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1. Introduction

Zoltan “Zoli” Tibor Balogh died at his home in Oxford, Ohio, in
the early morning hours of Wednesday, June 19, 2002. He was 48
years old. In this article, we give a brief sketch of his life and then
discuss his mathematical contributions. He will be sorely missed,
both as a leader in the field of set-theoretic topology and as our
friend.
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2. Biographical snapshot

Zoli was born on December 7, 1953, in Debrecen, Hungary, the
son of Tibor Balogh and Ilona Kelemen. His father, a mathemati-
cian working in the area of “matrix-valued stochastic processes,”
was a professor at Kossuth University in Debrecen. His mother had
a graduate degree in chemistry and also was a professor at Kossuth
University. A younger sister Agnes later acquired an MD in the
field of internal medicine and is currently a practicing physician in
Debrecen. Zoli grew up in Debrecen, attending the local elementary
schools and high-school.

In 1972, Zoli began his university education by entering Lajos
Kossuth University as a mathematics student in the Faculty of Sci-
ences and received the B.Sc+ degree in 1977, completing a five
year program. This degree would be comparable to a very strong
Master of Science degree in the US, with a research specialization
in topology. Indeed, his research ability began to show up early–
Zoli presented a paper, Relative compactness and recent common
generalizations of metric and locally compact spaces, at the Fourth
Prague Topological Symposium in 1976, in which he introduces the
concept of “relative compactness.” (The paper, later published in
the conference proceedings, was the precursor of the paper by the
same name published in Fundamenta Mathematicae in 1978.) In
1977, he received the Renyi Kato Memorial Prize, awarded
by the Bolyai Janos Mathematical Society to outstanding young
researchers in mathematics.

Zoli continued his graduate studies at Kossuth University from
1977 to 1980, during which time he was a Teaching Assistant and
then a Research Fellow. A very active research period for Zoli, he
gave one or more presentations at international conferences each
year and produced results which account for approximately five
publications. Certainly, his results were beginning to be noticed by
others in the field. In 1979, the Bolyai Janos Mathematical Society
presented Zoli with the Grunwald Geza Memorial Prize, an
annual award to outstanding researchers under the age of 30. Zoli
received his Doctorate from Kossuth University in 1980 and was
awarded the Ph.D. in Topology and Set-theory by the Hungarian
Academy of Sciences.
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Zoli’s time at Kossuth University was not entirely devoted to
academics and research. In 1976, he married Eva Balicza, a class-
mate. In 1978, their first daughter Agnes was born, followed by
Judit in 1979. Eva and Zoli were divorced in 1981.

He remained at Kossuth University as a Research Fellow and
Senior Research Fellow from 1980 until May 1984. During this
period, his results began to show more of the use of notation and
techniques from set-theory and more use of set-theoretic axioms.

The summer of 1984 took Zoli to the University of Toronto,
Canada, as a Visiting Professor for his first significant visiting po-
sition outside of Debrecen. Although only a three month visit, this
period accounted for a significant boost in his interest in the use of
set-theory applied to topological problems. He returned to Kossuth
University from September through December 1984.

The next eighteen years would certainly be considered as “life-
changing” in both his personal and his mathematical life. In No-
vember of 1984, Zoli and Agnes Polgar were married in Debrecen.
Agnes was a chemistry student at Kossuth University, one semester
away from finishing her program. In January 1985, less than two
months after their marriage, they were on their way to Lubbock,
Texas, where Zoli had a Visiting Associate Professor position wait-
ing at Texas Tech University, where they remained for one and half
years. In June of 1985 Zoli was faced with his first life-threatening
medical emergency when he underwent open heart surgery for a
bypass operation. Zoli had been having some chest pains and only
a few days earlier, he and a friend had noticed an unusual shortness
of breath. While in the hospital, being prepared for surgery, Zoli
had a heart attack and only the proximity of immediate medical
help saved his life. He was 31 years old. In every other way, Zoli
was a healthy young man–certainly, his weight was good and he was
a non-smoker. Because his father died at an early age, Zoli knew
that he had a genetic predisposition for circulatory disease. He be-
gan to watch his diet more carefully and for many years became
an avid practitioner of various types of aerobic exercises, including
walking, running, and bicycling.

In July 1986, Zoli and Agnes moved back to Debrecen where
Zoli served as an Associate Professor of Mathematics at Kossuth
University until the summer of 1988. These were a busy two years:
Agnes finished her degree in chemistry at Kossuth University ; their
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older son Adam was born in 1987; and Zoli continued to work with
notable success on his research.

During this period (1987) Zoli also received a Certification in
English-Hungarian Translation of Mathematics from Kos-
suth University. In 1988, he submitted his dissertation entitled
(English translation) Set-theoretic investigationson the classes of
compact and locally compact spaces for the Habilitation, which
was conferred by the Hungarian Academy of Sciences in 1989. His
original plans were to spend two years (academic years 1988-1990)
in visiting positions in the US before returning to Debrecen; how-
ever, this was the last extended period of time that Zoli would
spend in Hungary.

