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Abstract

The foundations of functional programming languages are examined from both
historical and technical perspectives. Their evolution is traced through several
critical periods: early work on lambda calculus and combinatory calculus, Lisp,
Iswim, FP, ML, and modern functional languages such as Miranda1 and Haskell.
The fundamental premises on which the functional programming methodology
stands are critically analyzed with respect to philosophical, theoretical, and prag-
matic concerns. Particular attention is paid to the main features that characterize
modern functional languages: higher-order functions, lazy evaluation, equations
and pattern-matching, strong static typing and type inference, and data abstrac-
tion. In addition, current research areas—such as parallelism, non-determinism,
input/output, and state-oriented computations—are examined with the goal of pre-
dicting the future development and application of functional languages.
Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative
(Functional) Programming; D.3.2 [Programming Languages]: Language Classifications—
applicative languages; data-flow languages; nonprocedural languages; very high-
level languages; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—lambda calculus and related systems; K.2 [History of Computing]: Software.
General Terms: Languages.
Additional Key Words and Phrases: referential transparency, higher-order func-
tions, types, lazy evaluation, data abstraction.

1 Introduction

The earliest programming languages were developed with one simple goal in mind: to
provide a vehicle through which one could control the behavior of computers. Not

∗To appear in ACM Computing Surveys.
1Miranda is a trademark of Research Software Ltd.
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surprisingly, these early languages reflected fairly well the structure of the underlying
machines. Although at first blush this seems emminently reasonable, this viewpoint
quickly changed, for two very good reasons. First, it became obvious that what was
easy for a machine to reason about was not necessarily easy for a human to reason
about. Second, as the number of different kinds of machines increased, the need arose
for a common language with which to program all of them.

Thus from primitive assembly languages (which were at least a step up from raw
machine code) there grew a plethora of high-level programming languages, beginning
with Fortran in the 50’s. The development of these languages grew so rapidly that by
the 80’s they were best characterized by grouping them into “families” that reflected
a common computation model or programming “style.” Debates over which language
or family of languages is best will undoubtedly persist for as long as computers need
programmers.

The class of functional, or applicative programming languages, in which computa-
tion is carried out entirely through the evaluation of expressions, is one such family of
languages, and debates over its merits have been quite lively in recent years. Are func-
tional languages toys, or are they tools? Are they artifacts of theoretical fantasy, or of
visionary pragmatism? Will they ameliorate our software woes, or merely compound
them? Whatever answers one might have for these questions, one cannot ignore the
significant interest current researchers have in functional languages, and the impact
they have had on both the theory and pragmatics of programming languages in general.

Among the claims made by functional language advocates are that programs can
be written quicker, are more concise, are “higher level” (resembling more closely tra-
ditional mathematical notation), are more amenable to formal reasoning and analysis,
and can be executed more easily on parallel architectures. Of course, many of these
features touch on rather subjective issues, which is one reason why the debates can be
so lively.

It is my purpose in writing this paper to give the reader significant insight into
the very essence of functional languages and the programming methodology that they
support. I will do so by starting with a general discussion of the nature of functional
languages, followed by a historical sketch of their development, a summary of the dis-
tinguishing characteristics of modern functional languages, and a discussion of current
research areas. Through this study I hope to put into perspective both the power and
weaknesses of the functional programming paradigm.

A Note to the Reader: I have assumed in writing this paper that the reader has a
good understanding of the fundamental issues in programming language design and
use. Although reasonably self-contained, this paper should not be considered as a tu-
torial on functional languages; the reader is referred to either [BW88] or [FH88] as suit-
able textbooks for learning more about modern functional programming techniques,
including the important ideas behind reasoning about functional programs. In addi-
tion, I will say very little about how to implement functional languages; see [PJ87] for
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an introduction to this important area (additional references are given in Sections 2.8
and 6).

Finally, a comment on notation: unless otherwise stated, all examples will be written
in Haskell, a recently proposed functional language standard [HWe88]. However, rather
than explain the syntax all at once, explanations will be given “on the fly” and enclosed
in square brackets [...].2

1.1 The Programming Language Spectrum

Imperative languages are characterized as having an implicit state that is modified
(i.e. side-effected) by constructs (i.e. commands) in the source language. As a result,
such languages generally have a notion of sequencing (of the commands) to permit
precise and deterministic control over the state. Most, including the most popular,
languages in existence today are imperative.

As an example, the assignment statement is a (very common) command, since its
effect is to alter the underlying implicit store so as to yield a different binding for a
particular variable. The begin...end construct is the prototypical sequencer of com-
mands, as are the well-known goto statement (unconditional transfer of control), con-
ditional statement (qualified sequencer), and while loop (an example of a “structured
command”). With these simple forms we can then, for example, compute the factorial
of the number x:

n := x;
a := 1;
while n>0 do
begin a := a*n;

n := n-1
end;
...

After execution of this program the value of a in the implicit store will contain the
desired result.

In contrast, declarative languages are characterized as having no implicit state, and
thus the emphasis is placed entirely on programming with expressions (or terms). In
particular, functional languages are declarative languages whose underlying model of
computation is the function (in contrast to, for example, the relation that forms the
basis for logic programming languages.

2Since the Haskell Report is relatively new, some minor changes to the language may occur after this
paper has appeared. An up-to-date copy of the Report may be obtained from the author.
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In a declarative language state-oriented computations are accomplished by carry-
ing the state around explicitly rather than implicitly, and looping is accomplished via
recursion rather than by sequencing. For example, the factorial of x may be computed
in the functional language Haskell by:

fac x 1
where fac n a = if n>0 then fac (n-1) (a*n)

else a

in which the formal parameters n and a are examples of “carrying the state around
explicitly,” and the recursive structure has been arranged so as to mimic as closely as
possible the looping behavior of the program given earlier. Note that the conditional in
this program is an expression rather than command; i.e. it denotes a value (conditional
on the value of the predicate), rather than denoting a sequencer of commands. Indeed
the value of the program is the desired factorial, rather than it being found in an implicit
store.

Functional (in general, declarative) programming is often described as expressing
what is being computed rather than how, although this is really a matter of degree. For
example, the above program may say less about how factorial is computed than the
imperative program given earlier, but is perhaps not as abstract as:

fac x
where fac n = if n==0 then 1

else n * fac (n-1)

[ == is the infix operator for equality.] which appears very much like the mathematical
definition of factorial, and is indeed a valid functional program.

Since most languages have expressions, it is tempting to take our definitions liter-
ally and describe functional languages via derivation from conventional programming
languages: simply drop the assignment statement and any other side-effecting prim-
itives, and there you have it! This, of course, is very misleading. The result of such
a derivation is usually far less than satisfactory, since the purely functional subset of
most imperative languages is hopelessly weak (although there are important excep-
tions, such as Scheme [RCe86]).

Rather than saying, then, what functional languages don’t have, it is better to char-
acterize them by the features they do have. For modern functional languages, those
features include higher-order functions, lazy evaluation, pattern-matching, and various
kinds of data abstraction — all of these features will be described in detail in this paper.
Functions are treated as first-class objects, are allowed to be recursive, higher-order,
and polymorphic, and in general are provided with mechanisms that ease their defini-
tion and use. Syntactically, modern functional languages have an “equational” look, in
which functions are defined using mutually recursive equations and pattern-matching.
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This discussion suggests that what is important is the functional programming
style, in which the above features are manifest, and in which side effects are strongly
discouraged but not necessarily eliminated. This is the viewpoint taken by the ML com-
munity, for example, and to some extent the Scheme community. On the other hand,
there is a very large contingency of “purists” in the functional programming commu-
nity who believe that purely functional languages are not only sufficient for general
computing needs, but also better because of their “purity.” At least a dozen purely
functional languages exist along with their implementations.3 The main property that
is lost when side effects are introduced is referential transparency; this loss in turn
impairs equational reasoning, as described below.

1.2 Referential Transparency and Equational Reasoning

The emphasis on a pure declarative style of programming is perhaps the hallmark of
the functional programming paradigm. The term referentially transparent is often used
to describe this style of programming, in which “equals can be replaced by equals.” For
example, consider the (Haskell) expression:

... x+x ...
where x = f a

The function application (f a) may be substituted for any free occurrence of x in the
scope created by the where expression, such as in the subexpression x+x. The same
cannot generally be said of an imperative language, where one must first be sure that
no assignment to x is made in any of the statements intervening between the initial
definition of x and one of its subsequent uses.4 In general this can be quite a tricky
task, for example in the case where procedures are allowed to induce non-local changes
to lexically scoped variables.

Although the notion of referential transparency may seem like a simple idea, the
clean equational reasoning that it allows is very powerful, not only for reasoning for-
mally about programs, but also informally in writing and debugging programs. A pro-
gram in which side-effects are minimized, but not eliminated, may still benefit from
equational reasoning, although naturally more care must be taken when applying such
reasoning. The degree of care, however, may be much higher than one might think at
first: most languages that allow “minor” forms of side-effects do not minimize their

3This situation forms an interesting contrast with the logic programming community, where Prolog is
often described as declarative (whereas Lisp is usually not), and there are very few pure logic programming
languages (and even fewer implementations).

4In all fairness, there are logics for reasoning about imperative programs, such as those espoused
by Floyd, Hoare, Dijkstra, Wirth, and others. None of them, however, exploit any notion of referential
transparency.
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locality lexically—thus any call to any function in any module might conceivably intro-
duce a side-effect, in turn invalidating many applications of equational reasoning.

The perils of side-effects are appreciated by the most experienced programmers in
any language, although most are loathe to give them up completely. It remains the
goal of the functional programming community to demonstrate that one can do com-
pletely without side-effects, without sacrificing efficiency or modularity. Of course, as
mentioned earlier, the lack of side-effects is not all there is to the functional program-
ming paradigm—as we shall soon see, modern functional languages rely heavily on
certain other features, most notably higher-order functions, lazy evaluation, and data
abstraction.

1.3 Plan of Study

Unlike many developments in computer science, functional languages have maintained
the principles on which they were founded to a surprising degree. Rather than chang-
ing or compromising those ideas, modern functional languages are best classified as
embellishments of a certain set of ideals. It is a distinguishing feature of modern func-
tional languages that they have so effectively held on to pure mathematical principles
in a way shared by very few other languages.

Because of this, one can learn a great deal about functional languages simply by
studying their evolution closely. On the other hand, such a study may fail to yield a
consistent treatment of any one feature that is common to most functional languages,
for it will be fractured into its manifestations in each of the languages as they were
historically developed. For this reason I have taken a three-fold approach to our study:

First, in the next section I will provide a historical sketch of the development of
functional languages. Starting with the lambda calculus as the prototypical functional
language, I will gradually embellish it with ideas as they were historically developed,
leading eventually to a reasonable technical characterization of modern functional lan-
guages.

In so doing, however, I will postpone detailed discussion of four important concepts—
higher-order functions, lazy evaluation, data abstraction mechanisms, and equations/pattern-
matching—which are critical components of all modern functional languages and are
best discussed as independent topics. Section 3 is devoted to these important ideas.

Finally, in Section 4 I will discuss more advanced ideas, and outline some critical
research areas. Then to round out the paper, in Section 5 I will try to put into perspec-
tive some of the limitations of functional languages by examining some of the myths
that have accompanied their development.
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2 The Evolution of Functional Languages

2.1 The Lambda Calculus

The development of functional languages has been influenced from time to time by
many sources, but none is as paramount nor as fundamental as the work of Alonzo
Church on the lambda calculus [Chu33, Chu41]. Indeed the lambda calculus is usually
regarded as the first functional language, although it was certainly not thought of as
programming language at the time, given that there were no computers to run the
programs on! In any case, modern functional languages can be thought of as (non-
trivial) embellishments of the lambda calculus.

It is often thought that the lambda calculus also formed the foundation for Lisp,
but this in fact appears not to be the case [McC78]. The impact of the lambda calculus
on early Lisp development was minimal, and it has only been very recently that Lisp
has begun to evolve more toward lambda calculus ideals. On the other hand, Lisp had
a significant impact on the subsequent development of functional languages, as will be
discussed in Section 2.2.

Church’s work was motivated by the desire to create a calculus (informally, a syntax
for terms and set of rewrite rules for transforming terms) that captured one’s intuition
about the behavior of functions. This approach is counter to the consideration of func-
tions as, for example, sets (more precisely, sets of argument/value pairs), since the
intent was to capture the computational aspects of functions. A calculus is a formal
way for doing just that.

