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a b s t r a c t

We consider the output processes of some elementary queueing models such as the M/M/1/K queue and the

M/G/1 queue. An important performance measure for these counting processes is their variance curve v(t),

which gives the variance of the number of customers in the time interval [0, t]. Recent work has revealed

some non-trivial properties dealing with the asymptotic rate at which the variance curve grows. In this paper

we add to these results by finding explicit expressions for the intercept term of the linear asymptote.

For M/M/1/K queues our results are based on the deviation matrix of the generator. It turns out that

by viewing output processes as Markovian Point Processes and considering the deviation matrix, one can

obtain explicit expressions for the intercept term, together with some further insight regarding the BRAVO

(Balancing Reduces Asymptotic Variance of Outputs) effect. For M/G/1 queues our results are based on a

classic transform of D. J. Daley. In this case we represent the intercept term of the variance curve in terms of

the first three moments of the service time distribution. In addition we shed light on a conjecture of Daley,

dealing with characterization of stationary M/M/1 queues within the class of stationary M/G/1 queues, based

on the variance curve.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

Many models in applied probability and stochastic operations re-

earch involve counting processes. Such processes occur in supply

hains, health care systems, communication networks as well as many

ther contexts involving service, logistics and/or technology. The

anonical counting process example is the Poisson process. Gener-

lizations include renewal processes, Markovian Point Processes (see

or example Latouche & Ramaswami, 1999, Section 3.5 or Asmussen,

003, Section XI.1), or general simple point processes on the line (see

or example Daley & Vere-Jones, 2003).

Sometimes counting processes are used in their own right, while at

ther times they constitute components of more complicated mod-

ls such as queues, population processes or risk models. In other

nstances, counting processes are implicitly defined and constructed

hrough applied probability models. For example, a realization of a
∗ Corresponding author. Tel.: +61 3 8344 9073; fax: +61 3 8344 4599.
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ueue induces additional counting processes such as the departure

rocess, {D(t), t ≥ 0}, counting the number of serviced customers in

he queue until time t.

Departure counting processes of queues have been heavily stud-

ed in applied probability and operations research. Classic applied

robability surveys are Daley (1976) and Disney and Konig (1985).

ore recent studies in operations research are Hendricks (1992),

an (1999) and Tan (1997) where the authors consider departures

n and within manufacturing production lines. Indeed, from an oper-

tional viewpoint, quantification of the variability of flows within

network is key. A similar comment applies to the flows of fin-

shed products at the end of the production process. From a the-

retical perspective, there remain some open questions about the

bility to characterize {D(t)} as a Markovian Point Process, as in Bean

nd Green (2000), Bean, Green, and Taylor (1998) and Olivier and

alrand (1994). Further, the discovery of the BRAVO effect (Bal-

ncing Reduces Asymptotic Variance of Outputs) has motivated re-

earch on the variability of departure processes of queues, partic-

larly in critically loaded regimes. Recent papers on this topic are

l Hanbali, Mandjes, Nazarathy, and Whitt (2011), Daley (2011),

http://dx.doi.org/10.1016/j.ejor.2014.10.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.10.051&domain=pdf
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Daley, van Leeuwaarden, and Nazarathy (2014), Nazarathy (2011)

and Nazarathy and Weiss (2008).

Next to the mean curve, m(t) = E[D(t)], an almost equally impor-

tant performance measure of a counting processes is the variance

curve, v(t) = Var
(
D(t)

)
. For example, for a Poisson process with rate

α, the variance curve

v(t) = αt

is the same as the mean curve. For more complicated counting pro-

cesses, the variance curve is not as simple and is not the same as

the mean curve. For example, for a stationary (also known as equi-

librium) renewal-process with inter-renewal times distributed as the

sum of two independent exponential random variables, each with

mean (2α)−1, we have

m(t) = αt − 1

4
+ 1

4
e−4αt, v(t) = α

1

2
t + 1

8
− 1

8
e−4αt.

For the ordinary case of the same renewal process (the first inter-

renewal time is distributed as all the rest) the variance curve is

v(t) = α
1

2
t + 1

16
− te−4αt − 1

16
e−8αt.

These explicit examples are taken from Cox (1962, Section 4.5). In

fact, for general, non-lattice, renewal processes (both equilibrium and

ordinary), with inter-renewal times having a finite second moment,

with squared coefficient of variation c2, and mean α−1, it is well

known that,

v(t) = αc2t + o(t), (1)

as t → ∞ (which is the limiting regime used throughout this paper).

However, in general, a finer description of v(t) (through the o(t) term)

is typically not as simple as in the examples above.

If the third moment of the inter-renewal time is finite, then

v(t) =
⎧⎨
⎩

αc2t + 5

4
(c4 − 1)− 2

3
(γ c3 − 2)+ o(1), for the equilibrium case,

αc2t + 1

2
(c4 − 1)− 1

3
(γ c3 − 2)+ o(1), for the ordinary case,

(2)

where γ is the skewness coefficient of the inter-renewal time.1 We

remind the reader that for exponential random variables (making

the renewal process a Poisson process), c2 = 1 and γ = 2, and the

ordinary and equilibrium versions of a Poisson process are identi-

cal. See Asmussen (2003) and Daley and Vere-Jones (2003) for more

background on renewal processes. Eq. (2) appears under a slightly

different representation in Cox (1962) and was essentially first found

in Smith (1959). Generalizations of renewal processes are in Brown

and Solomon (1975), Daley and Mohan (1978) and Hunter (1969).