For the 1988-89 academic year the Department of Mathematics
and Statistics at Miami University was fortunate to have Zoli as
its Distinquished Visiting Professor. Next, he spent the fall
semester of 1989 as a Visiting Associate Professor at the University
of Wisconsin in Madison. This was a very exciting semester for
him because several other topologists and set-theorists were there
at the same time: Mary Ellen Rudin and Ken Kunen from Wis-
consin, along with visitors Gary Gruenhage (Auburn University),
Takao Hoshina (Tsukuba University), David Fremlin (University
of Essex), and Adam Ostaszewski (London School of Economics).
Also in 1989, one of his most important papers, solving the Moore-
Mrowka problem (On compact Hausdorff spaces of countable tight-
ness), appeared in the Proceedings of the AMS.

Zoli returned to Miami University as a Visiting Associate Pro-
fessor in the spring semester of 1990, which would have completed
his original plan of spending two years visiting in the US. How-
ever, Miami University and Zoltan Balogh were becoming mutually
compatible and in the spring of 1990 the Department offered Zoli
a tenure track position. He accepted the position and joined the
Department as an Associate Professor in August 1990. Adding to
this exciting turn of events, Zoli’s younger son Daniel was born in
January 1991. Zoli received tenure and promotion to Full Professor
in 1994. Zoli’s twelve years (1990–2002) at Miami University were
a very productive research period. He continued to solve difficult
and well-known problems at an amazing rate.

Unfortunately, Zoli’s health remained precarious and his second
life-threatening medical emergency occurred in the summer of 1999.
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While riding his bicycle outside of Oxford, Ohio, on a late morning
in July he suffered a massive stroke and collapsed near the road.
Luckily, he was quickly found by a passerby who called an ambu-
lance from a nearby farmhouse. The local emergency room physi-
cian quickly diagnosed the problem, started an intravenous dose of
the experimental anticlotting drug t-Pa, and had Zoli transported
by helicopter to the University Hospital in Cincinnati. After a
further diagnosis revealed a clot still in his brain, the Cincinnati
Stroke Team injected a dose of t-Pa directly into the clot. This
remarkable procedure quickly alleviated the apparent symptoms of
the stroke and ultimately provided for the full recovery of Zoli’s
cognitive abilities. (An accounting of this incident was described in
a two-page article in People Magazine, March 6, 2000, titled “The
Living Proof.”) Just a few weeks after the stroke Zoli was on an
airplane to New York, accompanying two Miami University gradu-
ate students to the 1999 Summer Conference on Topology and its
Applications.

On the morning of his death, Zoli was scheduled to leave for
Japan where he was invited to lecture in Tsukuba and then continue
on to Matsue where he was an invited speaker for the International
Conference on Topology and its Applications. It is unfortunate
that he was not able to attend this last conference. Much of the
joy of his mathematical life was meeting new friends and greeting
old friends, and talking about mathematics with them.

3. Zoli’s research

Zoli’s research spans over 25 years and includes many significant
contributions in diverse areas of set-theoretic topology.1 To help
organize our discussion of his work, we have divided many of his
papers into five “themes” which run through much of his work. It is
not surprising that a researcher as strong and broad as Zoli would
also have many papers that cannot be conveniently classified, so
there is also a relatively large “miscellaneous” category.

Zoli’s research especially stands out due to a series of solutions to
several long-standing problems in the field, which he obtained at an
amazing pace starting in the mid-1980s and continuing essentially

1This part of our article has also appeared, in somewhat condensed form, in
the Hungarian journal Publicationes Mathematicae Debrecen.
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until his death. We have singled out for special discussion six of his
most remarkable results, which for easy identification we call his
“greatest hits.”

Our discussion of Zoli’s research will be roughly chronological
within themes. See Section 4 for a complete list of Zoli’s papers.

3.1. Zoli’s early work: relative compactness and
hereditarily nice spaces

The 1960s were a kind of golden age for so-called “generalized”
metrizable spaces. A. V. Arhangel’skĭı defined p-spaces; K. Nagami
defined Σ-spaces; K. Morita, M -spaces; and so on. Investigations
of these classes, sometimes with an eye toward generalizing what
were by then “classical” results in the area, were still going strong
in the mid 1970s, when Zoli came on the scene. R. Hodel had
generalized some metrization results to higher cardinals by defining
“metrizability degree” and put them in the language of cardinal
function theory2, a hot topic at that time. Another topic of interest
posed the question: What can be said of the whole space if one
knows that every subspace is “nice” in the sense of belonging to a
certain class of generalized metric spaces?