Church’s lambda calculus was the first suitable treatment of the computational as-
pects of functions. Its type-free nature yielded a particularly small and simple calculus,
and it had one very interesting property, capturing functions in their fullest generality:
functions could be applied to themselves. In most reasonable theories of functions as
sets, this is impossible, since it requires the notion of a set containing itself, result-
ing in well-known paradoxes. This ability of self-application is what gives the lambda
calculus its power, since it allows one to gain the effect of recursion without explic-
itly writing a recursive definition. Despite this powerful ability, the lambda calculus is
consistent as a mathematical system—no contradictions or paradoxes arise.

Because of the relative importance of the lambda calculus to the development of
functional languages, I will describe it in some detail in the remainder of this section,
using modern notational conventions.

2.1.1 Pure Untyped Lambda Calculus

The abstract syntax of the pure untyped lambda calculus (a name chosen to distinguish
it from other versions developed later) embodies what are called lambda expressions,
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defined by:5

x ∈ Id Identifiers
e ∈ Exp Lambda Expressions

where e ::= x | e1 e2 | λx.e

Expressions of the form λx.e are called abstractions, and of the form (e1 e2) are
called applications. It is the former that captures the notion of a function, and the
latter that captures the notion of application of a function. By convention, application
is assume to be left associative, so that (e1 e2 e3) is the same as ((e1 e2) e3).

The rewrite rules of the lambda calculus depend on the notion of substitution of an
expression e1 for all “free” occurrences of an identifier x in an expression e2, which
we write as [e1/x]e2.6 Most systems, including both the lambda calculus and pred-
icate calculus, that utilize substitution on identifiers must be careful to avoid name
conflicts. Thus, although the intuition behind substitution is strong, its formal defini-
tion can be somewhat tedious—the reader who is comfortable with his/her intuition
about substitution may skip over the next paragraph, which is included primarily for
completeness.

To understand substitution we must first understand the notion of the free variables
of an expression e, which we write as fv(e), and define by the following simple rules:

fv(x) = {x}
fv(e1 e2) = fv(e1)∪ fv(e2)
fv(λx.e) = fv(e)− {x}

We say that x is free in e iff x ∈ fv(e). The substitution [e1/x]e2 is then defined
inductively by:

[e/xi]xj =
{
e, if i = j
xj, if i �= j

[e1/x](e2 e3) = ([e1/x]e2) ([e1/x]e3)

[e1/xi](λxj.e2) =



λxj.e2, if i = j
λxj.[e1/xi]e2, if i �= j and xj �∈ fv(e1)
λxk.[e1/xi]([xk/xj]e2), otherwise, where k �= i, k �= j,

and xk �∈ fv(e1)∪ fv(e2)

The last rule is the subtle one, since it is where a name conflict could occur, and is
resolved by making a name change. The following example demonstrates application

5The notation “d ∈ D” means that d is a “typical element” of the set D, whose elements may be
distinguished by subscripting. In the case of identifiers, we assume that each xi is unique; i.e., xi �= xj if
i �= j. The notation “d ::= alt1 | alt2 | · · · | altn” is standard BNF syntax.

6In denotational semantics the notation e[v/x] is used to denote the function e′ that is just like e
except that e′ x = v . Our notation of placing the brackets in front of the expression is to emphasize that
[v/x]e is a syntactic transformation on the expression e itself.
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of all three rules:

[y/x]((λy.x)(λx.x)x) ≡ (λz.y)(λx.x)y

To complete the lambda calculus we define three simple rewrite rules on lambda
expressions:

1. α-conversion (“renaming”): λxi.e ⇔ λxj.[xj/xi]e, where xj �∈ fv(e).

2. β-conversion (“application”): (λx.e1)e2 ⇔ [e2/x]e1.

3. η-conversion: λx.(e x)⇔ e, if x �∈ fv(e).

These rules, together with the standard equivalence relation rules for reflexivity, sym-
metricity, and transitivity, induce a theory of convertibility on the lambda calculus,
which can be shown to be consistent as a mathematical system.7 The well-known
Church-Rosser Theorem [CR36] (actually two theorems) is what embodies the strongest
form of consistency, and has to do with a notion of reduction, which is the same as
convertibility but restricted so that β-conversion and η-conversion only happen in one
direction:

1. β-reduction: (λx.e1)e2 ⇒ [e2/x]e1.

2. η-reduction: λx.(e x)⇒ e, if x �∈ fv(e).

We write “e1 ⇒∗ e2” if e2 can be derived from zero or more β- or η-reductions or α-
conversions; in other words ⇒∗ is the reflexive, transitive closure of ⇒ including α-
conversions. Similarly,⇔∗ is the reflexive, transitive closure of⇔. In summary,⇒∗ cap-
tures the notion of “reducibility,” and ⇔∗ captures the notion of “intra-convertibility.”

Definition: A lambda expression is in normal form if it cannot be further reduced using
β- or η-reduction.

Note that some lambda expressions have no normal form, such as:

(λx. (x x)) (λx. (x x))

where the only possible reduction leads to an identical term, and thus the reduction
process is non-terminating.

Nevertheless, the normal form appears to be an attractive canonical form for a term,
has a clear sense of “finality” in a computational sense, and is what we intuitively think
of as the value of an expression. Obviously we would like for that value to be unique,
and we would like to be able to find it whenever it exists. The Church-Rosser Theorems
give us positive results for both of these desires.

7The lambda calculus as we have defined it here is what Barendregt [Bar84] calls the λKη-calculus,
and is slightly more general than Church’s original λK-calculus (which did not include η-conversion).
Furthermore, Church originally showed the consistency of the λI-calculus [Chu41], an even smaller subset
(it only allowed abstraction of x from e if x was free in e). We will ignore the subtle differences between
these calculi here—our version is the one most often discussed in the literature on functional languages.

9



2.1.2 The Church-Rosser Theorems

Church-Rosser Theorem I: If e0 ⇔∗ e1 then there exists an e2 such that e0 ⇒∗ e2 and
e1 ⇒∗ e2.8

In other words, if e0 and e1 are intra-convertible, then there exists a third term
(possible the same as e0 or e1) to which they can both be reduced.

Corollary: No lambda expression can be converted to two distinct normal forms (ignor-
ing difference due to α-conversion).

One consequence of this result is that how we arive at the normal form does not
matter; i.e. the order of evaluation is irrelevant (this has important consequences for
parallel evaluation strategies). The question then arises as to whether or not it is always
possible to find the normal form (assuming it exists). We begin with some definitions.

Definition: A normal-order reduction is a sequential reduction in which, whenever there
is more than one reducible expression (called a redex), the left-most one is chosen first.
In contrast, an applicative-order reduction is a sequential reduction in which the left-
most innermost redex is chosen first.

Church-Rosser Theorem II: If e0 ⇒∗ e1 and e1 is in normal form, then there exists a
normal-order reduction from e0 to e1.

This is a very satisfying result; it says that if a normal form exists, we can always
find it; i.e. just use normal-order reduction. To see why applicative-order reduction is
not always adequate, consider the following example:

applicative-order: normal-order:
(λx. y) ((λx. x x) (λx. x x)) (λx. y) ((λx. x x) (λx. x x))

⇒ (λx. y) ((λx. x x) (λx. x x)) ⇒ y

⇒ ...

We will return to the trade-offs between normal- and applicative-order reduction in
Section 3.2. For now we simply note that the strongest completeness and consistency
results have been achieved with normal-order reduction.

In actuality, one of Church’s (and others’) motivations for developing the lambda
calculus in the first place was to form a foundation for all of mathematics (in the way
that, for example, set theory is claimed to provide such a foundation). Unfortunately, all
attempts to extend the lambda calculus sufficiently to form such a foundation failed to
yield a consistent theory. Church’s original extended system was shown inconsistent
by the Kleene-Rosser Paradox [KR35]; a simpler inconsistency proof is embodied in
what is known as the Curry Paradox [Ros82]. The only consistent systems that have

8Church and Rosser’s original proofs of their theorems are rather long, and many have tried to improve
on them since. The shortest proof I am aware of for the first theorem is fairly recent, and aptly due to
Rosser [Ros82].
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been derived from the lambda calculus are much too weak to claim as a foundation for
mathematics, and the problem remains open today.

These inconsistencies, although disappointing in a foundational sense, did not slow
down research on the lambda calculus, which turned out to be quite a nice model
of functions and of computation in general. The Church-Rosser Theorem was an ex-
tremely powerful consistency result for a computation model, and in fact rewrite sys-
tems completely different from the lambda calculus are often described as “possessing
the Church-Rosser property” or even anthropomorphically as being “Church-Rosser.”

2.1.3 Recursion, λ-Definability, and Church’s Thesis

Another nice property of the lambda calculus is embodied in the following theorem:

Fixpoint Theorem: Every lambda expression e has a fixpoint e′ such that (e e′)⇔∗ e′.

Proof: Take e′ to be (Ye) where Y , known as the Y combinator, is defined by:

Y ≡ λf .(λx.f (x x))(λx.f (x x))
Then we have:

(Ye) = (λx.e(x x))(λx.e(x x))
= e((λx.e(x x))(λx.e(x x)))
= e(Ye)

This surprising theorem (and equally surprising simple proof) is what has earned
Y the name “paradoxical combinator.” The theorem is quite significant—it means that
any recursive function may be written non-recursively (and non-imperatively!). To see
how, consider a recursive function f defined by:

f ≡ · · ·f · · ·
This could be rewritten as:

f ≡ (λf . · · ·f · · ·)f
where note that the inner occurrence of f is now bound. This equation essentially says
that f is a fixpoint of the lambda expression (λf . · · ·f · · ·)—but that is exactly what
Y computes for us, so we arrive at the following non-recursive definition for f :

f ≡ Y (λf . · · ·f · · ·)
As a concrete example, the factorial function:

fac ≡ λn. if (n = 0) then 1 else (n∗ fac(n− 1))

can be written non-recursively as:

fac ≡ Y (λfac. λn. if (n = 0) then 1 else (n ∗ fac(n − 1)))
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The ability of the lambda calculus to “simulate recursion” in this way is the key to
its power, and accounts for its persistence as a useful model of computation. Church
recognized this, and is perhaps best expressed in his now famous thesis:

Church’s Thesis: Effectively computable functions from positive integers to positive in-
tegers are just those definable in the lambda calculus.

This is quite a strong claim! Although the notion of “functions from positive inte-
gers to positive integers” can be formalized very precisely, the notion of “effectively
computable” cannot; thus no proof can be given for the thesis. However, it gained
support from Kleene who in 1936 [Kle36] showed that “λ-definability” was precisely
equivalent to Gödel and Herbrand’s notions of “recursiveness.” Meanwhile, Turing
had been working on his now famous Turing Machine [Tur36], and in 1937 [Tur37]
he showed that “Turing computability” was also precisely equivalent to λ-definability.
These were quite satisfying results.9

The lambda calculus and the Turing machine were to have profound impacts on
programming languages and computational complexity,10 respectively, and computer
science in general. This influence was probably much greater than Church or Turing
could have imagined, which is perhaps not surprising given that computers did not
even exist yet!

In parallel with the development of the lambda calculus, Schönfinkel and Curry
were busy founding combinatory logic. It was Schönfinkel [Sch24] who discovered the
surprising result that any function could be expressed as the composition of only two
simple functions, K and S. Curry proved the consistency of a pure combinatory calculus
[Cur30], and with Feys elaborated the theory considerably [CF58]. Although this work
deserves as much attention from a logician’s point of view as the lambda calculus, and
in fact its origins predate that of the lambda calculus, we will not pursue it further
here, since it did not contribute directly to the development of functional languages
in the way that the lambda calculus did. On the other hand, the combinatory calculus
was to eventually play a surprising role in the implementation of functional languages,
beginning with [Tur79] and summarized in [PJ87, Chapter 16].

Another noteworthy attribute of the lambda calculus is its restriction to functions
of one argument. That it suffices to consider only such functions was first suggested by
Frege in 1893 [vH67] and independently by Schönfinkel in 1924 [Sch24]. This restriction
was later exploited by Curry [CF58], who used the notation (f x y) to denote ((f x) y),
and which previously would have been written f(x,y). This notation has become
known as “currying,” and f is said to be a “curried function.” As we will see, the

9Much later Post [Pos43] and Markov [Mar51] proposed two other formal notions of effective com-
putability, but these also were shown to be equivalent to λ-definability.

10Although the lambda calculus and the notion of λ-definability pre-dated the Turing Machine, com-
plexity theorists latched onto the Turing Machine as their fundamental measure of decidability. This
is probably because of the appeal of the Turing Machine as a machine, giving it more credibility in the
emerging arena of electronic digital computers. See [Tra88] for an interesting discussion of this issue.
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notion of currying has carried over today as a distinguishing syntactic characteristic
of modern functional languages.

