectors in any lattice. This correspon-
dence between worst and average cases is attractive from a provable security point
of view, offering strong assurance that easy to generate instances of the SIS prob-
lem will be hard to solve, but it does not yield particularly efficient cryptosystems
without additional assumptions.

The most efficient and compact SIS schemes in the literature are based on the
Ideal-SIS problem, wherein the matrix A is replaced by several uniform random
elements, a1,a2, . . .ak of a quotient ring Rϕq = Zq[x]/(ϕ). The polynomial ϕ is
typically, but not necessarily, cyclotomic. A solution to Ideal-SIS is y1,y2, . . .yk in
the ring such that:

k∑
i=1

ai ? yi = 0 and

k∑
i=1

‖yi‖
2 ≤ β2.

These schemes derive their security from the presumed hardness of Ideal-SVP
– the shortest vector problem in the restricted class of lattices generated by ma-
trix representations of elements of Rϕq . Reductions from worst-case Ideal-SVP to
average-case Ideal-SIS were presented in [17] [20]. Unfortunately, even with the
reduced storage requirements and fast multiplication algorithms available in some
rings, provably secure Ideal-SIS based constructions are still too inefficient to be
competitive with existing (non-quantum resistant) schemes.

The security of PASS can be said to rest on the assumed average-case hardness
of Vandermonde-SIS. We are not aware of any technique for reducing a worst-case
lattice problem to Vandermonde-SIS, nor will we postulate the existence of such a
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reduction. We do however raise the question of whether there might be a character-
ization of hard instances of SIS which does not rely on structural properties of the
matrix A. Or more generally, when is a constrained linear inverse problem hard?

We believe an answer to this problem would likely simultaneously explain the
hardness of Uniform-, Ideal- and Vandermonde-SIS, as well as delineate new classes.

2. Related Work

2.1. The original PASS protocols. Given a (padded) message µ, a secret

key f with small norm, and a public key f̂ |Ω = FΩf , the objective is to construct

a signature that mixes f and µ and can be verified by means of f̂ |Ω. A prototype
of this was presented in [12].

To sign, Alice

• Computes and keeps secret a short polynomial g ∈ Rq and reveals the
commitment ĝ|Ω = FΩg.

• Computes and reveals a short challenge polynomial c ∈ Rq from Hash(ĝ|Ω, µ).
• Computes and reveals h = g ? (f + c).

To verify, Bob

• Verifies that h has norm less than a specific upper bound.

• Verifies that c = Hash(ĥ|Ω/(f̂ |Ω + ĉ|Ω), µ)

The first condition for verification is met because

‖g ? (f + c)‖ ≈ ‖g‖ ‖f + c‖ .
The fact that ‖f‖, ‖g‖, ‖c‖ are small thus implies that ‖h‖ is small1. The second
condition is true because FΩ is a ring homomorphism.

To forge a signature, a third party would need to produce an h which is short,
and which satisfies the required evaluations at points in Ω. It is conjectured that
finding such an h is no easier than solving the associated CVP .

2.2. Transcript weaknesses in previous PASS protocols. The difficulty
with this PASS prototype is that a transcript of signatures produced by a single
signer on any set of messages leaks information about that signer’s secret key. One
way to see this is via a ring homomorphism ρ : Rq → Rq given by

ρ(a0 + a1x + a2x
2 + · · ·+ aN−1x

N−1) = a0 + aN−1x + aN−2x
2 + · · ·+ a1x

N−1.

The homomorphism ρ plays the same role that conjugation would play if x were
replaced by a primitive N th root of unity. If a polynomial p ∈ Rq is drawn randomly
from a distribution, let E[p] denote the expectation of p, that is, the average of p
over many samples. A third party observing many examples of g ? (f + c) could
compute

E[g ? (f + c) ? ρ(g ? (f + c))] = E[g ? ρ(g)]E[(f + c) ? ρ(f + c)]

For simplicity assume that E[c] = 0, then, since f is constant, the above becomes

E[g ? ρ(g)] (E[c ? ρ(c)] + f ? ρ(f)) .