Zoli’s first contributions of his career were in this area. Recall
that a space X is a paracompact p-space if there is a perfect (i.e.,
closed with compact fibers) map f from X to a metrizable space
Y . Let τ be the topology on X and τ ′ the weaker topology on X
obtained by pulling back the metrizable topology on Y by the func-
tion f . Then if a filter on X has a cluster point in the topology τ ′,
it is easy to see, using the perfectness of the map f , that the filter
also has a cluster point in τ . Zoli’s nice idea [Ba76][Ba78a][Ba79a]
was to study exactly this relationship between topologies, calling τ
relatively compact to τ ′ if they satisfy the above filter convergence
condition. There was also a countably compact analogue [Ba79c],
defined in terms of filters having a countable base. Zoli noticed that
in many cases, especially when the space had a point-separating
open cover of some sort, or when every subspace was “nice” in

2Typical cardinal functions that appear in our discussion are the weight
w(X), the character χ(X), and the Lindelöf degree L(X), which are, respec-
tively, the least cardinal of a base, the least cardinal such that each point has
a local base not greater than that cardinality, and the least cardinal such that
every open cover of X has a subcover of that cardinality.
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the sense of being relatively compact to the topology τ , various
cardinal functions on τ ′ were a bound for those of τ . General re-
sults of this form for relative compactness, and the similar notion
of relative countable compactness, had many corollaries which su-
perseded classical results and answered questions of Arhangel’skĭı,
Hodel, and others. The following example gives the flavor:

Theorem 3.1. [Ba76]. Suppose (X, τ) is compact relative to a
weaker topology τ ′ with metrizability degree ≤ κ. If (X, τ) has a
point ≤ κ, T1-separating open cover, then the metrizability degree
of (X, τ) is ≤ κ.

Taking κ = ω and τ = τ ′ gets J. Nagata’s classical result that
a paracompact p-space with a point-countable T1-separating open
cover is metrizable. A similar theorem with metrizability degree
replaced by weight has cardinal function results of Hodel as corol-
laries, and answers a question of Arhangel’skĭı on spaces whose
every subspace is a paracompact p-space.

The proofs of these early results of Zoli already showed the style
which he became well-known for later, involving heavy use of com-
plicated combinatorics of sets and collections of sets, the arguments
slowly but steadily making their way towards the final conclusion.
The power of his mind was evident from the beginning!

Zoli also used relative compactness to investigate Fpp-spaces, i.e.,
spaces that are hereditarily paracompact p-spaces. A little later
[Ba79b], he replaced relative compactness with “perfect equiva-
lence relations,” a somewhat related notion but more specifially
relevant to the study of Fpp-spaces. He answered several questions
of Arhangel’skĭı about this class and came close to a complete char-
acterization, but was beaten to it by E. G. Pytkeev. This is the
only case we know of where a result of Zoli has been significantly su-
perseded by someone else. Undeterred, Zoli went on to write a very
nice paper [Ba84] on hereditarily strong Σ-spaces, even showing in
that paper that an analogue of Pytkeev’s Fpp characterization does
not hold for this class.

3.2. Q-set spaces

Zoli had a long-standing interest in Q-sets, i.e., uncountable sub-
sets X of the real line (or separable metric spaces) in which every
subset X is a relative Gδ-set. The appropriate generalization to
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arbitrary spaces is that of a Q-set space X,which means that every
subset of X is a Gδ-set in X, yet X is not σ-discrete (or equiva-
lently in this situation, not σ-closed discrete). Zoli’s first paper to
mention Q-set spaces was [Ba78b], where he showed that if an Fpp-
space was non-metrizable, it was because it contained either the
one-point compactification of an uncountable discrete space, or the
Alexandrov duplicate of a metric Q-set space (this was the relation
to the normal Moore conjecture he refers to in the title).

Zoli’s first paper studying a kind of Q-set type of space for itself
was with H. Junnila in 1983 [BJ], where the authors consider “to-
tally analytic” spaces, i.e., spaces in which every subset is analytic.
In 1980, R. Hansell had shown that under Gödel’s Axiom of Con-
structibility V = L, a totally analytic space X of character ≤ ω1 is
σ-discrete if its product with the irrationals is normal. Also in 1980,
G. M. Reed showed that under V = L, there are no first-countable
normal Q-set spaces. The Balogh-Junnila paper shows that the con-
dition about the product with the irrationals in Hansell’s theorem
may be simply dropped; i.e., under V = L, every totally analytic
space of character ≤ ω1 is σ-discrete. Further, with no character
restriction, every totally analytic space (under V = L) is the count-
able union of left-separated subspaces.

All of the results mentioned above borrow heavily from W. G.
Fleissner’s work on the seemingly unrelated problem of collection-
wise Hausdorffness in normal first-countable spaces. A key idea in
the Balogh-Junnila paper is to use mappings from X into ωω to code
separations of X into analytic sets (corresponding to Fleissner’s
coding separations of a discrete set by mappings into ω1 = χ(X)).
They also use such mappings to define a property formally weaker
but actually equivalent to left-separatedness, and show that, if X
has underlying set κ and κ is the least such that the theorem fails,
then the set of all α < κ which witness that this version of left-
separatedness at α fails is stationary. This sets the authors up to
apply Fleissner’s “♦ for stationary systems,” etc., to obtain their
results.