There are several variations and embellishments of the lambda calculus that his-
torically could be mentioned here, but instead of doing that I will postpone their dis-
cussion until the point at which functional languages exhibited similar characteristics.
In this way we can see more clearly the relationship between the lambda calculus and
functional languages.

2.2 Lisp

A discussion of the history of functional languages would certainly be remiss if it did
not include a discussion of Lisp, beginning with McCarthy’s seminal work in the late
1950’s.

Although lambda calculus is often considered as the foundation of Lisp, by Mc-
Carthy’s own account [McC78] the lambda calculus actually played a rather small role.
Its main impact came through McCarthy’s desire to represent functions “anonymously,”
and Church’s λ-notation was what he chose: a lambda abstraction written λx.e in
lambda calculus would be written (lambda (x) e) in Lisp.

Beyond that, the similarity wanes. For example, rather than use the Y combinator
to express recursion, McCarthy invented the conditional expression,11 with which re-
cursive functions could be defined explicitly (and, arguably, more intuitively). As an
example, the non-recursive factorial function given in the lambda calculus in the last
section would be written recursively in Lisp in the following way:

(define fac (n)
(if (= n 0)

1
(* n (fac (- n 1))) ))

This and other ideas were described in two landmark papers in the early 60’s [McC60,
McC63], papers that inspired work on Lisp for many years to come.

McCarthy’s original motivation for developing Lisp was the desire for an algebraic
list processing language for use in artificial intelligence research. Although symbolic
processing was a fairly radical idea at the time, his aims were quite pragmatic. One
of the earliest attempts at designing such a language was suggested by McCarthy, and
resulted in FLPL (for Fortran-compiled List Processing Language), implemented in 1958
on top of the Fortran system on the IBM 704 [GHG60]. Over the next few years McCarthy
designed, refined, and implemented Lisp. His chief contributions during this period
were:

11The conditional in Fortran (essentially the only other programming language in existence at the time)
was a statement, not an expression, and was for control, not value-defining, purposes.
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1. The conditional expression and its use in writing recursive functions.

2. The use of lists and higher-order operations over lists such as mapcar.

3. The central idea of a “cons cell,” and the use of garbage collection as a method of
reclaiming unused cells.

4. The use of S-expressions (and abstract syntax in general) to represent both pro-
gram and data.12

All four of these features are essential ingredients of any Lisp implementation today,
and the first three are essential to functional language implementations as well.

A simple example of a typical Lisp definition is the following one for mapcar:

(define mapcar (fun lst)
(if (null lst)

nil
(cons (fun (car lst)) (mapcar fun (cdr lst))) ))

This example demonstrates all of the points mentioned above. Note that the function
fun is passed as an argument to mapcar. Although such higher-order programming
was very well known in lambda calculus circles, it was certainly a radical departure from
Fortran, and has become one of the most important programming techniques in Lisp
and functional programming (higher-order functions are discussed more in Section
3.1). The primitive functions cons, car, cdr, and null are the well-known operations
on lists whose names are still used today. cons creates a new list cell without burdoning
the user with explicit storage management; similarly, once that cell is no longer needed
a “garbage collector” will come along and reclaim it, again without user involvement.
For example, since mapcar constructs a new list from an old one, in the call:

(mapcar fun (cons a (cons b nil)))

the list (cons a (cons b nil)) will become garbage after the call and will automat-
ically be reclaimed. Lists were to become the paradigmatic data structure in Lisp and
early functional languages.

The definition of mapcar in a modern functional language such as Haskell would
appear similarly, except that pattern-matching would be used to “destructure” the list:

mapcar fun [] = []
mapcar fun (x:xs) = fun x : mapcar fun xs

12Interestingly, McCarthy claims that it was the read and print routines that influenced this notation
most! [McC78]
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[ [] is the null list, and : is the infix operator for cons; also note that function appli-
cation has higher precedence than any infix operator.]

McCarthy was also interested in designing a practical language, and thus Lisp had
many pragmatic features—in particular, sequencing, the assignment statement, and
other primitives that induced side-effects on the store. Their presence undoubtedly had
much to do with early experience with Fortran. Nevertheless, McCarthy emphasized
the “mathematical elegance” of Lisp in his early papers, and in a much later paper
his student Cartwright demonstrated the ease with which one could prove properties
about pure Lisp programs [Car76].

Despite its impurities, Lisp had a great influence on functional language develop-
ment, and it is encouraging to note that modern Lisps (especially Scheme) have returned
more to the purity of the lambda calculus rather than the ad hocery that plagued the
Maclisp era. This return to purity includes the “first-class” treatment of functions and
the lexical scoping of identifiers. Furthermore, the preferred modern style of Lisp pro-
gramming, such as espoused by Abelson and Sussman [ASS85], can be characterized
as being predominantly side-effect free. And finally, we point out that Henderson’s
Lispkit Lisp [Hen80] is a purely functional version of Lisp that uses an infix, algebraic
syntax.

2.2.1 Lisp in Retrospect

Before continuing our historical development it is helpful to consider some of the
design decisions McCarthy made and how they would be formalized in terms of the
lambda calculus. It may seem that conditional expressions, for example, are an obvious
feature to have in a language, but I think that only reflects our familiarity with mod-
ern high-level programming languages, most of which have them. In fact the lambda
calculus version of the factorial example given in the previous section used a condi-
tional (not to mention arithmetic operators) yet most readers probably understood it
perfectly, and did not object to my departure from precise lambda calculus syntax!

The effect of conditional expressions can in fact be achieved in the lambda calculus
by encoding the true and false values as functions, as well as defining a function to
emulate the conditional:

true ≡ λx.λy.x
false ≡ λx.λy.y
cond ≡ λp.λc.λa.(p c a)

In other words, (cond p c a) ≡ (if p then c else a). One can then define, for example,
the factorial function by:

fac ≡ λn. cond (= n 0) 1 (∗ n (fac (− n 1)))
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where = is defined by:
(= n n) ⇒ true
(= n m) ⇒ false, if m �= n

where m and n range over the set of integer constants. However, I am still cheating a
bit by not explaining the nature of the objects −, ∗, 0, 1, etc. in pure lambda calculus
terms. It turns out that they can be represented in a variety of ways, essentially using
functions to simulate the proper behavior, just as for true, false, and the conditional
(for the details, see [Chu41]). In fact any conventional data or control structure can be
“simulated” in the lambda calculus; if this were not the case, it would be difficult to
believe Church’s Thesis!

However, even if McCarthy knew of these ways to express things in the lambda
calculus (there is reason to believe that he did not), efficiency concerns might have
rapidly led him to consider other alternatives anyway, especially since Fortran was the
only high-level programming language anyone had any experience with. In particular,
Fortran functions evaluated their arguments before entering the body of the function,
resulting in what is often called a strict, or call-by-value, evaluation policy, correspond-
ing roughly to applicative-order reduction in the lambda calculus. With this strategy
extended to the primitives, including the conditional, one cannot easily define recur-
sive functions. For example, in the above definition of factorial all three arguments to
cond would be evaluated, including fac (− n 1), resulting in non-termination.

Non-strict evaluation, corresponding to the normal-order reduction that is essen-
tial to the lambda calculus in realizing recursion, was not very well understood at
the time—it was not at all clear how to implement it efficiently on a conventional von
Neumann computer—and we would have to wait another 20 years or so before such
an implementation was even attempted.13 The conditional expression essentially al-
lowed one to selectively invoke normal-order, or non-strict, evaluation. Stated another
way, McCarthy’s conditional, although an expression, was compiled into code that es-
sentially controlled the “reduction” process. Most imperative programming languages
today that allow recursion do just that, and thus even though such languages are of-
ten referred to as strict, they all rely critically on at least one non-strict construct: the
conditional.

2.2.2 The Lambda Calculus With Constants

The conditional expression is actually only one example of very many primitive func-
tions that were included in Lisp. Rather than explain them in terms of the lambda cal-
culus by a suitable encoding (i.e. compilation), it is perhaps better to formally extend
the lambda calculus by adding a set of constants along with a set of what are usually

13On the other hand, the call-by-name evaluation strategy invented in Algol had very much of a normal-
order reduction flavor. See [Weg68, Wad71] for early discussions of these issues.
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called δ-rules which state relationships between constants and which effectively extend
the basis set of α-, β-, and η-reduction rules. For example, the reduction rules for =
that I gave earlier (and which are repeated below) are δ-rules. This new calculus, often
called the lambda calculus with constants, can be given a precise abstract syntax:

x ∈ Id Identifiers
c ∈ Con Constants
e ∈ Exp Lambda Expressions

where e ::= x | c | e1 e2 | λx.e
for which various δ-rules apply, such as the following:

(= 0 0) ⇒ True
(= 0 1) ⇒ False

· · ·
(+ 0 0) ⇒ 0
(+ 0 1) ⇒ 1

· · ·
(+ 27 32) ⇒ 59

· · ·
(If True e1 e2) ⇒ e1

(If False e1 e2) ⇒ e2

· · ·
(Car (Cons e1 e2)) ⇒ e1

(Cdr (Cons e1 e2)) ⇒ e2

· · ·
where =, +, 0, 1, If, True, False, Cons, etc. are elements of Con.

The above rules can be shown to be a conservative extension of the lambda calculus,
a technical term that in our context essentially means that convertible terms in the
original system are still convertible in the new, and (perhaps more importantly) incon-
vertible terms in the original system are still inconvertible in the new. In general, care
must be taken when introducing δ-rules, since all kinds of inconsistencies could arise.
For a quick and dirty example of inconsistency, we might define a primitive function
over integers called broken with the following δ-rules:

(broken 0) ⇒ 0
(broken 0) ⇒ 1

which immediately implies that more than one normal form exists for some terms,
violating the first Church-Rosser theorem (see Section 2.1)!

As a more subtle example, suppose we define the logical relation Or by:

(Or True e) ⇒ True
(Or e True) ⇒ True

(Or False False) ⇒ False
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Even though these rules form a conservative extension of the lambda calculus, a com-
mitment to evaluate either of the arguments may lead to non-termination, even though
the other argument may reduce to True. In fact it can be shown that with the above rules
there does not exist a deterministic sequential reduction strategy that will guarantee
that the normal form True will be found for all terms having such a normal form, and
thus the second Church-Rosser property is violated. This version of Or is often called
the “parallel or,” since a parallel reduction strategy is needed to implement it properly
(and with which the first Church-Rosser Theorem will at least hold). Alternatively, we
could define a “sequential or” by:

(Or True e) ⇒ True
(Or False e) ⇒ e

which can be shown to satisfy both Church-Rosser theorems.

2.3 Iswim

Historically speaking, Peter Landin’s work in the mid 60’s was the next significant impe-
tus to the functional programming paradigm. Landin’s work was deeply influenced by
that of Curry and Church. His early papers discussed the relationship between lambda
calculus and both machines and high-level languages (specifically Algol 60). In [Lan64]
Landin discussed how one could mechanize the evaluation of expressions, through
an abstract machine called the SECD machine; and in [Lan65] he formally defined a
non-trivial subset of Algol 60 in terms of the lambda calculus.

It is apparent from his work that Landin regarded highly the expressiveness and
purity of the lambda calculus, and at the same time recognized its austerity. Undoubt-
edly as a result of this work, in 1966 Landin introduced a language (actually a family
of languages) called Iswim (for “If you See What I Mean”), which included a number of
significant syntactic and semantics ideas [Lan66]. Iswim, according to Landin, “can be
looked on as an attempt to deliver Lisp from its eponymous committment to lists, its
reputation for hand-to-mouth storage allocation, the hardware dependent flavor of its
pedagogy, its heavy bracketing, and its compromises with tradition.” When all is said
and done, I think the primary contributions of Iswim, with respect to the development
of functional languages, are the following:

1. Syntactic innovations:

(a) The abandonment of prefix syntax in favor of infix.

(b) The introduction of let and where clauses, including a notion of simultaneous
and mutually recursive definitions.

(c) The use of an “off-side rule” based on indentation rather than separators
(such as commas or semicolons) to scope declarations and expressions. For
example (using Haskell syntax), the program fragment:
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e where f x = x
a b = 1

cannot be confused with:

e where f x = x a
b = 1

and is equivalent to what might otherwise be written as:

e where { f x = x;
a b = 1 }

2. Semantic innovations:

(a) An emphasis on generality. Landin was half-way serious in hoping that the
Iswim family could serve as the “next 700 programming languages.” Central
to his strategy was the idea of defining a syntactically rich language in terms
of a very small but expressive core language.

(b) An emphasis on equational reasoning (i.e. the ability to replace equals with
equals). This elusive idea was backed up with four sets of rules for rea-
soning about expressions, declarations, primitives, and “problem-oriented”
extensions.