1The original PASS protocol used the centered L2 norm - the L2 norm about the mean of the

vector. This norm can be seen to enjoy the above quasi-multiplicative property for independent

random polynomials by considering the product in the complex Fourier domain, noting that
the centering operation has the effect of zeroing the constant terms, and by applying Parseval’s

theorem.
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The distributions from which c and g are drawn are known, and thus a sufficiently
long transcript will reveal f ? ρ(f) from which f may be computed by a technique
from Gentry and Szydlo [8].

2.3. Recent developments and countermeasures. The problem with PASS
was not that individual signatures leaked information about the secret key, but
rather that an average over a collection of signatures would converge to a secret
key dependent value. This is not a concern for signature schemes based on number
theoretic trapdoor permutations, as such schemes enjoy relatively simple proofs
that their signatures are uniformly distributed over the full range of possibilities.
However, the requirement that PASS signatures have small norm, i.e. that they
occupy a small region of the full domain, necessitates throwing out much of the
algebraic structure that makes such uniformity guarantees possible. Full decou-
pling of secret keys from transcripts was a difficult barrier for the construction of
secure lattice based signature schemes, and more so for the construction of efficient
schemes.

The first successful decoupling, the signature scheme of Gentry, Peikert, and
Vaikuntanathan [7], involved computing a candidate signature point x and then
adding noise sampled from a discrete Gaussian distribution centered at −x. The
resulting signatures have a distribution which is computationally indistinguishable
from a spherical discrete Gaussian centered at the origin.

Lyubashevsky, in [14], constructed a lattice based identification scheme which
avoids transcript analysis attacks with a technique he called “aborting.” In this
scheme, provers are capable of determining when their response to a challenge
will leak information about their secret key. Whenever this occurs they abort the
protocol rather than supply a response.

In [15], Lyubashevsky improved his aborting technique and constructed a signa-
ture scheme through the Fiat-Shamir transform with hardness based on the Ring-
SIS problem. Improvements and variants of this scheme with different hardness
assumptions were presented in [16].

The first truly practical lattice signature scheme to avoid transcript attacks
was developed by Güneysu, Lyubashevsky, and Pöppelmann [9]. Their scheme is a
highly optimized variant of [16] and relies on a stronger hardness assumption.

The current state of the art would appear to be the new scheme, called BLISS,
by Ducas, Durmus, Lepoint, and Lyubashevsky [4]. This scheme makes use of
an NTRU-like key generation procedure and a bimodal discrete Gaussian noise
distribution to produce very compact signatures. The efficiency of the scheme is
also very impressive, especially considering the complexity of sampling discrete
Gaussians.

3. PASS with Rejection Sampling

We now present a new variant of PASS which completely decouples the tran-
script distribution from the secret key. Table 1 lists the public parameters of the
system and gives a brief description of each.

Some notes on notation: Rq is the ring Zq[x]/(xN − 1); elements a ∈ Rq are
represented as polynomials a = a0 +a1x+a2x

2 + · · ·+aN−1x
N−1, with coefficients

in ai ∈ Zq. We freely transition between this polynomial representation and a
coefficient vector representation, a = [a0, a1, a2, . . . , aN−1]T , wherever convenient.
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N Dimension
q Prime ≡ 1 (mod N)
g a primitive N th root of unity in Zq
Ω A subset of {gj : 1 ≤ j ≤ N − 1}
t |Ω|
k Infinity norm of noise polynomials
b 1-norm of challenge polynomials

Table 1. List of public parameters.

Norms, such as ‖a‖∞ and ‖a‖1, are the standard Lp norms on coefficient
vectors; for numerical calculations we consistently identify ai with an integer such
that |ai| ≤ q/2.

We write B1(b) to denote the elements of Rq with 1-norm ≤ b, and B∞(k) to
denote the elements of Rq with ∞-norm ≤ k.

Lastly, The indicator function 1S(x) yields 1 if x ∈ S and 0 otherwise.

3.1. Key Generation. A secret key is a polynomial with L∞ norm equal to 1.
We recommend the simple strategy of choosing each coefficient independently and
uniformly from {−1, 0, 1}. Binary coefficients, though attractive for several reasons,
would open the system up to a UniqueSVP gap amplification attack similar to that
used by Nguyen in his cryptanalysis of GGH [19].