Of course, this left open the problem if there could be a totally
analytic non-σ-discrete space, or even a Q-set space, in ZFC. Zoli
finally settled this [Ba91b] by constructing a ZFC example of a Q-
set space of cardinality c and character 2c. This was his first use
of a technique of M. E. Rudin which he later went on to develop
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into his amazing example-constructing machine. More on this in
Section 3. Later [Ba98a], he saw how to obtain a paracompact Q-
set space, and in a handwritten note, unpublished at the time of
his death, he obtained a Lindelöf Q-set space.

Zoli had one other paper dealing with Q-sets, with J. Mashburn
and P. J. Nyikos [BMN]. It is known that the Pixley-Roy hyper-
space PR(X) of a separable metric space X is normal iff Xn is
a Q-set for every n ∈ ω. An X with this property is called a
strong Q-set. H. Tanaka considered this in the non-separable case
and showed that for arbitrary metric X, PR(X) is normal iff every
symmetric subset of Xn is Gδ in Xn for every n; he called such
an X an almost strong Q-set. This begs the question: Are almost
strong metric Q-sets strong? Zoli and his coauthors give a positive
answer, in ZFC, to this question.

3.3. Locally nice spaces

Zoli had a long-standing interest in spaces that are “locally nice,”
usually in the sense of being locally compact, sometimes also locally
connected or a manifold. His earliest paper in this area is “Locally
nice spaces under Martin’s Axiom” [Ba83]. The following results
are probably the most fundamental ones here:

Theorem 3.2. (MAω1). Any locally countable, cardinality ω1 sub-
set of a countably tight compact space is σ-discrete. (Fremlin im-
proved this to cardinality < c.)

Theorem 3.3. Let X be a locally compact space X of countable
tightness. Then the one point compactification of X is countably
tight iff X does not contain a perfect pre-image of ω1.

Theorem 3.4. Let X be a locally compact, locally hereditarily Lin-
delöf, hereditarily collectionwise-Hausdorff space. Then X is para-
compact iff X does not contain a perfect pre-image of ω1.

The first theorem above is a very useful extension of Z. Szent-
miklossy’s breakthrough result that there are no locally compact,
countably tight S-spaces, while the third has the results of Rudin,
G. Gruenhage, Junnila, and D. Lane on paracompactness in per-
fectly normal manifolds or more generally locally compact spaces
as corollaries. Zoli’s results here are fundamental structural results
which are still finding important uses, e.g., in the recent work of P.
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Larson and F. Tall where they solve a long-standing problem of S.
Watson by proving that, consistently, all perfectly normal locally
compact spaces are paracompact.

In a paper that hadn’t appeared at the time of his death, Zoli
[Ba02a] obtains a result closely related to Theorem 3.4: Under
MAω1 together with Axiom R, a consequence of PFA, if X is locally
compact and hereditarily strongly ω1- collectionwise-Hausdorff, then
X is paracompact iff X does not contain a perfect pre-image of ω1.
The “strongly” assumption is used in part to get hereditarily ccc
boundaries, enabling Zoli to apply results in his 1983 paper. Of
course, Axiom R is used to get by with “ω1-cwH” instead of full
cwH.

In 1986, Zoli published two more papers on the theme of para-
compactness in locally nice spaces. In [Ba86a], he answers a ques-
tion of Gruenhage by showing that normal, locally connected, rim-
compact, metalindelöf spaces are paracompact. The paper [Ba86b]
starts with answers to questions of Tall and Watson by showing:

Theorem 3.5. Normal locally compact (or more generally, locally
Lindelöf) screenable spaces are paracompact.

Theorem 3.6. (V = L). Normal, locally compact, metalindelöf
spaces are paracompact.

The first result, to be discussed in subsection 3.5, is a pretty par-
tial result on Nagami’s famous problem: Whether the statement is
true without the “locally compact” assumption (see that subsection
for the definition of “screenable”). The second extends Watson’s re-
sult in which “metacompact” replaces “metalindelöf.” Both results
essentially follow from Zoli’s ZFC result that locally Lindelöf sub-
metalindelöf spaces in which closed discrete collections of points
have σ-locally countable expansions are paracompact. The remain-
ing parts of this paper involve results of a similar general flavor
when the whole space is assumed to be connected.

Zoli’s paper [Ba88b] represents the culmination of a line of re-
search by several authors exploring countably paracompact ana-
logues of Fleissner’s deep result that, under V = L, normal first-
countable spaces are cwH, and Watson’s extension of this to a
result implying that, under V = L, normal locally compact spaces
are cwH. Watson had obtained the countably paracompact ana-
logue of Fleissner’s result, and made the natural conjecture that his
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result on normal locally compact spaces also had a corresponding
countably paracompact analogue; i.e., he conjectured that count-
ably paracompact, locally compact spaces are cwH under V = L.
Zoli, who was a master at taking difficult results of others and
pushing them well beyond their supposed limits, verified Watson’s
conjecture by extending the techniques of Fleissner and Watson in
a highly non-trivial fashion.