(c) The SECD machine as a simple abstract machine for executing functional
programs.

We can think of Landin’s work as extending the “lambda calculus with constants”
defined in the last section so as to include more primitives, each with its own set
of δ-rules, but more importantly let and where clauses, for which it is convenient to
introduce the syntactic category of declarations:

e ∈ Exp Expressions
where e ::= · · · | e where d1 · · · dn

| let d1 · · · dn in e
d ∈ Decl Declarations

where d ::= x = e
| x x1 · · · xn = e

and for which we then need to add some axioms (i.e. reduction rules) to capture the
desired semantics. Landin proposed special constructs for defining simultaneous and
mutually recursive definitions, but we will take a simpler and more general approach
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here: We assume that a block of declarations d1 · · ·dn always is potentially mutually
recursive—if it isn’t, our rules still work:

(let d1 · · · dn in e) ⇒ (e where d1 · · · dn)
(x x1 · · · xn = e) ⇒ (x = λx1.λx2. · · ·λxn. e)
(e where x1 = e1) ⇒ (λx1.e)(Yλx1.e1)

(e where (x1 = e1) · · · (xn = en)) ⇒ (λx1.e)(Yλx1.e1) where x2 = (λx1.e2)(Yλx1.e1)
· · ·
xn = (λx1.en)(Yλx1.e1)

These rules are semantically equivalent to Landin’s, but they avoid the need for a tu-
pling operator to handle mutual recursion, and they use the Y combinator (defined in
Section 2.1) instead of an iterative “unfolding” step.

We will call this resulting system the recursive lambda calculus with constants, or
just recursive lambda calculus.

Landin’s emphasis on expressing what the desired result is, as opposed to saying
how to get it, and his claim that Iswim’s declarative14 style of programming was bet-
ter than the incremental and sequential imperative style, were ideas to be echoed by
functional programming advocates to this day. On the other hand, it took another ten
years before interest in functional languages was to be substantially renewed. One
of the reasons is that there were no decent implementations of Iswim-like languages
around; this reason, in fact, was to persist into the 80’s.

2.4 APL

Iverson’s APL [Ive62], although not a purely functional programming language, is worth
mentioning because its functional subset is an example of how one could achieve func-
tional programming without relying on lambda expressions. In fact Iverson’s design of
APL was motivated out of his desire to develop an algebraic programming language for
arrays, and his original work used an essentially functional notation. Subsequent de-
velopment of APL resulted in several imperative features, but the underlying principles
should not be overlooked.

APL was also unique in its goal of succinctness, in that it used a specially designed
alphabet to represent programs—each letter corresponding to one operator. That APL
became popular is apparent in the fact that many keyboards, both for typewriters and
computer terminals, carried the APL alphabet. Backus’ FP, which came after APL, was
certainly influenced by the APL philosophy, and its abbreviated publication form also
used a specialized alphabet (see the example in Section 2.5). In fact FP has much in
common with APL, the primary difference being that FP’s fundamental data structure
is the sequence, whereas in APL it is the array.

14Landin actually disliked the term “declarative,” preferring instead “denotative.”
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It is worth noting that recent work on APL has revived some of APL’s purely func-
tional foundations. The most notable work is that of Tu [Tu86, TP86], who designed a
language called FAC, for Functional Array Calculator (presumably a take-off on Turner’s
KRC, Kent Recursive Calculator). FAC is a purely functional language that adopts most
of the APL syntax and programming principles, but in addition has special features to
allow programming with infinite arrays; naturally, lazy evaluation plays a major role in
the semantics of the language. Another interesting approach is that of Mullin [Mul88].

2.5 FP

Backus’ FP was one of the earliest functional languages to receive wide-spread atten-
tion. Although most of the features in FP are not found in today’s modern functional
languages, Backus’ Turing Award lecture [Bac78] in 1978 was one of the most influen-
tial and now most-often cited papers extolling the functional programming paradigm.
It not only stated quite eloquently why functional programming was “good,” but also
quite vehemently why traditional imperative programming was “bad.”15 Backus’ coined
the term “word-at-a-time programming” to capture the essence of imperative languages,
showed how such languages were inextricably tied to the “von Neumann machine,” and
gave a convincing argument why such languages were not going to meet the demands
of modern software development. That this argument was being made by the person
who is given the most credit for designing Fortran, and who also had significant influ-
ence on the development of Algol, led substantial weight to the “functional thesis.” The
exposure given to Backus’ paper was one of the best things that could have happened
to the field of functional programming, which at the time was certainly not considered
main-stream.

Despite the great impetus Backus’ paper gave to functional programming, it is inter-
esting to note that in the same paper Backus also said that languages based on lambda
calculus would have problems, both in implementation and expressiveness, because
the model was not suitably history-sensitive (more specifically, it did not handle large
data structures, such as databases, very easily). With regard to implementation this
argument is certainly understandable, because it was not clear how to implement the
notion of substitution in an efficient manner, nor was it clear how to structure data in
such ways that large data structures could be implemented efficiently (both of these
issues are much better understood today). And with regard to expressiveness, well,
that argument is still a matter of debate today. In any case, these problems were the
motivation for Backus’ Applicative State Transition (AST) Systems, in which state is
introduced as something on which purely functional programs interact with in a more
traditional (i.e. imperative) way.

Perhaps more surprising, and an aspect of the paper that is usually overlooked,
Backus had this to say about “lambda-calculus based systems:”

15Ironically, the Turing Award was given to Backus in a large part because of his work on Fortran!
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“An FP system is founded on the use of a fixed set of combining forms called
functional forms. . . . In contrast, a lambda-calculus based system is founded
on the use of the lambda expression, with an associated set of substitution
rules for variables, for building new functions. The lambda expression (with
its substitution rules) is capable of defining all possible computable func-
tions of all possible types and of any number of arguments. This freedom
and power has its disadvantages as well as its obvious advantages. It is
analogous to the power of unrestricted control statements in conventional
languages: with unrestricted freedom comes chaos. If one constantly in-
vents new combining forms to suit the occasion, as one can in the lambda
calculus, one will not become familiar with the style or useful properties of
the few combining forms that are adequate for all purposes.”

Backus’ argument, of course, was in the context of garnering support for FP, which
had a small set of combining forms that were claimed to be sufficient for most pro-
gramming applications. One of the advantages of this approach is that each of these
combining forms could be named with particular brevity, and thus programs become
quite compact—this was exactly the approach taken by Iverson in designing APL (see
Section 2.4). For example, an FP program for inner product looks like:

Def IP ≡ (/ +) ◦ (α×) ◦ Trans

where /, ◦, and α are combining forms called “insert,” “compose,” and “apply-to-all,”
respectively. In a modern functional language such as Haskell this would be written
with slightly more verbosity as:

ip l1 l2 = foldl (+) 0 (map2 (*) l1 l2)

[In Haskell an infix operator such as + may be passed as an argument by surrounding
it in parentheses.] Here foldl is the equivalent of insert (/), and map2 is a two-list
equivalent of apply-to-all (α), thus eliminating the need for Trans. These functions
are pre-defined in Haskell, as they are in most modern functional languages, for the
same reason that Backus argues—they are commonly used. If they were not they could
easily be defined by the user. For example, we may wish to define an infix composition
operator for functions, the first of which is binary, as follows:

(f .o. g) x y = f (g x y)

[Note how infix operators may be defined in Haskell; operators are distinguished lexi-
cally by their first character being non-alphabetic.] With this we can reclaim much of
FP’s succinctness in defining ip:

ip = foldl (+) 0 .o. map2 (*)
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[Recall that in Haskell function application has higher precedence than infix operator
application.] It is for this reason, together with the fact that FP’s specialization pre-
cluded the generality afforded by user-defined higher-order functions (which is all that
combining forms are), that modern functional languages did not follow the FP style. As
we shall soon see, certain other kinds of syntactic sugar became more popular instead
(such as pattern-matching, list comprehensions, and sections).

Many extensions to FP have been proposed over the years, including the inclusion
of strong typing and abstract datatypes [GHW81]. In much more recent work, Backus,
Williams and Wimmers have designed the language FL [BWW86], which is strongly
(although dynamically) typed, and in which higher-order functions and user-defined
datatypes are allowed. Its authors still emphasize the algebraic style of reasoning that
is paramount in FP, although it is also given a denotational semantics which is provably
consistent with respect to the algebraic semantics.

2.6 ML

In the mid 70’s, at the same time Backus was working on FP at IBM, several research
projects were underway in the United Kingdom that related to functional programming,
most notably work at Edinburgh. There Gordon, Milner, and Wadsworth had been work-
ing on a proof generating system called LCF for reasoning about recursive functions,
in particular in the context of programming languages [GMW79]. The system consisted
of a deductive calculus called PPλ (polymorphic predicate calculus) together with an
interactive programming language called ML, for “meta-language” (since it served as
the command language for LCF).

LCF is quite interesting as a proof system, but its authors soon found that ML was
also interesting in its own right, and they proceded to develop it as a stand-alone
functional programming language [GMM*78]. That it was, and still is, called a functional
language is actually somewhat misleading, since it has a notion of references which are
locations that can be stored into and read from, much as variables are assigned and
read. Its I/O system also induces side-effects, and is not referentially transparent.
Nevertheless, the style of programming that it encourages is still functional, and that
is the way it was promoted (the same is somewhat true for Scheme, although to a lesser
extent).

More recently a standardization effort for ML has taken place, in fact taking some
of the good ideas of Hope [BMS80] along with it (such as pattern-matching), yielding a
language now being called Standard ML, or just SML [Mil84, Wik88].

ML is a fairly complete language—certainly the most practical functional language
at the time it appeared—and SML is even more so. It has higher-order functions, a
simple I/O facility, a sophisticated module system, and even exceptions. But by far the
most significant aspect of ML is its type system, which is manifested in several ways:
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1. It is strongly and statically typed.

2. It uses type inference to determine the type of every expression, instead of relying
on explicit type declarations.

3. It allows polymorphic functions and data structures; that is, functions may take
arguments of arbitrary type if in fact the function does not depend on that type
(similarly for data structures).

4. It has user-defined concrete and abstract datatypes (an idea actually borrowed
from Hope, and not present in the initial design of ML).

ML was the first language to utilize type inference as a semantically integrated compo-
nent of the language, and at the same time its type system was richer than any previous
statically typed language in that it permitted true polymorphism. It seemed that the
best of two worlds had been achieved—not only is making explicit type declarations (a
sometimes burdensome task) not required, but in addition a program that successfully
passes the type inferencer is guaranteed not to have any type errors. Unfortunately,
this idyllic picture is not completely accurate (although it is close!), as we shall soon
see.

We shall next discuss the issue of types in a foundational sense, thus continuing our
plan of elaborating the lambda calculus to match the language features being discussed.
This will lead us to a reasonable picture of ML’s Hindley-Milner type system, the rich
polymorphic type system that was mentioned above, and that was later adopted by
every other statically-typed functional language, including Miranda and Haskell. Aside
from the type system, the two most novel features in ML are its references and modules,
which are also covered in this section. Discussion of ML’s data abstraction facilities
will be postponed until Section 3.3.

2.6.1 The Hindley-Milner Type System

We can introduce types into the pure lambda calculus by first introducing a domain
of basic types, say BasTyp, as well as a domain of derived types, say Typ, and then
requiring that every expression be “tagged” with a member of Typ, which we do by
superscripting, as in “eτ .” The derived type “τ2 → τ1” denotes the type of all functions
from values of type τ2 to values of type τ1, and thus a proper application will have the
form “(eτ2→τ1

1 eτ2
2 )τ1 .” Modifying the pure lambda calculus in this way, we arrive at the
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pure typed lambda calculus:

b ∈ BasTyp Basic types
τ ∈ Typ Derived types

where τ ::= b | τ1 → τ2

xτ ∈ Id Typed identifiers
e ∈ Exp Typed lambda expressions

where e ::= xτ

| (eτ2→τ1
1 eτ2

2 )τ1

| (λxτ2 . eτ1)τ2→τ1

for which we then provide the following reduction rules:

1. Typed-α-conversion: (λxτ1
1 .eτ) ⇔ (λxτ1

2 .[x
τ1
2 /x

τ1
1 ]eτ ), where xτ1

2 �∈ fv(eτ).

2. Typed-β-conversion: ((λxτ2 . eτ1
1 ) e

τ2
2 ) ⇔ [eτ2

2 /xτ2]eτ1
1 .

3. Typed-η-conversion: λxτ1 . (eτ2 xτ1) ⇔ eτ2 , if xτ1 �∈ fv(eτ2).

To preserve type correctness we assume that the typed identifiers xτ1 and xτ2 , where
τ1 ≠ τ2, are distinct identifiers. Note then how every expression in our new calculus
carries with it its proper type, and thus type-checking is “built-in” to the syntax.