The public key corresponding to the secret key f is f̂ |Ω = FΩf .

3.2. Signing. Signing is an iterated process consisting of the generation of a
candidate signature followed by a rejection sampling step to prevent the publication
of candidates that could leak secret key information.

A party with secret key f , who wishes to sign a message µ, first selects a
commitment polynomial y uniformly at random from B∞(k). The commitment
y serves to mask the private key and must be treated with the same care as the
private key itself. The signer then computes and stores ŷ|Ω = FΩy, which will
ultimately be made public if the candidate passes rejection sampling.2

Next, the signer computes a challenge, c, which binds ŷ|Ω to µ. To do so she
makes use of the public algorithms:

Hash : Ztq × {0, 1}∗ → {0, 1}`, and

FormatC : {0, 1}` ↪→ B1(b).

Hash concatenates its inputs and passes the result through a cryptographic hash
function such as sha512. FormatC maps the set of bitstrings output by Hash into a
set of sparse polynomials. We avoid further description of the algorithms for now
and simply say that

c = FormatC(Hash(ŷ|Ω, µ)).

Finally, the signer computes a candidate signature point

z = f ? c + y ∈ Rq,

2Note that the generation of y and the computation of ŷ|Ω can both be done offline, oblivious
to the message to be signed.
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if any of the coefficients of z fall outside the interval [−k+ b, k− b], then y, c, and
z are discarded and the signing process is repeated. Otherwise, the signer outputs
the signature (c, z, µ).

In section 4 we will prove that signatures that pass the rejection sampling
procedure have z values that are uniformly distributed over B∞(k − b).

3.3. Verification. The signature (c, z, µ) is valid if z is in B∞(k − b) and if

c = FormatC(Hash(ẑ|Ω − f̂ |Ω � ĉ|Ω, µ)).

Since FΩ is a ring homomorphism, it is the case that ẑ|Ω = f̂ |Ω � ĉ|Ω + ŷ|Ω.
Therefore, on receipt of (c, z, µ), any verifier in possession of the appropriate public

key f̂ |Ω can evaluate z and c and compute ŷ|Ω = ẑ|Ω− f̂ |Ω� ĉ|Ω. The correctness
of the scheme is immediate.

Algorithm 1 Sign

Input: (µ, f)
1: repeat

2: y
$←− B∞(k)

3: h← Hash(ŷ|Ω, µ)
4: c← FormatC(h)
5: z ← f ? c + y
6: until z ∈ B∞(k − b)

Output: (c, z, µ)

Algorithm 2 Verify

Input: (c, z, µ, f̂ |Ω)
1: result← invalid
2: if z ∈ B∞(k − b) then

3: h′ ← Hash(ẑ|Ω − f̂ |Ω � ĉ|Ω, µ)
4: c′ ← FormatC(h′)
5: if c = c′ then
6: result← valid
7: end if
8: end if

Output: result

4. Rejection Sampling

Each iteration of the signature generation routine produces a candidate signa-
ture which is accepted or rejected based on its infinity norm alone. In this section
we will argue that this rejection sampling procedure completely decouples the dis-
tribution of signature points from the private key.

We will make use of the following fact:

Fact 1. Each candidate signature z is a member of B∞(k + b).

Proof. By definition we have ‖z‖∞ = ‖f ? c + y‖∞ and by the triangle
inequality ‖f ? c + y‖∞ ≤ ‖f ? c‖∞ + ‖y‖∞. Again by the triangle inequality
‖f ? c‖∞ ≤ ‖f‖∞ ‖c‖1, thus

‖z‖∞ ≤ ‖f‖∞ ‖c‖1 + ‖y‖∞ ≤ b+ k.

�

We will also make use of the following assumption on instantiations of Hash
and FormatC.
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Assumption 1. Let the public parameters (N, q, k, b,Ω) be fixed and let c ∈
B1(b), y ∈ B∞(k), µ ∈ {0, 1}∗ be random variables related by

c = FormatC(Hash(ŷ|Ω, µ)).