The first of Zoli’s “greatest hits” that we get to in this article
happens to be in the locally nice theme. The normal Moore space
conjecture had been shown to be essentially equivalent to the ques-
tion whether normal first-countable spaces must be collectionwise
normal3. It had been known for some time that the normal Moore
conjecture was consistently false. Assuming the existence of suf-
ficiently large cardinals, the normal Moore conjecture was finally
shown to be consistently true, and hence independent, first by P.
Nyikos and K. Kunen, and a bit later using a more flexible tech-
nique, by A. Dow, Tall, and W. Weiss. The analogous problem for
locally compact spaces was formulated by Watson and worked on
over a period of years by Tall, who obtained a number of positive
partial results in which typically the character of the space was
bounded by some cardinal (e.g., ℵω). It is Tall’s work on this prob-
lem that apparently prompted Zoli to refer to it as the “Toronto
project” in his paper. Here’s the result:

Greatest Hit # 1: It is consistent (modulo sufficiently large
cardinals) that all locally compact normal spaces are collectionwise
normal [Ba91a].

More specifically, the statement holds in any model obtained
by adding supercompact many Cohen or random reals. The basic
argument is forcing and reflection in the spirit of Dow-Tall-Weiss,
but it took significant insight to see how to apply it in this situation,
and much work to follow the ideas through to get the complete
solution to this problem. In his review of this paper, Watson calls
this result “one of the finest results of the last few years in general
topology.”

We should point out that the result actually proven is much
more general. E.g., “point-countable type” can replace “locally

3A space X is collectionwise normal if every closed discrete collection of
closed sets can be separated by a pairwise-disjoint collection of open sets.
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compact,” giving a result that also implies the normal Moore con-
jecture. Zoli also obtained a countably paracompact analogue of
the result which generalized Burke’s proof that, modulo large car-
dinals, it is consistent that countably paracompact Moore spaces
are metrizable.

3.4. Base-multiplicity

Zoli’s early work included, in particular, results about point-
countable (or more generally, point-≤ κ) bases or point-separating
open covers. There are also results from this period on what
Zoli later called a “jigsawed base” and “point-separating jigsawed
cover.” A jigsawed point-separating cover is a collection P of sub-
sets of X such that, for any x, y ∈ X, there is a finite subcollection
F of P with x ∈ ∪Fo ⊂ F ⊂ X\{y} (jigsawed base is defined simi-
larly). Burke and Michael first used the notion of jigsawed base to
obtain a nice proof of Filippov’s difficult result that point-countable
bases are preserved by perfect maps. They also showed that com-
pact spaces of countable tightness having a point-countable jig-
sawed base are metrizable. They asked if the result generalized to
countably compact, and Zoli showed it did [Ba79c]. (Note: Burke
and Michael had it for countably tight.) This improved results of
several other topologists by implying that a space having a point-
countable point-separating jigsawed cover is metrizable if it is an
M -space, and is a σ-space if it is Σ.

Zoli retained an interest in similar “base-multiplicity” topics
throughout his professional life. Probably his most interesting work
in this area are the results (with S. Davis, W. Just, S. Shelah, and
P. Szeptycki) in [BDJSS]. The primary motivation for the results
in this paper is an old (circa 1976) question of Heath and Lindgren:
Does every first-countable space with a weakly uniform base have
a (possibly different) point-countable base? Recall that a base B is
weakly uniform if the intersection of any infinite subcollection of B
is either empty or a singleton.

Old partial results of Davis, Reed, and M. Wage say that there is
a counterexample under MA(ω2), though the answer is positive in
ZFC if there are not more than ℵ1-many isolated points. These re-
sults already suggest that some interesting combinatorics are at
the heart of this problem. Much later, Arhangel’skĭı, Just, E.
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Reznichenko, and Szeptycki showed that, under CH, every first-
countable space with a weakly uniform base and no more than
ℵω-many isolated points has a point-countable base.

In [BDJSS], the authors finish off the problem, obtaining a consis-
tent positive answer with no restriction on the number of isolated
points. They introduce the axiom CECA, which is equivalent to
GCH plus a bit of ¤λ for singular λ and thus follows from V = L,
and show that the following holds:

Theorem 3.7. (CECA). A space X has a point-countable base if
it is first-countable and has a base B such that, for every infinite
subset A of X, some finite subset of A is included in only finitely
many members of B.

A weak uniform base could reasonably be called 2-in-finite, since
any two distinct points are in only finitely many members of the
base. This suggests notions of n-in-finite, ω-in-countable, etc. Note
that the stated base condition is weaker than n-in-finite for any
fixed n; it is sometimes called < ω-in-finite.

The topological result follows from the following combinatorial
result:

Theorem 3.8. (CECA). Suppose A = {Aα}α<λ is such that every
infinite subcollection B of A has a finite subset F such that |∩F| <
ω. Then there are A′α ∈ [Aα]≤ω such that {Aα\A′α}α<λ is point-
finite.

The above is one of many results in this paper that say that
under certain conditions, a collection of sets can be made point-
countable (say) by shaving off a small number of points from each.
These are strong combinatorial results which should have many
other applications in topology.