The above examples indicate that, for counting processes in gen-

eral, it is likely to be fruitful to look for an asymptotic expression for

the variance curve of the form

v(t) = vt + b + o(1). (3)

We refer to v as the asymptotic variance rate and to b as the intercept

term. A point to observe is that, for a renewal process, b depends on the

version of the renewal process (ordinary vs. equilibrium) while v does

not. Since the latter depends on the initial conditions, we generally

employ the notation be for the stationary (equilibrium) system, b0

for systems starting empty and bθ for systems with arbitrary initial

conditions.
1 The skewness coefficient of a random variable X is E[( X−E[X]√
Var(X)

)3].

b

v

t

Moving on from renewal processes to implicitly defined counting

rocesses, the variance curve is typically more complicated to de-

cribe and characterize. For example, while the output of a stationary

/M/1 queue with arrival rate λ and service rate μ is simply a Pois-

on process with rate λ (see Kelly, 1979), the variance curve when

he system starts empty at time 0 is much more complicated than

(t) = λt. It can be represented in terms of integrals of expressions

nvolving Bessel functions of the first kind, and requires several lines

o be written out fully (as in Theorem 5.1 of Al Hanbali et al., 2011).

evertheless (see Theorem 5.2 in Al Hanbali et al., 2011) the curve

an be sensibly approximated as follows:

(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λt − ρ

(1 − ρ)2
+ o(1), if ρ < 1,

2

(
1 − 2

π

)
λt −

√
λ

π
t1/2 + π − 2

4π
+ o(1), if ρ = 1,

μt − ρ

(1 − ρ)2
+ o(1), if ρ > 1,

(4)

here ρ = λ/μ.

As observed from the formula above, it may be initially quite sur-

rising that the asymptotic variance rate is reduced by a factor of

(1 − 2/π) ≈ 0.73 when ρ changes from being approximately 1 to

xactly 1. This is a manifestation of the BRAVO effect. BRAVO was

rst observed for M/M/1/K queues in Nazarathy and Weiss (2008)

n which case, as K → ∞, the factor is 2/3, a fact that we confirm in

his paper. It was later analyzed for M/M/1 queues and more generally

I/G/1 queues in Al Hanbali et al. (2011). BRAVO has been numerically

onjectured for GI/G/1/K queues in Nazarathy (2011), and observed

or multi-server M/M/s/K queues in the many-server scaling regime

n Daley et al. (2014).

Our focus in this paper is on the more subtle intercept term b.

or a stationary M/M/1 queue, {D(t)} is a Poisson process and thus

e = 0. As opposed to that, for an M/M/1 queue starting empty, it

ollows from (4) that b0 = −ρ/(1 − ρ)2 as long as ρ �= 1. When ρ = 1,

e see from (4) that the variance curve does not have the asymptotic

orm (3). This can happen more generally. If, for example, there is

ufficient long range dependence in the counting process, then the

ariance can grow super-linearly (see Daley & Vesilo, 1997 for some

xamples). This demonstrates that the asymptotic variance rate, v,

nd the intercept term, b, need not exist for every counting process.

evertheless, for a variety of models and situations, both v and b exist,

nd thus the linear asymptote is well-defined. In such cases, having a

losed formula is beneficial for performance analysis of the model at

and.

We are now faced with the challenge of finding the intercept

erm for other counting processes generated by queues. In this pa-

er we carry out such an analysis for two models related to the

/M/1 queue: a finite capacity M/M/1/K queue, and an infinite capac-

ty M/G/1 queue. Besides obtaining explicit formulas for be, b0 and bθ ,

ur investigation also pinpoints some of the analytical challenges in-

olved and raises some open questions. Here is a summary of our main

ontributions.

.1. M/M/1/K queues

In this case the departure process is a Markovian Point Process.

he linear asymptote is then given by formulas based on the matrix
− = (1π − �)−1, where � is the generator matrix of the (finite)

irth-death process, π is its stationary distribution taken as a row

ector, and 1 is a column vector of 1’s. In the case where ρ = 1,

he distribution π is uniform and an explicit expression for �− was
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d

reviously found, which in turn yielded the equilibrium version of

he intercept term,

e = 7K4 + 28K3 + 37K2 + 18K

180(K + 1)2
,

n Proposition 4.4 of Nazarathy and Weiss (2008). When ρ �= 1, the

orm of the inverse �− is more complicated and an expression for

has not been previously known. We are now able to find such an

xpression for both the stationary version and for arbitrary initial

onditions. Our results are based on relating �− to the matrix

	 =
∫ ∞

0

(P(t)− 1π)dt,

here P(·) is the transition probability kernel of the birth-death pro-

ess. The matrix �	 is called the deviation matrix (also known as the

razin inverse of −�), and we are able to provide explicit expres-

ions for the entries of this matrix. Our contribution also includes

ome useful results regarding the asymptotic covariance between the

ount and phase in arbitrary Markovian Point Processes which, to the

est of our knowledge, have not appeared elsewhere.

.2. Stable M/G/1 queues with finite third moment of G

When the third moment of the service time distribution is finite,

hen it is known that the stationary queue length has a finite variance.

hen the service time distribution is not exponential, the form of b

as not previously been known. Our contribution is an exact expres-

ion for the b term based on the first three moments of G. We begin

ith be, after which we employ a simple coupling argument to find

θ and b0.

The structure of the rest of the paper is as follows: In Section 2

e present our M/M/1/K queue results for b together with a discus-

ion of the deviation matrix and its application to Markovian Point

rocesses. In Section 3 we present our M/G/1 queue results for b, and

iscuss a related conjecture of Daley, dealing with a characterization

f the M/M/1 queue within the class of stationary M/G/1 queues. We

onclude in Section 4.

. The M/M/1/K queue

We begin our investigation with the M/M/1/K queue, where K de-

otes the total capacity of the system. In this case, it is well known that

he departure process {D(t)} is a Markovian Point Process and is a re-

ewal processes only when K = 1 or K = ∞. Some standard references

n Markovian Point Processes are Asmussen (2003, Section XI.1) and

atouche and Ramaswami (1999, Section 3.5).

Denote the arrival rate by λ > 0, the service rate by μ > 0 and

et ρ = λ/μ be the traffic intensity. The queue length process, {Q(t)},

s a continuous-time Markov chain on the state space {0, 1, . . . , K},

ith generator matrix � and stationary distribution (row) vector π

iven by

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ λ 0

μ −(μ + λ) λ

. . .
. . .

. . .

μ −(μ + λ) λ

0 μ −μ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

π =

⎧⎪⎪⎨
⎪⎪⎩

1 − ρ

1 − ρK+1
[1, ρ, ρ2, . . . , ρK], for ρ �= 1,

1

K + 1
1′, for ρ = 1.
he departure process {D(t)} is a Markovian Point Process of which

he phase-process is {Q(t)}, and the event intensity matrix �1 is

iven by

1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

μ 0 0

. . .
. . .