We assume that Hash is a collision resistant hash function, that c and y are inde-
pendent, and that c is uniform over the range of FormatC. More explicitly, for any
fixed c0 ∈ B1(b) and fixed y0 ∈ B∞(k),

Pr [c = c0 | y = y0] =
Pr [c = c0] Pr [y = y0]

Pr [y = y0]
= |B1(b)|−1.

Note that assumption 1 is no stronger than the standard random oracle as-
sumption, so the reader may assume we are working in the random oracle model.
We state the assumption in the above form to aid in the analysis of concrete in-
stantiations. Clearly the assumption that the joint distribution of y and c factors
is untenable - no deterministic instantiation of Hash can satisfy it while maintain-
ing collision resistance. Yet by choosing an appropriate padding scheme for µ one
should be able to approximately satisfy the assumption. We leave the exploration
of padding schemes and analysis of the practical impact of assumption 1 to future
work.

The following proposition describes the distribution of candidate signatures.

Proposition 4.1. Fix vectors f0 ∈ B∞(1) and z0 ∈ B∞(k + b). Then as the
pair (c,y) is chosen uniformly from the space B1(1)× B∞(k), we have

Pr [f0 ? c + y = z0] = |B∞(k)|−1
∑

c0∈B1(b)

Pr [c = c0] 1B∞(k)(z0 − f0 ? c0).

Proof. For any fixed c0 ∈ B1(b) we have

Pr [f0 ? c0 + y = z0] = Pr [y = z0 − f0 ? c0]

=

{
|B∞(k)|−1 if (z0 − f0 ? c0) ∈ B∞(k)

0 otherwise.

By application of the law of total probability and the assumption that the c and y
are independent:

Pr [f0 ? c + y = z0] =
∑

c0∈B1(b)

Pr [c = c0] Pr [f0 ? c + y = z0 | c = c0]

=
∑

c0∈B1(b)

Pr [c = c0] Pr [y = z0 − f0 ? c0]

= |B∞(k)|−1
∑

c0∈B1(b)

Pr [c = c0] 1B∞(k)(z0 − f0 ? c0).

�

Recall from section 3.2 that a candidate signature is rejected unless its z com-
ponent is contained in B∞(k− b). The following proposition shows that each point
in B∞(k − b) is selected as a candidate signature with equal probability.
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Proposition 4.2. Fix vectors f0 in B∞(1) and z0 in B∞(k− b). Then as the
pair (c,y) is chosen uniformly from the space B1(b)× B∞(k), we have

Pr [f0 ? c + y = z0] = |B∞(k)|−1.

Proof. We first note that B∞(k− b) is contained within B∞(k+ b), so propo-
sition 4.1 applies. Additionally, it is the case that ‖z0‖∞ ≤ k− b and consequently,
for any fixed c0 ∈ B1(b), we have ‖z0 − f0 ? c0‖∞ ≤ k. Thus z0 − f0 ? c0 is con-
tained in B∞(k) and the indicator function in proposition 4.1 is unconditionally
satisfied. Therefore,

Pr [f0 ? c + y = z0] = |B∞(k)|−1
∑

c0∈B1(b)

Pr [c = c0] = |B∞(k)|−1.

�

Proposition 4.2 informs us that each of the |B∞(k − b)| acceptable signature
points is chosen with probability |B∞(k)|−1. We infer that each pass through the
signature generation routine has probability

Pr [accept] =
|B∞(k − b)|
|B∞(k)|

=

(
1− 2b

2k + 1

)N
≈ e−

Nb
k

of generating a valid signature point, where the approximation is valid provided
that both N and k/b are large.

A transcript is a set of signatures published by an honest signer. For instance, a
signer who uses private key f to sign messages µ1, µ2, . . . , µk produces a transcript

T = {(ci, zi) : (ci, zi, µi) = Sign(µi,f)} .

Proposition 4.3. A transcript T generated by an honest signer with private
key f is indistinguishable from a set of points drawn uniformly from B1(b)×B∞(k−
b).
Furthermore, for any fixed c0 ∈ B1(b), z0 ∈ B∞(k − b) and f0 ∈ B1(1), the events
(c0, z0) ∈ T and f = f0 are independent.