In [BG01], Zoli generalized the classical result that compact
spaces with a point-countable base are metrizable by showing the
same holds for an ω-in-countable base4 . With his undergraduate
student J. Griesmer, he showed [BGri] that this fails under CH for
jigsawed bases, but is true in ZFC if the jigsawed base is < ω-in-
countable instead of just ω-in-countable. The countably compact
case, which turns out to depend on set-theory, is also discussed in
these papers.

4This result of the paper was due entirely to Zoli.
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Getting back to the classical notion of point-countable base, Zoli
became very interested in the following question: Is it consistent
that a first-countable space X must have a point-countable base
if every subspace of cardinality ≤ ω1 does? A positive answer
(which must be a consistency result depending on large cardinal
axioms, as any non-reflecting stationary set in ω2 is a counterex-
ample) would consistently solve “the” point-countable base problem
of P. J. Collins, Reed, and A. Roscoe.

Zoli obtained some interesting partial results, in two papers that
have appeared since his death. In [Ba03a], he shows that for spaces
of density ≤ ω1, the answer to the above question is “yes,” in ZFC.
A corollary is Dow’s reflection theorem that a compact space is
metrizable if every ≤ ω1-sized subspace is metrizable. Again, a non-
reflecting stationary set gives (via a ladder space) a counterexample
to the locally compact analogue of Dow’s theorem. Zoli obtains
a (consistent modulo large cardinals) locally compact analogue in
[Ba02a]: under Axiom R, a locally compact space is metrizable if
every subspace of cardinality ≤ ω1 has a point-countable base.

3.5 Dowker spaces

A classical homotopy extension theorem of K. Borsuk had as part
of the hypothesis that X× [0, 1] is normal. But it was not known at
the time if normality of X was sufficient to imply normality of X×
[0, 1]. In 1951, C. H. Dowker characterized those normal spaces X
whose product with the unit interval [0, 1] is not normal as precisely
those normal spaces which are not countably paracompact. He
asked if such spaces, soon to be called Dowker spaces, exist. In 1971,
Rudin constructed a Dowker space. But this was far from the end
of the matter, because it turned out that the Dowker pathology
was present in many natural topological problems. Thus, it was
important to search for “nice” Dowker spaces. Rudin’s example
failed to be nice in many ways. In particular, it was not “small”
in the sense of cardinality or weight (which were ℵω

ω), or character
(which was ℵω). Many Dowker spaces that were small, and/or
“nice” in other ways, were constructed assuming various axioms
beyond ZFC. E.g., Rudin herself constructed a Dowker manifold
(non-metrizable, of course) assuming CH. But for decades the only
known ZFC Dowker space was still Rudin’s 1971 example.
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So Zoli’s 1996 example of an entirely new ZFC Dowker space was
very exciting and certainly deserves the “greatest hit” label.

Greatest Hit # 2: A σ-discrete Dowker space of cardinality c
in ZFC [Ba96].

J. E. Vaughan, in his review of Zoli’s paper, calls this result “a
milestone in set-theoretic topology.” Indeed it was, not only for
its properties stated above, or just that it was the first new ZFC
Dowker space in a quarter century, but also even more for the
technique, which Zoli subsequently applied, in highly non-trivial
fashion, to obtain solutions of long-standing problems of K. Nagami
and K. Morita, which we also are calling greatest hits.

Greatest Hit # 3 : Solution to Nagami’s problem: There is a
normal screenable non-paracompact space [Ba98b].

R. H. Bing defined a space to be screenable if every open cover
has a σ-disjoint open refinement. In 1955, Nagami explicitly asked
the natural question whether normal screenable spaces are para-
compact. It is easily seen that normal, countably paracompact,
screenable spaces are paracompact, so a counterexample, if it ex-
ists, must be a Dowker space. In 1983, Rudin obtained an example
under ♦++. In 1998, Zoli finally settled the problem with an exam-
ple in ZFC. Applying a result of Rudin to Zoli’s example shows that
there is also a normal screenable space which is not even collection-
wise normal.

Greatest Hit #4 : Morita conjectures established: X is metriz-
able iff its product with every Morita P -space is normal [Ba01b].

In 1976, Morita stated three basic conjectures about normality
in products. The first one, that X×Y is normal for all normal Y iff
X is discrete, was solved in the affirmative by Rudin in 1978. The
second conjecture states that X is metrizable iff X × Y is normal
for every space Y such that Y ×M is normal for every metric space
M (such Y are called Morita P -spaces). The third conjecture,
which is implied by the second, is that X is metrizable and σ-
(closed locally compact) iff X × Y is normal for every countably
paracompact normal space Y . K. Chiba, T. Przymusinski, and
Rudin showed that the second conjecture (and hence all) is true if,
for each uncountable cardinal κ, there is a space X whose product
with every metric space is normal, such that X has an open cover
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which is increasing in type ω1 but has no refinement by at most κ-
many closed sets. Such examples were constructed by A. Beslagic
and Rudin in 1985 under V = L. But there was no ZFC solution to
the problem until Zoli, using another version of his Dowker space
technique, constructed spaces in ZFC having the same properties
as those constructed by Beslagic and Rudin under V = L. This is
an outstanding achievement which finally settles the conjectures of
Morita in the affirmative in ZFC.