Unfortunately, there is a serious problem with this result: our new calculus has lost
the power of λ-definability! In fact, every term in the pure typed lambda calculus can
be shown to be strongly normalizable, meaning each has a normal form, and there is an
effective procedure for reducing each of them to its normal form [FLO85]. Consequently
we can only compute a rather small subset of functions from integers to integers—
namely the extended polynomials [Bar84].16

The reader can gain some insight into the problem by trying to write the definition
of the Y combinator—that paradoxical entity that allowed us to express recursion—as a
typed term. The difficulty lies in properly typing self-application (recall the discussion
in Section 2.1), since typing “(e e)” requires that e have both the type τ2 → τ1 and τ2,
which cannot be done within the structure we have given. It can, in fact, be shown that
the pure typed lambda calculus has no fixpoint operator.

Fortunately, there is a clever way to solve this dilemma. Instead of relying on self
application to implement recursion, simply add to the calculus a family of constant
fixpoint operators similar to Y , only typed. To do this we first move into the typed
lambda calculus with constants, in which a domain of constants Con is added as in

16On the bright side, some researchers view the strong normalization property as a feature, since it
means that all programs are guaranteed to terminate. Indeed this property forms the basis of much of
the recent work on using “constructive type theory” as a foundation for programming languages.
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the (untyped) lambda calculus with constants. We then include in Con a typed fixpoint
operator of the form Yτ for every type τ , where:

Yτ : (τ → τ)→ τ

Then for each fixpoint operator Yτ we add the δ-rule:

Typed-Y -conversion: (Yτ eτ→τ)τ ⇔ (eτ→τ (Yτ eτ→τ)τ)τ

The reader may easily verify that type consistency is maintained by this rule.

By ignoring the type information, we can see that the above δ-rule corresponds
to the conversion (Y f) ⇔ (f (Y f)) in the untyped case, and the same trick for
implementing recursion with Y as discussed in Section 2.1 can be used here, thus
regaining λ-definability. For example, a non-recursive definition of the typed factorial
function would be the same as the untyped version given earlier, except that Yτ would
be used where τ = Int → Int.

In addition to this calculus, we can derive a typed recursive lambda calculus with
constants in the same way that we did in the untyped case, except that instead of the
unrestricted Y combinator we use the typed versions defined above.

At this point our type system is about at par with that of a strongly and explicitly
typed language such as Pascal or Ada. However, we would like to do better. As men-
tioned in Section 2.6, the designers of ML extended the state-of-the-art of type systems
in two significant ways:

• They permitted polymorphic functions.

• They used type inference to infer types rather than requiring that they be declared
explicitly.

As an example of a polymorphic function, consider:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

The first line is a type signature that declares the type of map; it can be read as “for all
types a and b, map is a function that takes two arguments, a function from a into b and
a list of elements of type a, and returns a list of elements of type b.”

[Type signatures are optional in Haskell; the type system is able to infer them auto-
matically. Also note that the type constructor -> is right associative, which is consistent
with the left associativity of function application.]
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So map can be used to map square down a list of integers, or head down a list of
lists, etc. In a monomorphic langage such as Pascal one would have to define a separate
function for each of these. The advantage of polymorphism should be clear.

One way to achieve polymorphism in our calculus is to add a domain of type vari-
ables and extend the domain of derived types accordingly:

b ∈ BasTyp Basic types
v ∈ TypId Type variables
τ ∈ Typ Derived types

where τ ::= b | v | τ1 → τ2

Thus, for example, v → τ is a proper type, and can be read as if the type variable was
universally quantified: “for all types v , the type v → τ .” To accommodate this we must
change the rule for β-conversion to read:

2. Typed-β-conversion with type variables:

(a) ((λxτ2 . eτ1
1 ) e

τ2
2 )⇔ ([eτ2

2 /xτ2]eτ1
1 )τ1

(b) ((λxv. eτ1
1 ) e

τ2
2 )⇔ ([τ2/v]([e

τ2
2 /xv]e

τ1
1 ))τ1

where substitution on type variables is defined in the obvious way. Note that this
rule implies the validity of expressions of the form (ev→τ1

1 eτ2
2 )τ1 . Similar changes are

required to accommodate expressions such as (eτ→v1 eτ2 )v .

But alas, now that type variables have been introduced, it is no longer clear whether
a program is properly typed—it is not “built-in” to the static syntactic structure of the
calculus. In fact, the type checking problem for this calculus is undecideable, being a
variant of a problem known as partial polymorphic type inference [Boe85, Pfe88].

Rather than trying to deal with the type checking problem directly, we might go one
step further with our calculus and try to attain ML’s lack of a requirement for explicit
typing. We can achieve this by simply erasing all type annotations and then trying to
solve the seemingly harder problem of inferring types of completely “naked” terms.
Surprisingly, it is not known whether an effective type inference algorithm exists for
this calculus, even though the problem of partial polymorphic type inference, known
to be undecideable, seems as if it should be easier.

Fortunately, Hindley [Hin69] and Milner [Mil78] independently discovered a restricted
polymorphic type system that is almost as rich as that provided by our calculus, and
for which type inference is decidable. In other words, there exist certain terms in the
calculus presented above that one could argue are properly typed, but would not be
allowed in the Hindley-Milner system. The system still allows polymorphism, such as
exhibited by map defined earlier, and is able to infer the type of functions such as map
without any type signatures present. However, the use of such polymorphism is limited
to the scope in which map was defined. For example, the following program:
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silly map f g
where f :: Int -> Int

g :: Char -> Char
map :: (a -> b) -> [a] -> [b]
silly m f g = (m f num_list, m g char_list)

[“(e1,e2)” is a tuple] results in a type error, since map is passed as an argument and
then instantiated in two different ways; i.e. once as type (Int -> Int) -> [Int] ->
[Int] and once as type (Char -> Char) -> [Char] -> [Char]. If map were in-
stantiated in several ways within the scope in which it was defined, or if m were only
instantiated in one way within the function silly, there would have been no problem.

This example demonstrates a fundamental limitation to the Hindley-Milner type
system, but in practice the class of programs that the system rejects is not large, and is
certainly smaller than that rejected by any existing type-checking algorithm for conven-
tional languages in that, if nothing else, it allows polymorphism. Many other functional
languages have since then incorporated what amounts to a Hindley-Milner type system,
including Miranda and Haskell. It is beyond the scope of this article to discuss the de-
tails of type inference, but the reader may find good pragmatic discussions in [Han]
and [DM82], and a good theoretical discussion in [Mil78].

As a final comment we point out that an alternative way to gain polymorphism is to
introduce types as values and give them at least some degree of “first-class status” (as
we did earlier for functions), for example allowing them to be passed as arguments and
returned as results. Allowing them to be passed as arguments only (and then used in
type annotations in the standard way) results in what is known as the polymorphic or
second-order typed lambda calculus. Girard [Gir72] and Reynolds [Rey74] discovered
and studied this type system independently, and it appears to have great expressive
power. However, it turns out to be essentially equivalent to the system we developed
earlier, and has the same difficulties with respect to type inference. It is, nevertheless,
an active area of current research (see [CW85] and [Rey85] for good summaries of this
work).

2.6.2 ML’s References

A reference is essentially a pointer to a cell containing values of a particular type; they
are created by the (pseudo-)function ref. For example, “ref 5” evaluates to an integer
reference—a pointer to a cell that is allowed to contain only integers, and in this case
having initial contents 5. The contents of a cell can be “read” using the prefix operator
!. Thus if x is bound to “ref 5” then “!x” returns 5.

The cell pointed to by a reference may be updated via assignment using the infix
operator :=. Continuing with the above example, “x := 10”, although an expression,
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has the side-effect of updating the cell pointed to by x with the value 10. Subsequent
evaluations of “!x” will then return 10. Of course, to make the notion of “subsequent”
well-defined, it is necessary to introduce sequencing constructs; indeed ML even has
an iterative while construct.

References in ML amount to assignable variables in a conventional programming
language, and are only notable in that they can be included within a type structure
such as Hindley-Milner’s, and can be relegated to a minor role in a language that is
generally proclaimed as being functional. A proper treatment of references within a
Hindley-Milner type system can be found in [Tof88].

2.6.3 Modules

Modules in ML are called structures, and are essentially reified environments. The type
of a structure is captured in its signature, and contains all of the static properties of a
module that are needed by some other module that might use it. The use of one module
by another is captured by special functions called functors that map structures to new
structures. This capability is sometimes called a “parameterized module” or “generic
package.”

For example, a new signature called SIG (think of it as a new type) may be declared
by:

signature SIG =
sig
val x : int
val succ : int -> int

end

in which the types of two identifiers have been declared, x of type int and succ of type
int->int. The following structure S (think of it as an environment) has the implied
signature SIG defined above:

structure S =
struct
val x = 5
val succ x = x+1

end

If we then define the following functor F (think of it as a function from structures to
structures):
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functor F(T:SIG) =
struct
val y = T.x + 1
val add2 x = T.succ(T.succ(x))

end

then the new structure declaration:

structure U = F(S)

is equivalent to having written:

structure U =
struct
val y = x + 1
val add2 x = succ(succ(x))
val x = 5
val succ x = x+1

end

except that the signature of U does not include bindings for x and succ (i.e. they are
hidden).

Although seemingly simple, the ML module facility has one very noteworthy feature:
Structures are (at least partially) “first-class” in that functors take them as arguments
and return them as values. A more conservative design (such as adopted in Miranda and
Haskell) might require all modules to be named, thus relegating them to second-class
status. Of course, this first-class treatment has to be ended somewhere if type-checking
is to remain effective, and in ML that is manifested in the fact that structures can be
passed to functors only (for example they cannot be placed in lists), the signature dec-
laration of a functor’s argument is mandatory in the functor declaration, and functors
themselves are not first-class.

It is not clear whether this “almost-first-class” treatment of structures is worth the
extra complexity, but the ML module facility is certainly the most sophisticated of
those found in existing functional programming languages, and it is achieved with no
loss of static type-checking ability, including the fact that modules may be compiled
independently and later “linked” via functor application.

2.7 SASL, KRC, and Miranda

At the same time ML and FP were being developed, David Turner, first at the Univer-
sity of St. Andrews and later at the University of Kent, was busy working on another

30



style of functional languages resulting in a series of three languages that characterize
most faithfully the “modern school” of functional programming ideas. More than any
other researcher, Turner argued eloquently for the value of lazy evaluation, higher-
order functions, and the use of recursion equations as a syntactic sugaring for the
lambda calculus [Tur81, Tur82]. Turner’s use of recurrence equations was consistent
with Landin’s argument ten years earlier, as well as Burge’s excellent treatise on recur-
sive programming techniques [Bur75] and Burstall and Darlington’s work on program
transformation [BD77]. But the prodigious use of higher-order functions and lazy eval-
uation, especially the latter, was something new, and was to become a hallmark of
modern functional programming techniques.

In the development of SASL (St. Andrews Static Language) [Tur76], KRC (Kent Recur-
sive Calculator) [Tur81], and Miranda17 [Tur85], Turner concentrated on making things
easier on the programmer, and thus he introduced various sorts of syntactic sugar. In
particular, using SASL’s syntax for equations gave programs a certain mathematical fla-
vor, since equations were deemed applicable through the use of guards and Landin’s
notion of the “off-side rule” was revived. For example, this definition of the factorial
function:

fac n = 1, n=0
= n*fac(n-1), n>0

looks a lot like the mathematical version:

fac n =
{

1 if n = 0
n∗ fac(n− 1) if n > 0

(In Haskell this program would be written with slightly different syntax as:

fac n | n==0 = 1
’ | n>0 = n*fac(n-1)

More on equations and pattern-matching may be found in Section 3.4.)

Another nice aspect of SASL’s equational style is that it facilitates the use of higher-
order functions through currying. For example, if we define:

add x y = x+y

then “add 1” is a function that adds one to its argument.

KRC is an embellishment of SASL primarily through the addition of ZF expressions
(which were intended to resemble Zemelo-Frankel set abstraction and whose syntax
was originally suggested by John Darlington), as well as various other short-hands for
lists (such as [a..b] to denote the list of integers from a to b, and [a..] to denote
the “infinite” sequence starting with a). For example (using Haskell syntax):

17Miranda is one of the few (perhaps the only) functional languages to be marketed commercially.