Proof. The c components of T are uniformly distributed over B1(b) by as-
sumption 1. Proposition 4.2 establishes not only that the z components of T are
uniformly distributed over B∞(k − b), but also that the distribution of z depends
only on the distribution of y. Again by assumption 1, c and y are independent and
therefore c and z are independent. The distribution of transcript points is conse-
quently the product distribution of c and z, i.e. uniform over B1(b)× B∞(k − b).

Independence of transcript points from the secret key follows from the fact that
proposition 4.2 holds for all choices of f0 in B∞(1). �

5. Security Analysis

Our security analysis will focus on two types of attacks, those that target the
hash function (or the combination FormatC◦Hash), and those that target the partial
Fourier transform FΩ. Other attacks may be possible, and investigating them is an
area for future work.

As our aim is to develop a practical quantum-resistant signature scheme, we
will assume that the adversary has access to a quantum computer. Relatively little
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is known about the existence or non-existence of quantum algorithms for lattice
problems, so our assumptions related to quantum computers will only address their
ability to solve k-element black-box search problems in Θ(

√
k) time.

5.1. Attacks on the hash function. The most obvious constraint on the
security of the system comes from the entropy of c. An adversary who can find a
Hash preimage of a particular c can produce forgeries on structured messages from
any user’s public key. To do so, the adversary:

(1) Chooses arbitrary z and c from the appropriate domains.

(2) Computes ĝ|Ω = ẑ|Ω − f̂ |Ωĉ|Ω, where f̂ |Ω is the victim’s public key.
(3) Finds a preimage of c in Hash(ĝ|Ω, ·).

While attacks against specific hash functions can have arbitrarily low complex-
ity, we will assume that a strong hash function is chosen, and only consider generic
attacks. If the output of Hash is r bits, a quantum adversary can find preimages
in time Θ(2r/2). For κ-bit security, the range of FormatC ◦Hash should produce an
essentially uniform distribution on a set of cardinality 22κ.

5.2. Attacks on the partial Fourier transform. An adversary who can
find FΩ preimages which are in B∞(k−b) can forge signatures on arbitrary messages
from any user’s public key.

(1) Adversary chooses random point gF in B∞(k)
(2) cF = FormatC(Hash(FΩgF , µ))

(3) ẑF |Ω = ĝF |Ω + f̂ |ΩĉF |Ω
(4) Adversary uses preimage attack on ẑF |Ω to find appropriate zF .

Adversaries could also try to recover the secret key directly with their preimage
algorithm, but in order for this to be effective they must be able to find exception-
ally short preimages. The problem of secret key recovery seems, at least intuitively
then, to be harder than forgery. Yet, surprisingly, given the particular parameters
of the scheme, lattice attacks may be better suited for solving the secret key recov-
ery problem than they are for forging messages. Some care must be taken when
choosing parameters to balance the difficulty of the two problems.

5.2.1. Lattice attacks on FΩ. As mentioned briefly in the introduction, the
partial Fourier recovery problem PFRP can easily be seen to be no harder than a
specific class of closest vector problem CVP. Presented with the evaluation set, Ω,
for a PFRP, and a partial Fourier representation ẑ|Ω, an adversary can construct a
lattice in which solving the CVP associated to any arbitrary preimage of ẑ|Ω allows
them to construct a short preimage of ẑ|Ω.

That lattice, which we denote Λ⊥(FΩ), is equivalent to the kernel of FΩ,

Λ⊥(FΩ) =
{
a ∈ ZNq : FΩa = 0 (mod q)

}
.

In practice, CVP instances are almost always solved by transforming the prob-
lem into an SVP in dimension N + 1. If z′ is an arbitrary preimage of the target
ẑ|Ω, i.e. FΩz

′ = ẑ|Ω but ‖z′‖ is large, and {b1, b2, . . . , bm} form a Hermite Normal
Form basis for Λ⊥(FΩ), then solving SVP in the lattice generated by the columns
of
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LSVP
z′ =



q 0 b1,0 . . . bm,0 z′0
. . .

...
. . .

...
...

0 q b1,t−1 . . . bm,t−1 z′t−1

0 . . . 0
...

. . .
...

...
...