The last three major results above are based on the same fun-
damental technique which, as Zoli mentions in his Dowker space
paper, goes back to a reflection-type technique Rudin used to solve
a problem of Dowker on the existence of a normal non-cwH simpli-
cial complex. Zoli revamped Rudin’s technique through the use of
elementary submodels (and similar objects such as what he termed
“control pairs”) and then proceeded to extend it, first to obtain
Q-set spaces in ZFC, then his new Dowker space, followed by the
solutions to the problems of Nagami and Morita, among others.
But each of these problems had its own special difficulties which
needed major new insights to add to the basic technique. After
all, we all knew and at least thought we understood Zoli’s Dowker
space, but only Zoli himself was able to use the technique to solve
Nagami’s problem a couple of years later, and years after that set-
tle Morita’s conjectures. At a certain point, the technique changed
from being an extension of a technique of Rudin to being Zoli’s
technique. Just where that point is may be open to interpretation,
but we would place it no later than his ZFC Dowker space. At that
point, at least, we say the technique became Zoli’s technique.

Since this technique is so important, and will surely be a major
part of Zoli’s mathematical legacy, we give a rough description of it
here, using the normal screenable space construction as an example.
The set for the space is c × ω, with c × n, n < ω, the countable
open cover which witnesses non-countable paracompactness. The
topology is made to be normal and screenable in a kind of random
way by inductively adding open sets to the topology in 2c steps.
Since the space has cardinality c, there are 2c many potential pairs
of disjoint closed sets and 2c many potential open covers, and if any
one of these potential objects ends up being a real pair of closed sets
or open cover, it does so at some stage prior to 2c, and is “taken
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care of” by adding an open separation for disjoint closed sets or
a screening of an open cover. Just how these open separations
or screenings are introduced is determined by a listing in type c
of what Zoli calls “control pairs,” which are essentially pairs of
countable elementary submodels M, N with M ∈ N , together with
a function which diagonalizes over N . In an induction of length c
at a given stage γ of the main induction of length 2c, Zoli looks at
each {β} × ω ⊂ X and uses the βth control pair to decide in which
member of the open separation or screening (depending on what it
is that is given at stage γ) each point (β, k) is to be put. So the space
ends up being normal and screenable simply because it is made to
be in the induction. The difficult part of the argument is the proof
that the space fails to be countably paracompact; this is where
the control pairs come in. The randomization has been controlled
just enough by the diagonalizations through these control pairs so
that one can prove (with considerable difficulty, however!) that
no closed shrinking of the c × n’s has been introduced. A rough
idea is the following. Suppose {Hn}n∈ω is a closed shrinking of
{c×n}n∈ω. There is a countable set Z of stages in which, for some
n ∈ ω, the pair {Hn, X \ (c × n)} is a pair of disjoint closed sets
that is being considered for an open separation. But the reflection
argument finds a β ∈ c such that {β} × ω is not split by the open
sets added at the stages in Z, contradicting that for some n, both
Hn and X \ (c× n) meet {β} × ω.

As Zoli himself points out in [Ba03b], the idea of adding open sets
at each step to guarantee normality, etc., as above is not apparent
in his original Dowker space construction, which used instead some
simplifying tricks due to Watson. However, he left a set of notes (see
[Ba03d]) entitled “A natural Dowker space,” in which he presents
his basic Dowker space in this more “natural” way. This should be
very useful for researchers hoping to apply Zoli’s method to their
own problems.

The paper [Ba01a] is another important one which used the tech-
nique. In 1971, Rudin asked if there is a realcompact Dowker space,
and in 1972, Hodel asked if every collection-wise normal metalin-
delöf space must be paracompact. The latter question was repeated
by Burke and Watson. Zoli finishes off these questions by con-
structing, in ZFC, a hereditarily collection-wise normal, hereditarily
realcompact Dowker space. The construction is quite similar to his
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normal screenable non-paracompact space construction, though the
reflection techniques in the proof of non-countable paracompactness
(always the hard part) are a bit different.

3.6 Miscellaneous

The name of this category does not imply a value judgment of
any sort. In fact, two of his greatest hits are here! We begin our
discussion with these.

Greatest Hit #5: Solution to the Moore-Mrowka problem: The
Proper Forcing Axiom implies that compact countably tight spaces
are sequential [Ba89a].

In an AMS Notices article in 1964, R. C. Moore and S. Mrowka
asked if every countably tight compact Hausdorff space is sequen-
tial. In other words, if the topology of a compact Hausdorff space
X is determined by its countable subsets (in the sense that a subset
A is closed iff A contains all limit points of its countable subsets),
must the topology of X in fact be determined by its convergent
sequences?