. . .

μ 0 0

0 μ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

n brief, �1 indicates which transitions of {Q(t)} will count as incre-

ents of {D(t)}.

The fundamental matrix �− := (1π − �)−1 is a generalized inverse

that is, a matrix X such that

−�)X(−�) = (−�), (5)

ee Hunter (1982)) for the negative of the generator � of a

ontinuous-time Markov chain. Generalized inverses are not uniquely

etermined by (5); however, by specifying other relationships, spe-

ific classes of generalized inverses can be defined. The deviation

atrix

	 :=
∫ ∞

0

(e�t − 1π)dt

s the so-called group inverse (or Drazin inverse) of −�, which, by

efinition, is the unique solution of (5), X(−�)X = X, and (−�)X =
(−�). The deviation matrix can be interpreted as a measure of the

otal deviation from the limiting probabilities, see for instance Coolen-

chrijner and van Doorn (2002) as well as Koole and Spieksma (2001).

he fundamental matrix �− and the deviation matrix �	 are related

y the expression

− = �	 + 1π. (6)

or finite state space continuous-time Markov chains, such as the

/M/1/K queue, the fundamental matrix and the deviation matrix

lways exist. The deviation matrix satisfies the properties

�	1 = 0, (7)

π�	 = 0, (8)

	� = ��	 = 1π − I,

s well as

	

i,j
= πj (m

e
j − mi,j),

here mi,j is the mean first entrance time from state i to state j,

nd me
j

is the mean first entrance time to state j from the stationary

istribution, that is,

i,j = E[ inf{t : Q(t) = j}|Q(0) = i], me
j =

K∑
i=0

πimi,j,

ee Coolen-Schrijner and van Doorn (2002). Note that we take the

ndices of the matrices and vectors of size K + 1 used here to run on

ange {0, . . . , K}.

.1. M/M/1/K queue: explicit formulas related to the deviation matrix

As will be evident below, we are particularly interested in the

ottom left entry of the deviation matrix and that of its square,

v = �	

K,0 =
∫ ∞

0

(P(Q(t) = 0|Q(0) = K)− π0)dt = π0

(
me

0 − mK,0

)
,

b = (�	�	)K,0 = π0

K∑
j=0

πj

(
me

j − mK,j

)(
me

0 − mj,0

)
.
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Finding explicit expressions for these quantities is tedious yet pos-

sible for the M/M/1/K queue.

Lemma 1. For the M/M/1/K queue length continuous-time Markov

chain, the (K, 0) elements of the deviation matrix and its square are

dv =

⎧⎪⎪⎨
⎪⎪⎩

−μ−1 K(1 − ρ)(1 + ρK+1)− 2ρ(1 − ρK)

(1 − ρ)(1 − ρK+1)2
, ρ �= 1,

−μ−1 K(K + 2)

6(K + 1)
, ρ = 1.

db =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μ−2

{
[6(1 + ρ2)(1 + K)2 − 4ρ(1 + 6K + 3K2)]ρK+1 + ρ2(

2(1 − ρ)3(1 − ρK+1)3

− 2ρ(3 + 2K + K2)(1 + ρ2(K+1))− K(1 + K)(1 + ρ2

2(1 − ρ)3(1 − ρK+1)3

−μ−2 7K4 + 28K3 + 37K2 + 18K

360 (K + 1)
,

Proof. For the M/M/1/K queue, a standard application of “first step

analysis” leads to the following recurrence equations for mi,j:

mi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, i = j,

λ−1 + m1,j, i = 0, j �= i,

μ−1 + mK−1,j, i = K, j �= i,

(λ + μ)−1 + λ

λ + μ
mi+1,j + μ

λ + μ
mi−1,j, otherwise.

When ρ �= 1, the solution is

mi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μ−1

(
ρ−j − ρ−i

(1 − ρ)2
+ i − j

1 − ρ

)
, 0 ≤ i ≤ j,

μ−1

(
ρK+1 ρ−j − ρ−i

(1 − ρ)2
+ i − j

1 − ρ

)
, j ≤ i ≤ K,

and, when ρ = 1, the solution is

mi,j =

⎧⎪⎪⎨
⎪⎪⎩
μ−1 j (j + 1)− i (i + 1)

2
, 0 ≤ i ≤ j,

μ−1 (K − j)[(K − j)+ 1] − (K − i)[(K − i)+ 1]

2
, j ≤ i ≤ K.

Averaging over π we get,

me
j =

⎧⎪⎪⎨
⎪⎪⎩
μ−1 ρ−j − (1 + 2j)(1 − ρ)− [1 + 2(K − j)](1 − ρ)ρK+1 − ρ

(1 − ρ)2(1 − ρK+1)

μ−1

(
j2 − K j + K2

3
+ K

6

)
,

Combining the above we get the desired results.

We note that related results were found for a discrete time version

of the queue in Koole (1998) and in Koole and Spieksma (2001).

2.2. M/M/1/K queue: the stationary case

When the queue length process {Q(t)} is stationary, the Marko-

vian Point Process {D(t)} is a (time) stationary point process (see

Asmussen, 2003). In this case, the asymptotic variance rate, v̄, and the

y-intercept, b̄e, are respectively given by

v̄ = π�11 − 2(π�11)2 + 2π�1�
−�11, (9)

b̄e = 2(π�11)2 − 2π�1�
−�−�11, (10)

see for instance Narayana and Neuts (1992), Asmussen (2003) or the

summary in Nazarathy and Weiss (2008). By substituting (6) into (9)

and (10) we obtain a simpler expression for v̄ and b̄e in terms of the

deviation matrix:

v̄ = π�11 + 2π�1�
	�11 = λ∗ + 2π�1�

	�11, (11)
K + K2)(1 + ρ2K)

}
, ρ �= 1,

ρ = 1.

−j

, ρ �= 1,

ρ = 1.