. . .
... b1,N−1 . . . bm,N−1 z′N−1

0 . . . 0 0 . . . 0 1


is likely to yield a short z such that FΩz = ẑ|Ω.

Experiments by Micciancio and Regev [18] have demonstrated that lattice re-
duction algorithms perform best against the kernel lattices, Λ⊥(A), of t×N matri-

ces A when N ≈
√
t log(q)/ log(γ) for some γ ≈ 1.01 determined precisely by the

reduction algorithm. In the PASS setting this places restrictions on t and q that
we have obeyed in all of our proposed parameter sets. As such there should be no
benefit to attacking a sublattice of LSVP, and we proceed under this assumption.

The performance of lattice reduction algorithms, particularly LLL and BKZ, on
lattices such as LSVP

z′ is difficult to analyze in practice. Perhaps the most surpris-
ing complicating factor is that the performance depends crucially on the coset of
ZNq /Λ⊥(FΩ) to which z′ belongs, and not strongly on z′ itself. This dependence
gives rise to two regimes that we will analyze separately. The extreme case, when
z′ is very close to the kernel lattice, produces instances of the UniqueSVP problem
and determines the difficulty of the secret key recovery problem in PASS. The av-
erage case produces instances of ApproxSVP which will inform our discussion of the
signature forgery problem.

UniqueSVP is the problem of finding a shortest vector in a lattice that is known
to have a significant gap between the lengths of its first and second successive
minima. Such is the case3 in the lattices LSVP

f ′ , as the the secret key, f , has an

expected norm of
√

2N/3 and [f , 1]T ∈ LSVP
f ′ .

Lattice reduction algorithms can be ranked according to the so-called Hermite
factor that they achieve. Algorithms that achieve Hermite factor γ can be expected
to find the shortest vector in a lattice when the UniqueSVP-gap, λ2(L)/λ1(L), is
greater than a constant fraction of γ. This behavior was first examined by Gama
and Nguyen, whose experiments determined that for a certain class of random
lattices the constant is approximately 0.48 [5]. They exhibited classes of lattices
for which the constant was smaller, but these appear to be somewhat exceptional.
Ducas et al. [4] performed similar experiments on the lattices that occur in BLISS,
and found the constant again to be 0.48, and we have found the same to be true of
the lattices related to PASS.

Table 2 contains estimates on the Hermite factor needed to recover PASS secret
keys at several concrete parameter levels. We estimate λ2(LSVP

f ′ ) by the Gaussian

heuristic in the L2 norm. This predicts that N successive minima of a lattice will
be tightly clustered around the radius of the smallest N -ball that has volume equal
to the determinant of the lattice. The q-ary lattices, Λ⊥(FΩ), have determinant qt,

3Curiously, the fact that the kernel lattice always contains the exceptionally short vector
[1, 1, . . . , 1] seems to have no impact here.



12JEFF HOFFSTEIN, JILL PIPHER, JOHN SCHANCK, JOSEPH H. SILVERMAN, AND WILLIAM WHYTE

and the Gaussian heuristic therefore predicts

λ2(LSVP
f ′ ) = λ1(Λ⊥(FΩ)) ≈ det(Λ⊥(FΩ))1/N

√
N

2πe = qt/N
√

N
2πe .

As mentioned above, we estimate λ1 as
√

2N/3, the length of the secret key.

This gives us a UniqueSVP-gap, λ2/λ1 ≈ qt/N
√

3/(4πe). Incorporating the constant
0.48 adjustment, we find that lattice reduction algorithms must achieve Hermite
factor

γ = 0.62 · qt/N (1)

in order to recover PASS secret keys.

The analysis for forgery attacks is very similar, only now the target ẑ|Ω will
lie in an essentially random coset of ZNq /Λ⊥(FΩ). The relevant problem is now
ApproxSVPα the problem of finding a short vector that is more than α factor of
being optimal, in other words a vector that is no longer than αλ1(LSVP

z′ ). Lattice
reduction algorithms that achieve Hermite factor γ can solve ApproxSVP with factor
α = γ2 in the worst case. That said, α = γ seems achievable on average [5], so we
use this estimate in our analysis.