This natural and important problem received quite a bit of at-
tention. Nyikos called it “Classic Problem VI” in his 1977 list of
major open problems in set-theoretic topology. A. V. Arhangel’skĭı
gives a thorough discussion of it in a 1978 survey paper, where he
puts it as Number 1 in an extensive list of open problems, and
indicates that he believes there should be a ZFC counterexample.
In 1976, A. J. Ostaszewski and V. V. Fedorcuk each constructed
counterexamples under ♦. Then not very much happened until
the power of proper forcing became widely known. In 1986, Frem-
lin and Nyikos had obtained some related results using Fremlin’s
write-up of a proper forcing method due to S. Todorčević. Nyikos
also showed that MA + ¬CH is not sufficient to solve the problem,
and that the Proper Forcing Axiom (PFA) implies a positive answer
for hereditarily normal spaces. Then Zoli completed the solution,
showing that the answer is positive under PFA. The result followed
as a corollary to a more general statement which had some of the
results of Fremlin and Nyikos as other corollaries; in particular, un-
der PFA, countably compact regular T1-spaces are either compact
or contain a closed pre-image of the space of countable ordinals,
and also countably tight, initially ω1-compact, regular T1-spaces
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are compact. In his 1991 survey of compact spaces over the pre-
vious 8-10 years, D. B. Shakhmatov called Zoli’s result “the main
advance in the theory of compact spaces during the covered period.”

Greatest Hit # 6: Every open cover of a monotonically normal
space X has a σ-disjoint (partial) refinement V by open sets such
that X\⋃

V is the union of a discrete family of closed subspaces
each homeomorphic to some stationary subset of a regular uncount-
able cardinal (the cardinal may vary with the subspaces) [BR92].

The class of monotonically normal spaces was introduced by
Heath, D. J. Lutzer, and P. Zenor in 1973 as a common general-
ization of ordered spaces and metrizable (or more generally, “strat-
ifiable”) spaces. Balogh and Rudin proved the deep and powerful
result stated above, a very important corollary of which is R. En-
gelking and Lutzer’s theorem, which says that an ordered space is
paracompact iff it does not contain a closed copy of a stationary
subset of a regular uncountable cardinal, extends to the class of
monotonically normal spaces. The Balogh-Rudin result answered
almost every question in the literature having to do with covering
properties of monotonically normal spaces. The proof is lengthy
and complicated – just what one would expect, given these authors!

Zoli was a big user of elementary submodels. We have men-
tioned that they play a very important role in his Dowker space
constructions. He also proposed in many lectures using elemen-
tary submodels to prove covering property results. What got him
started on this was an elementary submodel technique for proving
the Jiang-Rudin theorem that strict p-spaces are submetacompact.
He wrote a paper [Ba02b] in which he illustrates his ideas by pre-
senting the strict-p argument along with another covering property
result.

Zoli obtained many more significant results but there is no space
here to mention them all. We content ourselves with discussing just
one more very nice paper. An interesting problem of M. Katetov,
which dates back to 1951, is whether every normal T2-space X in
which the Baire and Borel algebras in X coincide must be perfectly
normal. (If a space is perfectly normal, they must coincide.) In
[Ba88a], Zoli obtained several examples giving a negative answer
to the problem under CH, and another one based on a consistent
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construction due to A. Miller of a subset M of the real line in which
every subset is Baire but not every subset is Gδ. It is not known
if a counterexample to Katetov’s question exists in ZFC. In the
same paper, Zoli solves in ZFC a 1965 problem of K. A. Ross and
K. Stromberg by constructing a normal locally compact space in
which there exists a closed Baire set which is not a zero-set.
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what Lindelöf spaces. To appear in Topology Proceedings.

[Ba03d] Z. Balogh, A natural Dowker space. To appear in Topology
Proceedings.

[Ba??] Z. Balogh, A Lindelof Q-set space of cardinality c, hand-
written notes.

[BB87] Z. Balogh and H. Bennett, Total paracompactness of real
GO-spaces, Proc. Amer. Math. Soc. 101 (1987), 753–760.

[BB89a] Z. Balogh and H. Bennett, Conditions which imply metriz-
ability in manifolds, Houston J. Math. 15 (1989), 153–162.

[BB89b] Z. Balogh and H. Bennett, On two classes of sets containing
all Baire sets and all co-analytic sets, Topology Appl. 33
(1989), 247–264.

[BB89c] Z. Balogh and H. Bennett, Quasi-developable manifolds,
Topology Proc. 14 (1989), 201–212.

[BBBGLM] Z. Balogh, H. Bennett, D. Burke, G. Gruenhage, D.
Lutzer, and J. Mashburn, OIF spaces, Questions Answers Gen.
Topology 18 (2000), 129–141.

[BBM] Z. Balogh, H. Bennett, and C. Martin, On the observability
of ergodic flows on abelian groups with characteristic func-
tions, Proceedings of the Guilford College Sesquicentennial
Topology Conference, 1988, (Greensboro, NC, 1988) 31–35.

[BBu92] Z. Balogh and D. K. Burke, A total ladder system space
by ccc forcing, Topology Appl. 44 (1992), 37–44.

[BBu94] Z. Balogh and D. K. Burke, On ↗-normal spaces, Topol-
ogy Appl. 57 (1994), 71–85.

[BBD] Z. Balogh, D. K. Burke, and S. W. Davis A ZFC nonsep-
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