31



[ x*x | x <- [1..100], odd(x) ]

is the list of squares of the odd numbers from 1 to 100, and is similar to:

{x2 | x ∈ {1,2, . . . ,100} ∧ odd(x)}

except that the former is a list, the latter is a set. In fact Turner used the term “set
abstraction” as synonymous with “ZF expression,” but in fact both terms are somewhat
misleading since the expressions actually denote lists, not true sets. The more popular
current term is “list comprehension,”18 which is what I will call them in the remainder
of this paper. As an example of the power of list comprehensions, here is a rather
concise and perspicuous definition of quicksort:

qs [] = []
qs (x:xs) = qs [y | y<-xs, y<x ] ++ [x] ++

qs [y | y<-xs, y>=x]

[++ is the infix append operator.]

Miranda is in turn an embellishment of KRC, primarily in its treatment of types:
it is strongly typed, using a Hindley-Milner type system, and it allows user defined
concrete and abstract datatypes (both of these ideas were presumably borrowed from
ML; see Sections 2.6 and 2.6.1). One interesting innovation in syntax in Miranda is its
use of sections (first suggested by Richard Bird), which are a convenient way to convert
partially applied infix operators into functional values. For example, the expressions
(+), (x+), and (+x) correspond to the functions f, g, and h, respectively, defined by:

f x y = x+y
g y = x+y
h y = y+x

Partly because of the presence of sections, Miranda does not provide syntax for lambda
abstractions. (In contrast, the Haskell designers chose to have lambda abstractions, and
thus chose not to have sections.)

Turner was perhaps the foremost proponent of both higher-order functions and
lazy evaluation, although the ideas originated elsewhere. As I have done with data
abstraction, discussion of both of these topics is delayed until Sections 3.1 and 3.2,
respectively, where they are discussed in a more general context.

18A term popularized by Phil Wadler.
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2.8 Dataflow Languages

In the area of computer architecture, beginning predominantly with Jack Dennis’ work
in the early 70’s [DM74], there arose the notion of dataflow, a computer architecture
organized solely around the data dependencies in a program, resulting in high degrees
of parallelism. Since data dependencies were paramount, and artificial sequentiality
was objectionable, the languages designed to support such machines were essentially
functional languages, although historically they have been called dataflow languages.
In fact they do have a few distinguishing features, typically reflecting the idiosyncrasies
of the dataflow architecture (just as imperative languages reflect the von Neumann ar-
chitecture): they are typically first-order (reflecting the difficulty in constructing clo-
sures in the dataflow model), strict (reflecting the data-driven mode of operation that
was most popular and easiest to implement), and in certain cases do not even allow
recursion (reflecting Dennis’ original static dataflow design, rather than, for example,
Arvind’s dynamic tagged-token model [AG77, AK81]). A good summary of work on
dataflow machines, at least through 1981, can be found in [TBH82]; more recently, see
[Veg84].

The two most important dataflow languages developed during this era were Dennis
et al.’s Val [AD79, Mcg82] and Arvind et al.’s Id [AG82]. More recently, Val has evolved
into SISAL [MAGD83], and Id into Id Nouveau [NPA86]. The former has retained much
of the strict and first-order semantics of dataflow languages, whereas the latter has
many of the features that characterize modern functional languages.

Keller’s FGL [KJRL80] and Davis’ DDN [Dav78] are also notable developments that
accompanied a flurry of activity on dataflow machines at the University of Utah in the
late 70’s. Yet another interesting dataflow language is Ashcroft and Wadge’s Lucid
[AW76a, AW76b, WA85], whose distinguishing feature is the use of identifiers to rep-
resent streams of values (in a temporal, dataflow sense), thus allowing the expression
of iteration in a rather concise manner. The authors also developed an algebra for
reasoning about Lucid programs.

2.9 Others

In the late 70’s and early 80’s a surprising number of other modern functional lan-
guages appeared, most in the context of implementation efforts. These included Hope
at Edinburgh University [BMS80], FEL at Utah [Kel82], Lazy ML (LML) at Chalmers [Aug84],
Alfl at Yale [Hud84], Ponder at Cambridge [Fai85], Orwell at Oxford [WM88], Daisy at
Indiana [Joh88], Twentel at the University of Twente [Kro87], and Tui at Victoria Uni-
versity [Bou88].

Perhaps the most notable of these languages was Hope, designed and implemented
by Rod Burstall, David MacQueen, and Ron Sannella at Edinburgh University [BMS80].
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Their goal was “to produce a very simple programming language which encourages
the production of clear and manipulable programs.” Hope is strongly typed, allows
polymorphism, but requires explicit type declarations as part of all function definitions
(which also allowed a useful form of overloading). It has lazy lists, but otherwise is
strict. It also has a simple module facility. But perhaps the most significant aspect
of Hope is its user-defined concrete datatypes and the ability to pattern-match against
them. ML, in fact, did not originally have these features; they were borrowed from
Hope in the design of SML.

To quote Bird and Wadler [BW88], this proliferation of functional languages was
“a testament to the vitality of the subject,” although by 1987 there existed so many
functional languages that there truly was a “Tower of Babel,” and something had to be
done! The funny thing was, the semantic underpinnings of these languages were fairly
consistent, and thus the researchers in the field had very little trouble understanding
each other’s programs, so the motivation within the research community to standardize
on a language was not high.

Nevertheless, in September of 1987 a meeting was held at the FPCA Conference
in Portland, Oregon, to discuss the problems that this proliferation of languages was
creating. There was a strong consensus that the general use of modern, non-strict
functional languages was being hampered by the lack of a common language. Thus
it was decided that a committee should be formed to design such a language, pro-
viding faster communication of new ideas, a stable foundation for real applications
development, and a vehicle through which other people would be encouraged to learn
and use functional languages. The result of that committee’s effort was a purely func-
tional programming language called Haskell [HWe88], named after Haskell B. Curry,
and described in the next section.

2.10 Haskell

Haskell is a general purpose, purely functional programming language exhibiting many
of the recent innovations in functional (as well as other) programming language re-
search, including higher-order functions, lazy evaluation, static polymorphic typing,
user-defined datatypes, pattern-matching, and list comprehensions. It is also a very
complete language in that it has a module facility, a well-defined functional I/O system,
and a rich set of primitive datatypes, including lists, arrays, arbitrary and fixed preci-
sion integers, and floating-point numbers. In this sense Haskell represents both the
culmination and solidification of many years of research on functional languages—the
design was influenced by languages as old as Iswim and as new as Miranda.

Haskell also has several interesting new features; most notably, a systematic treat-
ment of overloading, an “orthogonal” abstract datatype facility, a universal and purely
functional I/O system, and, by analogy to list comprehensions, a notion of array com-
prehensions.

34



Haskell is not a small language. The decision to emphasize certain features such as
pattern-matching and user-defined datatypes, and the desire for a complete and prac-
tical language that includes such things as I/O and modules, necessitates a somewhat
large design. The Haskell Report also provides a denotational semantics for both the
static and dynamic behavior of the language; it is considerably more complex than the
simple semantics defined in Section 3.5 for the lambda calculus, but then again one
wouldn’t really want to program in as sparse a language as the lambda calculus.

Will Haskell become a standard? Will it succeed as a useful programming language?
Only time will tell. As with any other language development, it is not only the quality
of the design that counts, but also the ready availability of good implementations, and
the backing from vendors, government agencies, and researchers alike. At this date it
is too early to tell what role each of these factors will play.

I will end our historical development of functional languages here, without elabo-
rating on the details of Haskell just yet. Those details will surface in significant ways in
the next section, where the most important features of modern function languages are
discussed; and in the following section, where more advanced ideas and active research
areas are discussed.

3 Distinguishing Features of “Modern” Functional Languages

The reader will recall that I chose to delay detailed discussion of four distinguishing
features of modern functional languages—higher-order functions, lazy evaluation, data
abstraction mechanisms, and equations/pattern-matching. Now that we have com-
pleted our study of the historical development of functional languages, we can return
to those features. Most of the discussion will center on how the features are manifested
in Haskell, ML, and Miranda.

3.1 Higher-Order Functions

If functions are treated as “first-class values” in a language—allowing them to be stored
in data structures, passed as arguments, and returned as results—they are referred to
as higher-order functions. I have not said too much about the utility of higher-order
functions thus far, although they exist in most of the functional languages that we’ve
discussed, including of course the lambda calculus. Their utility has in fact been argued
in many circles, including ones outside of functional programming, most notably the
Scheme community (see, for example, [ASS85]).

The main philosophical argument for higher-order functions is that functions are
values just like any others, so why not give them the same “first-class” status? But
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there are also compelling pragmatic reasons for wanting higher-order functions. Sim-
ply stated, the function is the primary abstraction mechanism over values, and thus
facilitating the use of functions increases the utility of that kind of abstraction.

As an example of a higher-order function, consider:

twice f x = f (f x)

which takes its first argument, a function f, and “applies it twice” to its second ar-
gument, x. The syntax used here is important: twice as written is curried, meaning
that when applied to one argument it returns a function which then takes one more
argument, the second argument above. For example, the function add2:

add2 = twice succ
where succ x = x+1

is a function that will add 2 to its argument. Making function application associate
to the left facilitates this mechanism, since “twice succ x” is equivalent to “(twice
succ) x” so everything works out just fine.

In modern functional languages functions can be created in several ways. One way
is to name them using equations, as above, but another way is to create them directly
as lambda abstractions, thus rendering them nameless, as in the Haskell expression:

\x -> x+1

[in lambda calculus this would be written λx.x+1] which is the same as the successor
function succ defined above. add2 can then be defined more succinctly as:

add2 = twice (\x -> x+1)

From a pragmatic viewpoint we can understand the utility of higher-order functions
by analyzing the utility of abstraction in general. As we all know from introductory
programming, a function is an abstraction of values over some common behavior (an
expression). Limiting the values over which the abstraction occurs to non-functions
seems unreasonable; lifting that restriction results in higher-order functions. Hughes
makes a slightly different but equally compelling argument in [Hug84], where he em-
phasizes the importance of modularity in programming and argues convincingly that
higher-order functions increase modularity by serving as a mechanism for “glueing”
program fragments together. That glueing property comes not just from the ability to
compose functions, but also the ability to abstract over functional behavior as described
above.

As an example, suppose in the course of program construction we define a function
to add together the elements of a list:
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sum [] = 0
sum (x:xs) = add x (sum xs)

Then suppose we later define a function to multiply the elements of a list:

prod [] = 1
prod (x:xs) = mul x (prod xs)

But now we notice a repeating pattern, and anticipate that we might see it again, so
we ask ourselves if we can possibly abstract the common behavior. In fact this is easy
to do: we note that add/mul and 0/1 are the variable elements in the behavior, and
thus we parameterize them; that is, we make them formal parameters, say f and init.
Calling the new function fold, the equivalent of sum/prod will be fold f init, and
thus we arrive at:

(fold f init) [] = init
(fold f init) (x:xs) = f x ((fold f init) xs)

where the parentheses around fold f init are used only for emphasis, and are oth-
erwise superfluous.

From this we can now derive new definitions for sum and product:

sum = fold add 0
prod = fold mul 1

Of course now that the fold abstraction has been made, many other useful functions
can be defined, even something as seemingly unrelated as append:

append xs ys = fold (:) ys xs

[An infix operator may be passed as an argument by surrounding it in parentheses;
thus (:) is equivalent to \x y -> x:y.] This version of append simply replaces the
[] at the end of the list xs with the list ys.

It is easy to verify that the new definitions are equivalent to the old using simple
equational reasoning and induction. It is also important to note that in arriving at
the main abstraction we did nothing out of the ordinary—we are just applying classical
data abstraction principles in as unrestricted a way as possible, and that means allowing
functions to be “first-class citizens.”
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3.2 Non-Strict Semantics (Lazy Evaluation)

3.2.1 Fundamentals

The normal-order reduction rules of the lambda calculus are the most general in that
they are guaranteed to produce a normal form if in fact one exists (see Section 2.1). In
other words, they result in termination of the rewriting process most often, and the
strategy lies at the heart of the Church-Rosser Theorem. Furthermore, as argued earlier,
normal-order reduction allows recursion to be emulated with the Y combinator, thus
giving the lambda calculus the most powerful form of effective computability, captured
in Church’s Thesis.

Given all this, it is quite natural to consider using normal-order reduction as the
computational basis for a programming language. Unfortunately, normal-order reduc-
tion, implemented naively, is hopelessly inefficient. To see why, consider this simple
normal-order reduction sequence:

(λx. (+ x x)) (∗ 5 4)
⇒ (+ (∗ 5 4) (∗ 5 4))
⇒ (+ 20 (∗ 5 4))
⇒ (+ 20 20)
⇒ 40

Note that the multiplication (∗ 5 4) is done twice. In the general case this could be
an arbitrarily large computation, and it could potentially be repeated as many times
as there are occurrences of the formal parameter (for this reason an analogy is often
drawn between normal-order reduction and call-by-name parameter passing in Algol).
In practice this can happen quite often, reflecting the simple fact that results are often
shared.