¯
e = −2π�1�

	�	�11, (12)

here

∗ = lim
t→∞

E[D(t)]

t
= π�11 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μρ

1 − ρK

1 − ρK+1
, for ρ �= 1,

μ
K

K + 1
, for ρ = 1.

e can go further in the simplification of the expressions by using (7)

nd (8). Let ei denote the column vector of which the only nonzero

ntry is the entry corresponding to state i, which is equal to 1 (0 ≤
≤ K). First, observe that π�1 and �11 take simple forms in our

ase:

�1 =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μρπ − ρK+1 1 − ρ

1 − ρK+1
μe′

K , ρ �= 1,

μπ − 1

K + 1
μe′

K , for ρ = 1.

, �11 = μ(1 − e0).

hen, since π and 1 are respectively the left and right eigenvectors of
	 corresponding to the eigenvalue 0, we obtain

�1�
	 �11 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ2ρK+1 1 − ρ

1 − ρK+1
dv, for ρ �= 1,

μ2 1

K + 1
dv, for ρ = 1.

e thus obtain

¯ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ∗ + 2μ2ρK+1 1 − ρ

1 − ρK+1
dv, ρ �= 1,

λ∗ + 2μ2

K + 1
dv, ρ = 1,

nd similarly,

¯
e =

⎧⎪⎪⎨
⎪⎪⎩

−2μ2 ρK+1 1 − ρ

1 − ρK+1
db, ρ �= 1,

−2μ2 1

K + 1
db, ρ = 1.

ombining the above with the results of Lemma 1, and manipulating

he expressions, we obtain our main result for M/M/1/K queues:

roposition 2. For the stationary M/M/1/K queue, v(t) = v̄t + b̄e + o(1)

here

¯ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ

(1 + ρK+1)(1 − (1 + 2K)ρK(1 − ρ)− ρ2K+1)

(1 − ρK+1)3
, ρ �= 1

λ

(
2

3
− 3K + 2

3(K + 1)2

)
, ρ = 1

,
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Fig. 1. The intercept term b̄e as a function of λ when μ = 1 and for K = 10, 40, 100, 400.
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¯
e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρK+1

{(
6(1 + ρ2)(1 + K)2 − 4ρ(1 + 6K + 3K2)

)
ρK+1 + ρ2(

(1 − ρ)2
(
1 − ρK+1

)4

− 2ρ(3 + 2K + K2)(1 + ρ2(K+1))− K(1 + K)(1 + ρ2(

(1 − ρ)2(1 − ρK+1)4

7K4 + 28K3 + 37K2 + 18K

180 (K + 1)2
,

espectively.

ere are some observations:

• With the exception of be for ρ �= 1, all of the expressions in

Proposition 2 appeared in Nazarathy and Weiss (2008). Yet, while

working on Nazarathy and Weiss (2008), the authors were not

able to obtain be when ρ �= 1, as obtained here.

• We illustrate the intercept term for different values of K and λ in

Fig. 1. It is straightforward to see that

lim
K→∞

be =
{

0, ρ �= 1,

∞, ρ = 1,

and further, for ρ = 1, be = O(K2).
• It is insightful to see the role of dv and db in the above derivations.

In fact, the spikes in v and b that occur at ρ ≈ 1 are are because of

similar spikes in dv and db.

.3. Some further useful results on Markovian Point Processes

Our derivation of v and be above is based on (9) and (10) re-

pectively, or alternatively on their deviation matrix based forms,

11) and (12). On route to calculating additional performance mea-

ures for the M/M/1/K queue, we first derive some further results

or Markovian Point Processes, which to the best of our knowl-

dge have not appeared elsewhere. These results are of independent

nterest.

Consider an arbitrary Markovian Point Process with an n × n ir-

educible generator matrix � = �0 + �1, where �1 is the event in-

ensity matrix and �0 is assumed to be non-singular. Such a process

orresponds to a two-dimensional Markov chain {(N(t), ϕ(t)), t ≥ 0},

here N(t)denotes the number of events in the interval [0, t] and ϕ(t)

enotes the phase at time t, taking values in {1, . . . , n}. We assume
K + K2)(1 + ρ2K)

}
, ρ �= 1,

ρ = 1.

hat N(0) = 0 almost surely and denote by θ the distribution of ϕ(0).

urther, we denote by π the stationary distribution corresponding to

, or equivalently to the phase process {ϕ(t)}.

If θ = π then N(t) is a time-stationary point process. This implies

hat for any sequence of intervals (t1, s1), . . . , (t�, s�) and for any τ ,

N(s1)− N(t1), . . . , N(s�)− N(t�)] =d [N(s1 + τ)

− N(t1 + τ), . . . , N(s� + τ)− N(t� + τ)],

here the equality is in distribution (see Asmussen, 2003, chap. XI,

roposition 1.2).

Another interesting initial distribution is α = π�1/(π�11). This

s the invariant distribution of a discrete time jump chain, {Yk} where

k is the value of ϕ(t) just after the kth arrival. The probability transi-

ion matrix of this Markov chain is −�−1
0 �1. As shown in Asmussen

2003, chap. XI, Proposition 1.4), setting θ = α makes {N(t)} an event-

tationary point process. That is, if Tk denotes the time interval be-

ween the (k − 1)st and the kth event in the Markovian Point Process,

hen the joint distribution of (Tk, Tk+1, . . . , Tk+�) is the same as the

oint distribution of (Tk′ , Tk′+1, . . . , Tk′+�) for all integer k, k′, �.