PASS signatures are validated by the L∞ norm, but lattice reduction algorithms
typically only guarantee the L2 norm of their results. A vector of L2 norm

√
N ·

(k− b) could potentially serve as a forgery, but this is highly unlikely. We estimate
the approximation factor to be the ratio of the expected length of a forgery to the
volume of the lattice, which is

α =
√
N · V/qt/N , (2)

where V is the variance of the discrete uniform distribution on [−k + b, k − b].
5.2.2. Concrete performance of lattice reduction algorithms. Current folklore is

that lattice reduction algorithms can achieve Hermite factor ≈ 1.01N in reasonable
time but that Hermite factor 1.005N is completely out of reach. These are useful
heuristics, but they reflect more our ignorance about the concrete performance of
lattice reduction and enumeration algorithms than they do our knowledge. Unfor-
tunately, it seems that we know far too little about how these algorithms perform in
high dimension to give precise “bit-security” estimates. We can, however, roughly
determine which of the currently available lattice reduction algorithms might be
useful for attacking PASS.

Experiments by Schneider and Buchmann [21] indicate that the Hermite factor
reachable by BKZ with blocksize β is approximately:

1.01655− 0.000196185 · β,

which for Hermite factors relevant to our parameter sets yields:

Blocksize (β) 15 30 40 55
Root Hermite factor 1.0136 1.0107 1.0087 1.0058

Table 2 lists several PASS parameter sets, the line labeled “Lattice security
factor” represents our best guess as to the Hermite factor needed to launch either
a key recovery or forgery attack (whichever is easier). We expect that our toy
parameter set, N = 433, could be defeated by running BKZ-15 to completion.
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Although we do not have a good estimate on how long this would take, it should
be possible with current technology.

Our other parameter sets should be significantly more difficult to attack. While
Hermite factor 1.01N is nominally within reach of today’s technology, this has only
been verified in relatively small dimensions. We know very little about how the
algorithms will perform in dimension 577. Key recovery attacks on this parameter
set should be possible with BKZ-30, but other approaches are likely needed to make
the attack practical.

Chen and Nguyen have had impressive success with their BKZ-2.0 algorithm
[3], which combines extreme pruning, developed in [6], with an early termination
procedure, theoretically justified by [11]. BKZ-2.0 runs BKZ at phenomenally high
blocksizes for a small number of rounds under the, experimentally justified, belief
that most of the progress of BKZ is made in the early rounds. It is difficult to
extrapolate security estimates from the results published thus far on BKZ-2.0’s
performance, but it would appear that our 577, 769, and 1153 parameter sets could
be within reach of terminated BKZ-75, 122, and 229 respectively.

For N = 577, our experiments with a BKZ-2.0 simulator similar to that pre-
sented in [3] indicate that 56 rounds of BKZ-75 would be sufficient to reach root
hermite factor 1.0106; for N = 769, 47 rounds of BKZ-122 would suffice to reach
1.0084; and for N = 1153, 42 rounds of BKZ-229 would reach 1.0058.

Following the analysis of [3], we expecte enumeration to be the most expensive
subrouting of BKZ-2.0. Each round consists of approximately N enumerations, and
the cost of each enumeration depends on the the number of nodes visited in the
enumeration tree. The estimated bit security is

log2(N · rounds) + log2(nodes per enumeration) + log2(cost per node)

Using number-of-node and cost-per-node estimates from [3], we have that the
estimated security of our N = 769 parameter is log2(769 · 47) + 53 + log2(200) ≈ 76
bits.

For N = 1153, a single enumeration in BKZ-229 is expected to take over 2130

time, which is greater than the expected time for a quantum attack on the hash
function.

6. Reference Implementation

We have created a reference implementation of PASS in C and made it available4

under the GNU General Public License. Table 3 gives some idea of the performance
of PASS relative to the recent proposal of Ducas et al. (BLISS [4]) and to RSA and
ECDSA. BLISS was tested using the June 13, 2013 version5. The implementations
of RSA and ECDSA are from OpenSSL 1.0.1e. All benchmarks were run on a
single 2.8GHz core of an Intel Core i7-2640M with hyper threading and turbo
boost disabled. We make no claims as to the accuracy of these benchmarks - the
timing methods used internally by the three libraries tested are incommensurate
and many variables have been left uncontrolled. However, we do feel that these
preliminary performance estimates are worth reporting, as they indicate that the
schemes are competitive with each other and that further comparisons would be
interesting.