One solution to this problem is to resort to something other than normal-order
reduction, such as applicative-order reduction, which for the above term yields the
following reduction sequence:

(λx. (+ x x)) (∗ 5 4)
⇒ (λx. (+ x x)) 20
⇒ (+ 20 20)
⇒ 40

Note that the argument is evaluated before the β-reduction is performed (similar to a
call-by-value parameter-passing mechanism), and thus the normal form is reached in
three steps instead of four, with no recomputation. The problem with this solution
is that it requires the introduction of a special reduction rule to implement recursion
(such as gained through the δ-rule for McCarthy’s conditional), and furthermore there
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are examples where it does more work than normal-order reduction! For example,
consider:

applicative-order: normal-order:
(λx. 1) (∗ 5 4) (λx. 1) (∗ 5 4)

⇒ (λx. 1) 20 ⇒ 1
⇒ 1

or even worse (repeated from Section 2.1):

applicative-order: normal-order:
(λx. 1) ((λx. x x) (λx. x x)) (λx. 1) ((λx. x x) (λx. x x))

⇒ (λx. 1) ((λx. x x) (λx. x x)) ⇒ 1

⇒ ...

which in the applicative-order case does not terminate! Despite these problems, most
of the early functional languages, including pure Lisp, FP, ML, Hope, all of the dataflow
languages, and others, used applicative-order semantics.19 In addition to overcoming
the efficiency problem of normal-order reduction, applicative-order reduction could be
implemented with relative ease using the call-by-value compiler technology that had
been developed for conventional imperative programming languages.

Nevertheless, the appeal of normal-order reduction cannot be ignored. Returning
to lambda calculus basics, we can try to get to the root of the efficiency problem, which
seems to be the following: reduction in the lambda calculus is normally described
as string reduction, which precludes any possibility of sharing. If instead we were
to describe it as a graph reduction process, perhaps sharing could be achieved. This
idea was first suggested by Wadsworth in his PhD thesis in 1971 [Wad71, Chapter 4],
in which he outlined a graph reduction strategy that utilized pointers to implement
sharing. Using this strategy results in the following reduction sequence for the first
example given earlier:

(λx. (+ x x)) (∗ 5 4)
⇒ (+ • •)

↘↙︷ ︸︸ ︷
(∗ 5 4)

⇒ (+ • •)
↘↙︷︸︸︷
20

⇒ 40

which takes the same number of steps as the applicative-order reduction sequence.

19Actually this is not quite true—most implementations of these languages use an applicative-order
reduction strategy for the top-level redices only, thus yielding what is known as a “weak head normal
form.” This strategy turns out to be easier to implement than complete applicative-order reduction, and
also permits certain versions of the Y combinator to be implemented without special “rules.” See [Bur75]
for an example of this using Landin’s SECD machine.
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We will call an implementation of normal-order reduction in which recomputation
is avoided lazy evaluation (another term often used is call-by-need). Its key feature is
that arguments in function calls are evaluated at most once. It possesses the full power
of normal-order reduction while being more efficient than applicative-order reduction
in that “at most once” sometimes amounts to no computation at all!

Despite the appeal of lazy evaluation and this apparent solution to the efficiency
problem, it took a good ten years more for researchers to discover ways to implement
it efficiently compared to conventional programming languages. The chief problem has
to do with the difficulty in implementing lazy graph reduction mechanisms on conven-
tional computers, which seem to be better suited to call-by-value strategies. Simulating
the unevaluated portions of the graph in a call-by-value environment amounts to effi-
ciently implementing closures, or thunks, which have some inherent, non-trivial costs
[BHY88]. It is beyond the scope of this paper to discuss the details of these implemen-
tation concerns, but see Peyton-Jones [PJ87] for an excellent summary.

Rather than live with conventional computers, one could alternatively build spe-
cialized graph reduction or dataflow hardware, but so far this has not resulted in any
practical, much less commercially available, machines. Nevertheless, this work is quite
promising, and good summaries of work in this area can be found in articles by Tre-
leaven et al. [TBH82] and Vegdahl [Veg84], both of which are reprinted in [Tha87].

3.2.2 Expressiveness

Assuming that we can implement lazy evaluation efficiently (current practice is consid-
ered acceptably good), we should return to the question of why we want it in the first
place. Previously we argued on philosophical grounds—it is the most general evalua-
tion policy—but is lazy evaluation useful to programmers in practice? The answer is
an emphatic yes, which I hope to show via a two-fold argument.

First of all, lazy evaluation frees a programmer from concerns about evaluation
order. The fact is, programmers are generally concerned about the efficiency of their
programs, and thus they prefer not evaluating things that are not absolutely necessary.
As a simple example, suppose we may need to know the greatest common divisor of
b and c in some computation involving x. In a modern functional language we might
write:

f a x
where a = gcd b c

without worrying about a being evaluated needlessly—if in the computation of “f a x”
the value of a is needed, it will be computed, otherwise not. If we were to have written
this program in Scheme, for example, we might try:
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(let ( (a (gcd b c)) )
(f a x))

which will always evaluate a. Knowing that f doesn’t always need that value, and being
concerned about efficiency, we may decide to rewrite this as:

(let ( (a (delay (gcd b c))) )
(f a x))

which requires modifying f so as to force its first argument. Alternatively we could
just write (f b c x), which requires modifying f so as to compute the gcd internally.
Both of these solutions are severe violations of modularity, and they arise out of the
programmer’s concern about evaluation order. Lazy evaluation eliminates that concern
and preserves modularity.

The second argument for lazy evaluation is perhaps the one more often heard:
the ability to compute with unbounded (“infinite”) data structures. The idea of lazily
evaluating data structures was first proposed by Vuillemin [Vui74], but similar ideas
were developed independently by Henderson and Morris [HM76], and Friedman and
Wise [FW76]. In a later series of papers [Tur81, Tur82] Turner provides a strong ar-
gument for using lazy lists, especially when combined with list comprehensions (see
Section 2.7) and higher-order functions (see Section 3.1). Aside from Turner’s elegant
examples, Hughes presents an argument [Hug84] based on facilitating modularity in
programming, where, along with higher-order functions, lazy evaluation is described
as a way to “glue” pieces of programs together.

The primary power of lazily evaluated data structures comes from its utility in sep-
arating data from control. The idea is that a programmer should be able to describe
a specific data structure without worrying about how it gets evaluated. Thus, for ex-
ample, one could describe the sequence of natural numbers by the following simple
program:

nats = 0 : map succ nats

or alternatively by:

numsfrom n = n : numsfrom (n+1)
nats = numsfrom 0

These are examples of “infinite lists,” or streams, and in a language that did not support
lazy evaluation would cause the program to diverge. With lazy evaluation these data
structures are only evaluated as they are needed, “on demand.” For example, we could
define a function that filters out only those elements satisfying a property p:
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filter p (x:xs) = if (p x) then (x:rest) else rest
where rest = filter p xs

in which case “filter p nats” could be written knowing that the degree of the list’s
computation will be determined by its context—i.e. the consumer of the result. Thus
filter has no operational control within it, and can be combined with other functions
in a modular way. For example one could compose it with a function to square each
element in a list:

map (\x->x*x) . filter p

[ . is the infix composition operator.] This kind of modular result, in which data
is separated from control, is one of the key features of lazy evaluation. Many more
examples of this kind may be found in [Hug84].

3.3 Data Abstraction

Independently of the development of functional languages there has been considerable
work on data abstraction in general, and on strong typing, user-defined datatypes, and
type checking in particular. Some of this work has also taken on a theoretical flavor,
not only in foundational mathematics where logicians have used types to resolve many
famous paradoxes, but also in formal semantics where types aid our understanding of
programming languages.

Fueling the theoretical work are two significant pragmatic advantages of using data
abstraction and strong typing in one’s programming methodology. First, data abstrac-
tion improves the modularity, security, and clarity of programs. Modularity is improved
because one can abstract away from implementation (i.e. representation) details; secu-
rity is improved because interface violations are automatically prohibited; and clarity
is improved because data abstraction has an almost self-documenting flavor.

Second, strong static typing helps in debugging since one is guaranteed that if a pro-
gram compiles successfully that no error can occur at run-time due to type violations.
It also leads to more efficient implementations, since it allows one to eliminate most
run-time tag bits and type testing. Thus there is little performance penalty for using
data abstraction techniques.

Of course, these issues are true for any programming language, and for that reason
a thorough treatment of types and data abstraction is outside the scope of this survey;
the reader may find an exellent summary in [CW85]. The basic idea behind the Hindley-
Milner type system was discussed in Section 2.6.1. I will concentrate in this section on
how data abstraction is manifest in modern functional languages.
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3.3.1 Concrete Datatypes

As mentioned earlier, there is a strong argument for wanting language features that
facilitate data abstraction, whether or not the language is functional. In fact such
mechanisms were first developed in the context of imperative languages such as Simula,
Clu, Euclid, and others. It is only natural that they be included in functional languages.
ML, as we mentioned, was the first functional language to do this, but many others
soon followed suit.

In this subsection I will describe concrete (or algebraic) datatypes as well as type
synonyms. I will use Haskell syntax, but the ideas are essentially identical (at least
semantically) to those used in ML and Miranda.

New algebraic datatypes may be defined along with their constructors using data
declarations, as in the following definitions of lists and trees:

data List a = Nil | Cons a (List a)
data Tree b = Empty | Node b (List (Tree b))

The identifiers List and Tree are called type constructors, and the identifiers a and
b are called type variables which are implicitly universally quantified over the scope
of the data declaration. The identifiers Nil, Cons, Empty, and Node are called data
constructors, or just constructors, with Nil and Empty being nullary constructors. [Note
that both type constructors and data constructors are capitalized, so that the latter can
be used without confusion in pattern-matching (as discussed in the next section) and
to avoid confusion with type variables (such as a and b in the above example).]

List and Tree are called type constructors since they construct types from other
types. For example, Tree Ints is the type of trees of integers. Reading from the data
declaration for Tree, we see then that a tree of integers is either Empty, or a Node
containing a list of more trees of integers.

We can now see that the previously given type signature for map:

map :: (a -> b) -> [a] -> [b]

is equivalent to:

map :: (a -> b) -> (List a) -> (List b)

That is, “[...]” in a type expression is just syntax for application of the type con-
structor List. Similarly, we can think of -> as an infix type constructor that creates
the type of all functions from its first argument (a type) to its second (also a type).
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[A useful property to note is the consistent syntax used in Haskell for expressions
and types. Specifically, if Ti is the type of expression or pattern ei, then the expressions
\e1->e2, [e1], and (e1,e2) have the types T1->T2, [T1], and (T1,T2), respectively.]

Instances of these new types are built simply by using the constructors. Thus
“Empty” is an empty tree, and “Node 5 Empty” is a very simple tree of integers with one
element. The type of the instance is inferred via the same type inference mechanism
that infers types of polymorphic functions, as described previously.

Defining new concrete datatypes is fairly common not only in functional languages
but also in imperative languages, although the polymorphism offerred by modern func-
tional languages makes it all the more attractive.

Type synonyms are a way of creating new names for types, such as in the following:

type Intree = Tree Ints
type Flattener = Intree -> [Ints]

Note that Intree is used in the definition of Flattener. type declarations do not
introduce new types (as data declarations do), but rather are a convenient way to
introduce new names (i.e. synonyms) for existing types.

3.3.2 Abstract Datatypes

Another idea in data abstraction originating in imperative languages is the notion of
an abstract datatype (ADT) in which the details of the implementation of a datatype
are hidden from the users of that type, thus enhancing modularity and security. The
traditional way to do this is exemplified by ML’s ADT facility and emulated in Miranda.
Although the Haskell designers chose a different approach to ADT’s (described below),
the following example of a queue ADT is written as if Haskell had ML’s kind of ADT’s,
using the keyword abstype:

abstype Queue a = Q [a]
where first (Q as) = last as

isempty (Q []) = True
isempty (Q as) = False
...

The main point is that the functions first, isempty, etc. are visible in the scope of
the abstype declaration, but the constructor Q, including its type, is not. Thus a user of
the ADT has no idea whether queues are implemented as lists (as shown here) or some
other data structure. The advantage of this, of course, is that one is free to change the
representation type without fear of “breaking” some other code that uses the ADT.
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3.3.3 Haskell’s Orthogonal Design

In Haskell a rather different approach was taken to ADT’s. The observation was made
that the main difference between a concrete and abstract datatype was that the lat-
ter had a certain degree of information hiding built into it. So instead of thinking of
abstract datatypes and information hiding as going hand-in-hand, the two were made
orthogonal components of the language. More specifically, concrete datatypes were
made the only data abstraction mechanism, and to that an expose declaration was
added to control information hiding, or “visibility.”