Since θ affects the point process in such a manner, it is natural to

sk what is its effect on v(t) and related quantities. We now have the

ollowing:

roposition 3. For an arbitrary Markovian Point Process with initial

istribution θ, Var(N(t)) = v̄t + b̄θ + o(1), where the y-intercept is given

y

¯
θ = b̄e − (2π�11θ(�	)2�11 − 2θ�	�1�

	�11 + (θ�	�11)2),

(13)

nd v̄ and b̄e are respectively given by (11) and (12).

roof. The variance curve of an arbitrary Markovian Point Process

ith initial distribution θ is given by

ar(N(t)) = θM2(t)1 + θM1(t)1 − (θM1(t)1)2, (14)

here M1(t) and M2(t) denote the matrices of the first two factorial

oments of the number of events in a non-stationary Markovian

oint Process, that is,

[M1(t)]ij = E[N(t)1{ϕ(t)=j}|ϕ(0) = i]

[M2(t)]ij = E[N(t)(N(t)− 1)1{ϕ(t)=j}|ϕ(0) = i].

arayana and Neuts (1992) showed that M1(t)has a linear asymptote

n that there exist constant matrices A0 and A1 such that

1(t) = A0t + A1 + O(e−ηtt2r−1) as t → ∞, (15)

here −η is the real part of η∗, the non-zero eigenvalue of � with

aximum real part, and r is the multiplicity of η∗. Similarly, M2(t)

as a quadratic asymptote in that there exist constant matrices B0, B1

nd B2 such that

2(t) = B0t2 + 2B1t + 2B2 + O(e−ηtt3r−1) as t → ∞. (16)

he expressions for the coefficient matrices A0, A1, B0, B1, and B2

iven in Narayana and Neuts (1992) are in terms of the fundamental
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Fig. 2. The scaled intercept term bθ /K2 when μ = 1 and θ = e′
i
(that is, Q(0) = i almost

surely) as a function of i/K ∈ {0, 1/K, 2/K, . . . , 1}, for λ = 0.8, λ = 1, and λ = 1.2, for

K = 20 (stars) and K = 200 (dots).
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matrix �−. After rewriting them in terms of the deviation matrix via

the relation (6), we see that

A0 = (π�11)1π,

A1 = �	�11π + 1π�1�
	,

B0 = (π�11)2 1π,

B1 = (π�11)�	�11π + (π�11)1π�1�
	 + (π�1�

	�11)1π,

B2 = −1π(π�1(�
	)2�11)+ �	�11π�1�

	 − (π�11)(�	)2�11π

− (π�11)1π�1(�
	)2 + 1π�1�

	�1�
	 + �	�1�

	�11π.

By injecting (15) and (16) in terms of �	 into (14), and making a

few simplifications, we obtain the fact that Var(N(t)) has a linear

asymptote whose intercept term is

b̄θ = −2π�1�
	�	�11 − 2π�11θ(�	)2�11 + 2θ�	�1�

	�11

− (θ�	�11)2,

which proves the theorem.

Here are some observations:

• For θ = π, the correction term b̄θ − b̄e vanishes as expected.

• The correction term does not depend only on the variance of the

initial distribution θ, as we show to be the case for the M/G/1 queue

(see Proposition 7). Indeed, consider n = 3, θ1 = [1, 0, 0] and θ2 =
[0, 1, 0] which have the same variance equal to zero; however it

is easy to find an example of a Markovian Point Process for which

the value of b̄θ − b̄e is different for the two initial distributions.

• In the specific case where �11 = β1 (where β is a constant), the

correction term b̄θ − b̄e vanishes for all initial distributions θ be-

cause of the property (7). This shows that θ = π is a sufficient but

not necessary condition for having b̄θ = b̄e.

A further performance measure of interest is the asymptotic co-

variance between the number of points and the phase of a Markovian

Point Process. As shown in the following proposition, the deviation

matrix also plays a role in this asymptotic quantity.

Proposition 4. Let {N(t)} and {ϕ(t)} be the number of points in [0, t]

and the phase at time t of a Markovian Point Process with initial phase

distribution θ. Then,

lim
t→∞

Cov(N(t), ϕ(t)) =
n∑

i=1

i(π�1�
	)i − (

n∑
i=1

i πi)θ�
	�11.

Further, in the time-stationary case (θ = π), the term with the second

sum vanishes.

Proof. For a Markovian Point Process with initial distribution θ,

define Mθ
i
(t) = E[N(t)1{ϕ(t)=i}], and Mθ (t) = [Mθ

1(t), . . . , Mθ
n (t)]. From

Asmussen (2003, chap. XI, Proposition 1.7), we have

Mθ (t) = θ
∫ t

0

e�u �1 e�(t−u) du.

Let us define the transient deviation matrix as

�	(t) =
∫ t

0

(e�u − 1π)du =
∫ t

0

e�u du − 1π t,

so that �	 = limt→∞ �	(t). With this,

E[N(t)] = Mθ (t)1 = θ
∫ t

0

e�udu �11 = π�11t + θ�	(t)�11.

Next, note that E[N(t)ϕ(t)] = ∑n
i=1 i Mθ

i
(t). Therefore, since E[ϕ(t)] =∑n

i=1 i (θe�t)i, we obtain
ov(N(t), ϕ(t)) = E[N(t)ϕ(t)] − E[N(t)] E[ϕ(t)]

=
n∑

i=1

i

{[
θe�t

∫ t

0

e−�u�1e�udu

]
i

− (π�11t + θ�	(t)�11)[θe�t]i

}
.

inally, we take t → ∞ in the last expression, and we use the fact

hat limt→∞ θe�t = π, πe−�u = π, and
∫ t

0 e�udu = �	(t)+ 1πt. Af-

er some algebraic simplifications, we obtain the statement of the

roposition.

.4. M/M/1/K queue: arbitrary initial conditions

We now make use of Proposition 3 to investigate the intercept

erm b̄θ of v(t) for an arbitrary M/M/1/K queue where the distribution

f Q(0) is θ.

In Fig. 2, we show the (scaled) value of bθ for the particular initial

istributions θ = e′
i
, that is, for M/M/1/K queues which start with i

ustomers at time t = 0 almost surely, for 0 ≤ i ≤ K. We observe that

hen ρ < 1, bθ is a monotonically decreasing function of i, while

hen ρ ≥ 1, bθ exhibits a minimum. We also observe that for ρ > 1,

hen K increases and Q(0)/K → 1, bθ → 0.

In Fig. 3, we consider the behavior of the intercept term bθ in the

vent-stationary case, that is, when θ = α. The four graphs show the

orrection term bθ − be as a function of ρ (or, more precisely, as a

unction of λ for a fixed value of μ) for increasing values of K. We

ee that the curves have an interesting shape with two local minima

entered around ρ = 1. As K increases, the dips become narrow and

eep; the correction term converges to zero everywhere, except at

= 1 where further computation has shown that it decreases approx-

mately linearly. As a consequence, the effect of event-stationarity on

he intercept term becomes indistinguishable from the effect of time-

tationarity as K → ∞ for all values of ρ except in the balanced case.