4The code is available at https://github.com/NTRUOpenSourceProject/ntru-crypto
5http://bliss.di.ens.fr/

https://github.com/NTRUOpenSourceProject/ntru-crypto
http://bliss.di.ens.fr/
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6.1. Performance considerations. The two most computationally intensive
parts of PASS are the number theoretic transforms (NTT) used to compute FΩ, and
the sparse cyclic convolution used in computing z = f?c+y. To compute FΩ we use
Rader’s algorithm to decompose the prime length NTT into cyclic convolution of
length N−1. We compute the resulting convolution as a pair of Fourier transforms
over C using version 3.3.3 of FFTW. For all of the parameter sets presented above
we have chosen chosen N to be a Pierpont prime (a prime of the form 2u ·3v +1) as
these yield very fast Fourier transform algorithms. Fermat primes (2u + 1) would
yield a faster transforms, but there are no Fermat primes in our preferred parameter
range.

We have made little effort to optimize the computation of sparse convolutions,
and these often dominate the running time of the signing process.

6.2. Concrete instantiations of public functions. Our reference imple-
mentation uses sha512 to instantiate Hash for all parameter sets. The input passed
to sha512 is the concatenation of the low order byte of each coefficient of ŷ|Ω fol-
lowed by the sha512 digest of µ.

Hash(ŷ, µ) = sha512(lowbyte(ŷ0) | . . . | lowbyte(ŷt−1) | sha512(µ))

We have not implemented any message padding.
Our instantiation of FormatC sets aside the first 64 bits6 of h0 = Hash(ŷ|Ω, µ) to

use as signs of the nonzero coefficients of c. The remaining bits of h0 are used, 16 at
a time, in a rejection sampling procedure to generate uniform random values in the
interval [0, N − 1]. Each such value becomes the index of a non-zero coefficient of
c. If the pool of bits is ever exhausted, the process continues on hi = sha512(hi−1).

The random coefficients of y are generated by a rejection sampling procedure
on the output of a stream cipher. Specifically we use the procedure from [10] of
keying the Salsa20 stream cipher with a short seed from the Linux kernel random
number generator.

6The number 64 was chosen, arbitrarily, as a reasonable upper bound on b
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N 433 577 769 1153
q 775937 743177 1047379 968521
g 268673 296108 421722 56574
k 212 − 1 214 − 1 215 − 1 215 − 1
b 19 24 29 36
t 200 280 386 600

Pr [Accept] 0.78 0.57 0.49 0.72
UniqueSVP gap 1.0117 1.0093 1.0075 1.0052

ApproxSVP factor 1.0105 1.0101 1.0081 1.0054
Lattice security factor 1.0134 1.0106 1.0084 1.0058

Entropy of c 124 160 200 260

Bit-security bound � 62 � 80 < 100 ≤ 130

Table 2. Parameter sets and security indicators. UniqueSVP gap
refers to λ2/λ1 without any correction for the performance of spe-
cific lattice reduction algorithms.

Algorithm Parameter Set Sign (µs) Verify (µs) Sig. (bytes) Pub. key (bytes)

PASS
577 62 31 1115 700
769 73 40 1578 965

1153 203 69 2360 1500

BLISS

0 321 25 413 413
I 164 44 700 875

II 642 43 625 875
III 270 45 750 875
IV 496 47 813 875

RSA
1024 225 15 128 128
2048 1591 50 256 256
4096 11532 185 512 512

ECDSA
secp160r1 80 270 40 20
nistp256 146 348 64 32
nistp384 268 1151 96 48

Table 3. Benchmarks. Times are averages over many operations.

Parameter Set
Sign Verify

Median Average Median Average

577 121996 171753 86828 87031
769 174900 205456 120204 120374
1153 421904 584230 172428 172641

Table 4. Sandy Bridge cycle counts for PASS. 100k samples
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