Note that the explicit expressions for bθ when θ = e′
i

or θ = α can

lso be obtained, but since they are quite cumbersome and do not

ring more information, we do not present these here.

.5. M/M/1/K queue: asymptotic covariance

Making use of Proposition 4 and the particular structure of the

ector π and the matrix �1, in the stationary case, we can express
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Fig. 3. The correction term bθ − be when θ = α as a function of λ when μ = 1 and for

K = 10, 40, 100, 400.
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Fig. 4. The asymptotic covariance between D(t)and Q(t)as a function of λ when μ = 1

and for K = 10, 40, 100, 400.

Fig. 5. The variance curve and its linear asymptote for a stationary M/G/1 queue with

λ = 0.85, μ = 1 and G following a log-normal distribution with c2 = 2.
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2 We simulated 106 realizations of the queueing process, recording and estimating

the variance of D(t)over the grid t = 0, 5, 10, . . . , 800. Prior to time t = 0 we simulated

each realization for 3 × 104 units so as to begin in approximate steady-state. The

simulation is coded in C to allow for efficient computation. During the simulation

run, roughly 26 × 109 jobs were processed in the simulated M/G/1 queue.
he asymptotic covariance between the number of departures and the

ueue size explicitly.

orollary 5. Consider the stationary M/M/1/K queue with output process

D(t)} and queue level process {Q(t)}. Then,

lim
→∞

Cov(D(t), Q(t)) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρK+1

{
K2(ρ − 1)2

(
1 + 3ρK+1

) − 2ρ(ρK − 1)(−2 + ρ + ρK+2)

2(ρ − 1)2(ρK+1 − 1)3

+ K(ρ − 1)
(−1 + 3ρ − 7ρK+1 + 5ρK+2

)
2(ρ − 1)2(ρK+1 − 1)3

}
, ρ �= 1,

−K(K + 2)/24, ρ = 1.

roof. We use Proposition 4 with N(t) = D(t) and ϕ(t) = Q(t), to-

ether with the fact that (π�1�
	)i = −C �	

Ki
, where

=

⎧⎪⎪⎨
⎪⎪⎩
μ

ρK+1(1 − ρ)

1 − ρK+1
, for ρ �= 1,

μ

K + 1
, for ρ = 1,

nd �	

Ki
= πi (m

e
i

− mK,i). The entries �	

Ki
of the deviation matrix are

hen computed explicitly for 0 ≤ i ≤ K using the expressions for π

nd mi,j derived in the proof of Lemma 1.

Note that Proposition 4 indicates that the difference between

he stationary and the non-stationary cases is the correction term

(
∑

i iπi)θ�
	�11, where

∑
i iπi = K/2 for ρ = 1, and for ρ �= 1,

K

i=0

iπi = ρ(1 − (1 + K)ρK + Kρ1+K)

(1 − ρ)(1 − ρ1+K)
.

In Fig. 4, we illustrate the asymptotic covariance between D(t)

nd Q(t) in the stationary case, as a function of ρ and for increasing

alues of K. We see that the asymptotic covariance curves exhibit a

imilar behavior to (the negative of) those of the intercept term in

he stationary case (see Fig. 1), but in the present case the curves are

ore skewed with respect to ρ = 1.

. The M/G/1 queue

We now consider the departure process of the M/G/1 queue. In this

ase, the departure process {D(t)} is generally not a Markovian Point
rocess, and the analysis is more complicated. Nevertheless we are

ble to obtain some partial results about the linear asymptote of v(t).

ur approach is to first assume the existence of a linear asymptote

nd then to find an elegant formula for the intercept term under this

ssumption, generalizing the expression for the M/M/1 queue in (4)

or the stable case. Further we conjecture that our assumption holds

hen the third moment of the service time is finite.

Denote the arrival rate by λ, the service time distribution by G(·)
nd its kth moment by gk. In this case, μ = g−1

1 , and we assume that

= λ/μ < 1. The squared coefficient of variation and skewness coef-

cient are given by c2 = g2/g2
1 − 1 and γ = (2g3

1 − 3g1g2 + g3)/((g2 −
2
1)

3/2) respectively.

Consider the output from a simulated numerical example in Fig. 5.2

t depicts the variance curve and its linear asymptote for a stationary

/G/1 queue with λ = 0.85 and μ = 1 (ρ = 0.85). The service time

istribution is taken to be log-normal with c2 = 2. This implies that

= 10/
√

2. It is visually evident that for non-small t, v(t) ≈ vt + be.
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Indeed, for the rest of this paper, we shall assume that such a linear

asymptote exists. This is stated in the assumption below.

Assumption 1. There exist v and bθ such that,

v(t) = vt + bθ + o(1). (17)

The be term in Fig. 5 was calculated from the formula in

Proposition 6 below and is a function of μ, c2 and γ . As is attested

by the figure and by further extensive numerical experiments, we be-

lieve that such a term exists for all M/G/1 queues with ρ �= 1 in which

the service time distribution has a finite third moment, yet we have

not been able to prove this.

Conjecture 1. For λ �= μ, consider an M/G/1 queue operating under

any work-conserving non-pre-emptive policy, in which the service time

distribution has a finite third moment. Assume furthermore that the vari-

ance of the queue length at time 0 is finite. Then there exists a finite bθ

such that (17) holds, with

v =
{

λ, λ < μ,

μc2, λ > μ.

To get insight into the asymptotic variance rate, v, in Conjecture 1,

consider first the case where λ > μ. In this case, after some time τ

which is almost surely finite, the server never stops operating and

thus for t > τ , {D(t)} is effectively a renewal process with asymptotic

variance rate μc2 (see Eq. (1)). To the best of our knowledge, this

intuitive argument cannot easily be made rigorous.

For the case λ < μ, consider the relation D(t) = A(t)+ Q(0)− Q(t),

where D(t) is the number of service completions during [0, t], {A(t)} is

the Poisson arrival process, counting arrivals during [0, t], and Q(t) is

the number of customers in the system at time t. Taking the variance

of both sides of the last equation, observing that A(t) is independent

of Q(0), dividing by t, and letting t → ∞, we get

lim
t→∞

v(t)

t
= lim

t→∞
Var(A(t))

t
+ lim

t→∞
Var(Q(0))

t
+ lim

t→∞
Var(Q(t))

t

−2 lim
t→∞

Cov(Q(0), Q(t))

t
− 2 lim

t→∞
Cov(A(t), Q(t))

t
,

whenever the limits exist. Now the first limit on the right hand side

equals λ, the second limit vanishes by assumption, the third limit

should vanish since the stationary variance is finite (due to a finite

third moment – see Eq. (25)), the fourth limit should vanish since in

fact Cov(Q(0), Q(t))vanishes (this is not trivial to establish in general,

yet was communicated to us for the FCFS case through personal com-

munication with Brian Fralix), and finally, for the fifth limit observe

that

|Cov(A(t), Q(t))| ≤
√

λtVar(Q(t)) = O(
√

t),

and thus the limit vanishes. This implies that the departure asymp-

totic variance equals the arrival asymptotic variance. To get insight

into our belief of the importance of g3 < ∞ for the existence of bθ (at

least for the case λ < μ), see the proof of Proposition 6 below.

Our focus for the rest of this section is on the stable case (λ < μ) in

which we are able to find explicit expressions for be and bθ (including

b0).

3.1. M/G/1 queue: the stationary case

In Daley (1975) (see also Daley, 1976) Daley found the Laplace–

Stieltjes transform (LST) of the variance curve for the stationary case.

After some minor rearrangement, Daley’s formula may be written as

v∗(s) =
∫ ∞

e−stdv(t) = λ

s
+ b∗(s), (18)
0

here,

∗(s) = 2λ

s

(
G∗(s)

1 − G∗(s)

(
1 − s�(�(s))

s + λ(1 − �(s))

)
− λ

s

)
, (19)

nd the LST exists for �(s) > 0. Here, G∗(·) is the Laplace–Stieltjes

ransform (LST) of G(·), �(·) is the probability generating function of

he stationary number of customers in the system, with

(z) = (1 − ρ)
(1 − z)G∗(λ(1 − z))

G∗(λ(1 − z))− z
, (20)

or �(z) ≤ 1. Further, �(s) is the LST of the busy period at s, with

(s) > 0. It is obtained as the minimal non-negative solution of

(s) = G∗(s + λ(1 − �(s))). (21)

or relevant standard queueing background see for example Prabhu

1998).

We now have the following:

roposition 6. Consider the stationary M/G/1 queue having g3 < ∞. If

ssumption 1 holds, then the intercept term in (17) is given by

e = Le
ρ

(1 − ρ)2
, with

e =
(3c4 − 4γ c3 + 6c2 − 1)ρ3 + (4γ c3 − 12c2 + 4)ρ2 + (6c2 − 6)ρ

6
.

roof. Let b̃(·) be such that v(t) = λt + b̃(t). By Assumption 1,

imt→∞ b̃(t) = be. Since the LST of λt is λ/s and since the LST is a

inear operator, we have from (18) that for �(s) > 0 the LST of b̃(·) is

∗(s) =
∫ ∞

0

e−stdb̃(t).

y the Final Value Theorem (see for example Widder, 1959 for a

igorous reference) we have

im
s→0

b∗(s) = be. (22)

he remainder of the derivation deals with evaluation of the limit

22) by using (19) together with (20) in order to find be. This is a

ombination of straightforward classic queuing calculations together

ith five applications of L’Hospital’s rule. It requires us to evaluate

he first three moments of the busy period by taking derivatives of

21) and setting s → 0, and we get

1 = (1 + λb1)g1,

2 = λb2g1 + (1 + λb1)
2g2,

3 = λb3g1 + 3λ(1 + λb1)b2g2 + (1 + λb1)
3g3,

here b1 = −�′(0), b2 = �′′(0) and b3 = −�′′′(0). These values are

ell known and appear in many queueing texts, yet we present them

ere for completeness:

1 = μ−1 1

1 − ρ
,

2 = g2

(1 − ρ)3
= μ−2 c2 + 1

(1 − ρ)3
,

3 = g3(1 − ρ)+ 3λg2
2

(1 − ρ)5

= μ−3 3c4ρ + c3γ (1 − ρ)+ 3c2(1 + ρ)+ 2ρ + 1

(1 − ρ)5
.

Here are some observations:

• If G follows an exponential distribution, then c = 1 and γ = 2,

yielding be = 0, as is expected since in this case {D(t)} is a Poisson

process.
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• Le (and thus be) is monotone increasing in both c and γ .

• As ρ → 1, Le → (c4 − 1)/2. This gives some insight into the form

of the variance curve of heavy traffic systems, showing how the

squared coefficient of variation of G plays a role when ρ ≈ 1: When

c2 > 1 the intercept term is positive, and when c2 < 1 the intercept

term is negative. Further, as typical for heavy traffic systems, only

the first two moments of the service time play a role. The skewness

coefficient γ does not matter when ρ ≈ 1.

.2. M/G/1 queue: on a conjecture by Daley

In the M/M/1 queue case, v∗(s) in (18) is equal to λ/s, which corre-

ponds to the variance curve v(t) = λt. This is expected since, for the

tationary M/M/1 queue, {D(t)} is a Poisson process. In Daley (1975),

aley conjectures that the reverse implication is also true:

aving v(t) = λt implies that the service time distribution

is exponential.

estated in terms of LSTs using (18), the conjecture is that a b∗(s)
f the form (19), where G∗(s) is the LST of a probability distribution,

an be equal to zero only if G∗(s) = 1/(1 + sg1) with g1 > 0. Proving

aley’s conjecture would strengthen a result by Finch (1959), stating

hat all stationary M/G/1 queues with an Poisson output process are

/M/1 queues.

Our expression for be in Proposition 6 gives a necessary condition

or v(t) = λt:

(t) = λt only if Le = 0. (23)

t this point it is tempting to believe that if Le = 0 (i.e. be = 0) then

(t) = λt. This could then be used to disprove Daley’s conjecture, since

e only depends on the first three moments of G and it is known that

he exponential distribution is not characterized (within the class of

on-negative distributions) by the first three moments. For example,

onsider a mixture of an exponential random variable with point

asses at 1/2, 3/2, 5/2 and 9/2, with LST:

∗(s) = 1

384

(
192

1

1 + s
+ 147e− 1

2 s + 8e− 3
2 s + 30e− 5

2 s + 7e− 9
2 s

)
.

lementary calculation yields −G∗′(0) = 1, G∗′′(0) = 2, −G∗′′′(0) = 6, as

s the case for a unit mean exponential distribution, and thus Le = 0.

owever, via numerical evaluation of b∗(s) for the case where λ = 3/4

nd μ = 1, we verified that b∗(s) �= 0 and thus v(t) �= λt, but rather,

(t) = λt + o(1), where the o(1) term is not identically 0. Note that in

his case, �(s)was found by iterating (21) for fixed s over a fine grid of

. Thus we conclude that the necessary condition (23) is not sufficient.

aley’s conjecture remains open.

.3. M/G/1 queue: arbitrary initial conditions

We are now able to use the steady state intercept term to obtain

he intercept term for a system with an arbitrary distribution of the

nitial state.

roposition 7. Consider the M/G/1 queue with ρ < 1, g3 < ∞ and an

rbitrary initial distribution of the number of customers having a finite

ariance. If Assumption 1 holds, then the intercept term in (17) is given

y

θ = σ 2
0 − σ 2

π + be,

here σ 2
0 = Var(Q(0)), σ 2

π is the steady state variance of the number of

ustomers in the system, and be is as in Proposition 6.
 t
roof. We use a coupling argument. Consider the following two sys-

ems 0 and θ under the same sample path of the arrival process and

ervice times. System 0 starts empty and system θ starts with Q(0)

ustomers in the system. Operate system θ by giving low priority to

he initial Q(0) customers, that is, these customers are served only

hen there are no other customers in system and pre-empted if an

rrival occurs during their service time. This implies that the first Q(0)

ustomers of System θ are being served only at times that coincide

ith idle periods of System 0. After a finite time T , the trajectories

f the queue lengths of the two systems coincide. Thus for t ≥ T ,

θ (t) = D0(t)+ Q(0), where Di(·) denotes the relevant output count-

ng process. This yields λt + bθ = λt + b0 + o(1)+ Var(Q(0)). Taking

→ ∞ we obtain,

θ = b0 + Var(Q(0)). (24)

ow selecting Q(0) to be distributed according to the steady state

istribution we get from (24), b0 = be − σ 2
π . Applying this again in

24) we obtain the result. Note that a similar coupling argument also

olds for the non-preemptive case.

As is well known, σ 2
π can be obtained directly from �(·), yet it is a

umbersome calculation. We state it here for completeness:

2
π =

((
1

4
c4 − 1

3
γ c3 + 1

2
c2 − 1

12

)
ρ3 +

(
1

3
γ c3 − 3

2
c2 + 5

6

)
ρ2

+
(

3

2
c2 − 3

2

)
ρ + 1

)
ρ

(1 − ρ)2
. (25)

s a result of the above, the intercept term for a system that starts

mpty is:

0 = −(1 − L0)
ρ

(1 − ρ)2
, with

0 =
(3c4 − 4γ c3 + 6c2 − 1)ρ3 + (4γ c3 − 6c2 − 2)ρ2 + (−6c2 + 6)ρ

12
.

ere are some observations:

• In the M/M/1 queue, L0 = 0 and thus b0 = −ρ/(1 − ρ)2. As ex-

pected, this is in agreement with the case ρ < 1 in (4).

• As ρ → 1, L0 → (c2 − 1)2/4. This implies that in heavy-traffic, c2

plays a similar role with respect to the sign of the intercept term as

it did in the stationary case: In this case when c2 > 3 the intercept

term is positive, and when c2 ≤ 3 the intercept term is negative.

Compare with the remarks following Proposition 6.

. Conclusion

In going through the detailed Markovian Point Process derivations

or M/M/1/K queues, we have illustrated how asymptotic quantities

uch as b may be obtained explicitly. The key is to have explicit ex-

ressions for mean hitting times in the underlying Markov chain. By

sing the deviation matrix we have gained some further insight into

he BRAVO effect. In plotting the graphs of dv and db, we observe that

pikes occur when λ ≈ μ in a similar fashion to the BRAVO effect.

For the M/G/1 queue, the formal calculations are of a different

avor, but are also generally tedious. Nevertheless, in stating our

esults, we have had to resort to Assumption 1. We believe that this

ssumption holds whenever G has a finite third moment (as specified

y Conjecture 1). Toward this end, it is worthwhile to refer the reader

o Fralix (2012) and Fralix and Riaño (2010), where similar transient



464 S. Hautphenne et al. / European Journal of Operational Research 242 (2015) 455–464

C

D

D

D

D

D

D

D

D

F

F

F

H

H

H

K

K

K

L

N

N

N

O

P

P

S

T

W

analysis of the M/G/1 queue is undertaken; see also Pakes (1971) for

classic results in the stationary case.

Besides the “transient moment problems” associated with

Assumption 1, our work has highlighted other open questions about

M/G/1 queues: (i) Daley’s conjecture discussed in detail in Section 3.2

above, remains open. (ii) We have not been able to find bθ when ρ > 1.

(iii) In the case ρ = 1 we conjecture that the variance curve can be

written in the form v(t) = v̄t + a
√

t + b + o(
√

t). Our belief stems from

our knowledge of M/M/1 queues (see Eq. (4)):

v(t) = 2

(
1 − 2

π

)
λ t +

√
λ

π

√
t + o(

√
t).

Hence it is natural to believe that the critical M/G/1 queue also has

such a
√

t term, perhaps with a constant differing from
√

λ/π . Note

that the GI/G/1 results of Al Hanbali et al. (2011) actually imply that

for the M/G/1 queue,

v̄ = (1 + c2)

(
1 − 2

π

)
λ,

where c2 is the squared coefficient of variation of the service time.

But to date, nothing is known about the a and b terms for the general

M/G/1 queue.
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