For example, to get the effect of the earlier definition of a queue, one would write:

expose Queue, first, isempty
from data Queue a = Q [a]

first (Q as) = last as
isempty (Q []) = True
isempty (Q as) = False
...

Since Q is not explicitly listed in the expose declaration, it becomes hidden from the
user of the ADT.

The advantage of this approach to ADT’s is more flexibility. For example, suppose
we also wish to hide isempty, or perhaps some auxiliary function defined in the nested
scope. This is trivially done with the orthogonal design but much harder with the ML
design as described so far. Indeed, to alleviate this problem the ML designers provided
an additional construct, a local declaration, with which one can hide local declarations.
Another advantage of the orthogonal design is that the same mechanism can be used
at the top level of a module to control visibility of the internals of the module to the
external world. In other words, the expose mechanism is very general, and can be
nested. Haskell utilizes a conservative module system that relies on this capability.

A disadvantage of the orthogonal approach is that if the most typical ADT scenario
only requires hiding the representation type, the user will have to think through the
details in each case rather than having the hiding done automatically by using abstype.

3.4 Equations and Pattern-Matching

One of the programming methodology attributes that is strongly encouraged in the
modern school of functional programming is the use of equational reasoning in the
design and construction of programs. The lack of side effects accounts for the primary
ability to apply equational reasoning, but there are syntactic features that can facilitate
it as well. Using equations as part of the syntax is the most obvious of these, but along

45



with this goes pattern-matching, in which one can write several equations in defining
the same function, only one of which is presumably applicable in a given situation. Thus
modern functional languages have tried to maximize the expressiveness of pattern-
matching.

At first blush, equations and pattern-matching seem fairly intuitive and relatively
innocuous. Indeed, we have already given many examples that use pattern-matching,
without having said much about the details of how it works. But in fact pattern-
matching can have surprisingly subtle effects on the semantics of a language, and thus
should be carefully and precisely defined.

3.4.1 Pattern-Matching Basics

Pattern-matching should actually be viewed as the primitive behavior of a case expres-
sion, which has the general form:

case e of
pat1 -> e1
pat2 -> e2
...
patn -> en

Intuitively, if the structure of e matches pati then the result of the case expression is
ei. A set of equations of the form:

f pat1 = e1
f pat2 = e2
...
f patn = en

can then be thought of as shorthand for:

f = \x -> case x of
pat1 -> e1
pat2 -> e2
...
patn -> en

Despite this translation, for convenience I will use the equational syntax in the remain-
der of this section.

The question to be asked first is just what the pattern-matching process consists
of. For example, what exactly are we pattern-matching against? One idea that seems
reasonable is to allow one to pattern-match against constants and data structures. Thus
fac can be defined by:
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fac 0 = 1
’ n = n*fac(n-1)

[The “tick mark” in the second equation is an abbreviation for fac.] But note that this
relies on a “top-to-bottom” reading of the program, since (fac 0) actually matches
both equations. We can remove this ambiguity by adding a guard (recall the discussion
in Section 2.7), which in Haskell looks like:

fac 0 = 1
’ n | n>0 = n*fac(n-1)

As we have already demonstrated through several examples, it is also reasonable to
pattern-match against lists:

length [] = 0
’ (x:xs) = 1 + length xs

and for that matter any data structure, including user-defined ones:

data Tree2 a = Leaf a | Branch (Tree2 a) (Tree2 a)
fringe (Leaf x) = [x]
’ (Branch left right) = fringe left ++ fringe right

where ++ is the infix append operator.

Another idea that seems desirable is the ability to repeat formal parameters on the
left-hand-side to denote that arguments in those positions must have the same value,
as in the second line of the following definition:

member x [] = False
’ x (x:xs) = True
’ x (y:xs) = member x xs

[This is not legal Haskell syntax, since such repetition of identifiers is not allowed.]
However, care must be taken with this approach since in something like:

alleq [x,x,x] = True
’ y = False

it is not clear in what order the elements of the list are to be evaluated. For exam-
ple, if they are evaluated left-to-right then alleq [1,2,bot], where bot is any non-
terminating computation, will return False, whereas with a right-to-left order the pro-
gram will diverge. One solution that would at least guarantee consistency in this ap-
proach is to insist that all three positions are evaluated, so that the program diverges
if any of the arguments diverge.
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In general the problem of what gets evaluated, and when, is perhaps the most subtle
aspect of reasoning about pattern-matching, and suggests that the pattern-matching
algorithm be fairly simple so as not to mislead the user. Thus in Haskell the above
repetition of identifiers is disallowed—equations must be linear—but some functional
languages allow it (for example Miranda and Alfl [Hud84]).

A particularly subtle version of this problem is captured in the following example.
Consider these definitions:

data Silly a = Foo a | Other
bar (Foo x) = 0
’ Other = 1

Then a call bar botwill diverge, since barmust be strict in order that it can distinguish
between the two kinds of arguments that it might receive. But now consider this small
modification:

data Silly a = Foo a
bar (Foo x) = 0

Then a call bar bot seems like it should return 0, since bar need not be strict—it
can only receive one kind of argument, and thus does not need to examine it unless
it is needed in computing the result, which in this case it is not. Given the goal of
a language that is “lazy as possible,” this seems like the right solution, and was the
approach adopted in Haskell.

Two useful discussions on the subject of pattern-matching can be found in [Aug85]
and [Wad].

3.4.2 Connecting Equations

Let us now turn to the more global issue of how the individual equations are connected
together as a group. As mentioned earlier, one simple way to do this is give the equa-
tions a top-to-bottom priority, so that in:

fac 0 = 1
’ n = n*(fac(n-1))

the second equation is tried only after the first one has failed. This is the solution
adopted in many functional languages, including Haskell and Miranda.

An alternative method is to insist that the equations be disjoint, thus rendering
the order irrelevant. One significant motivation for this is the desire to reason about
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the applicability of an equation independently of the others, thus facilitating equational
reasoning. The question is, how can one guarantee disjointness? For equations without
guards, the disjointness property can be determined statically; i.e. by just examining
the patterns. Unfortunately, when unrestricted guards are allowed, the problem obvi-
ously becomes undecidable, since it amounts to determining the equality of arbitrary
recursive predicates. This in turn can be solved by resolving the guard disjointness at
run-time. On the other hand, this solution ensures correctness only for values actually
encountered at run-time, and thus the programmer might apply equational reasoning
erroneously to as yet un-encountered values!

The two ideas could also be combined by providing two different syntaxes for join-
ing equations. For example, using the hypothetical keyword else (not valid in Haskell):

sameShallowStructure [a] [c] = True
’ [a,b] [c,d] = True
else
’ x y = False

The first two equations would be combined using a disjoint semantics; together they
would then be combined with the third using a top-to-bottom semantics. Thus the third
equation acts as an “otherwise” clause in the case that the first two fail. A design of this
sort was considered for Haskell early on, but the complexities of disjointness, especially
in the context of guards, were considered too great and the design was eventually
rejected.

3.4.3 Argument Order

In the same sense that it is desireable to have the order of equations be irrelevant,
it is also desireable to have the order of arguments be irrelevant. In exploring this
possibility, consider first the functions f and g defined by:

f 1 1 = 1
f 2 x = 2

g 1 1 = 1
g x 2 = 2

which differ only in the order of their arguments. Now consider what “f 2 bot” should
evaluate to. Clearly the equations for f are disjoint, clearly the expression matchs only
the second equation, and since we want a non-strict language it seems the answer
should clearly be 2. For a compiler to achieve this it must always evaluate the first
argument to f first.
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Now consider the expression “g bot 2”—by the same argument given above the
result should also be 2, but now the compiler must be sure to always evaluate the
second argument to g first. Can a compiler always determine the correct order in which
to evaluate its arguments?

To help answer this question, first consider this intriguing example (due to Berry
[Ber78]):

f 0 1 x = 1
f 1 x 0 = 2
f x 0 1 = 3

Clearly these equations are disjoint. So what is the value of “f 0 1 bot”? Desired
answer: 1. And what is the value of “f 1 bot 0”? Desired answer: 2. And what is the
value of “f bot 0 1”? Desired answer: 3. But now the most difficult question: In what
order should the arguments be evaluated? If we evaluate the third one first, then the
answer to the first question cannot be 1. If we evaluate the second one first, then the
answer to the second question cannot be 2. If we evaluate the first one first, then the
answer to the third question cannot be 3. In fact there is no sequential order that will
allow us to answer these three questions the way we would like—some kind of parallel
evaluation is required.

This subtle problem is solvable in several ways, but they all require some kind
of compromise—insisting on a parallel (or pseudo-parallel) implementation, rejecting
certain seemingly valid programs, making equations more strict than one would like,
or giving up on the independence of the order of evaluation of arguments. In Haskell
the last solution was chosen—perform a left-to-right evaluation of the arguments—
because it presented the simplest semantics to the user, which was judged to be more
important than making the order of arguments irrelevant. Another way to explain this
is to think of equations as syntax for nested lambda expressions, in which case one
might not expect symmetry with respect to the arguments anyway.

3.5 Formal Semantics

Simultaneously with work on functional languages Scott, Strachey, and others were
busy establishing the foundations of denotational semantics, now the most widely
used tool for describing the formal semantics of programming languages. There was
a close connection between this work and functional languages primarily because the
lambda calculus served as one of the simplest programming languages with enough
useful properties to make its formal semantics interesting. In particular, the lambda
calculus had a notion of self-application, which implied that certain domains had to
contain their own function spaces. That is, it required a domain D that was a solution
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to the following domain equation:

D = D → D

At first this seems impossible—surely there are more functions from D into D than
there are elements in D—but Scott was able to show that indeed such domains existed,
as long as one was willing to restrict the allowable functions in certain (quite reasonable)
ways, and by treating= as an isomorphism rather than an equality [Sco70]. Scott’s work
served as the mathematical foundation for Strachey’s work [MS76] on the denotational
semantics of programming languages; see [Sto77] and [Sch85] for thorough treatments.

Denotational semantics and functional programming have close connections, and
the functional programming community emphasizes the importance of formal seman-
tics in general. For completeness, and to show how simple the denotational semantics
of a functional language can be, we give the semantics of the recursive lambda calculus
with constants defined in Section 2.3.

Bas = Int+ Bool+ · · · Basic values
D = Bas+ (D → D) Denotable values
Env = Id → D Environments

E : Exp → Env → D
K : Con → D

E[[x]]env = env[[x]]
E[[c]]env = K[[c]]
E[[e1 e2]]env = (E[[e1]]env) (E[[e1]]env)
E[[λx.e]]env = λv.E[[e]]env[v/x]
E[[e where x1 = e1; · · · ;xn = en]]env

= E[[e]]env′
where env′ = fix λenv′. env[ (E[[e1]]env′) / x1,

...
(E[[en]]env′) / xn ]

This semantics is relatively simple, but in moving to a more complex language such
as Miranda or Haskell the semantics can become significantly more complex, due to
the many syntactic features that make the languages convenient to use. In addition,
one must state precisely the static semantics as well, including type checking, pattern-
matching usage, etc. Once all is said and done, the formal semantics of Haskell con-
sumes about 20 pages.
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4 Advanced Features and Active Research Areas

Some of the most recent ideas in functional language design are new enough that they
should be regarded as on-going research. Nevertheless many of them are sound enough
to have been included in current language designs. In this section we will explore
a variety of such ideas, beginning with some of the innovative ideas in the Haskell
design. Some of the topics have a theoretical flavor, such as extensions of the Hindley-
Milner type system; some have a pragmatic flavor, such as expressing non-determinism,
efficient arrays, and I/O; and some involve the testing of new application areas, such as
parallel and distributed computation. All in all studying these topics should provide
insight into the goals of functional programming as well as some of the problems in
achieving those goals.

4.1 Overloading

The kind of polymorphism exhibited by the Hindley-Milner type system is what Stra-
chey called parametric polymorphism, to distinguish it from another kind that he called
ad hoc polymorphism, or overloading. The two can be distinguished in the following
way: a function with parametric polymorphism does not care what type certain of its
arguments have, and thus it behaves identically regardless of the type. In contrast,
a function with ad hoc polymorphism does care, and in fact may behave differently
for different types. Stated another way, ad hoc polymorphism is really just a syntac-
tic device for overloading a particular function name or symbol with more than one
meaning.

For example, the function map defined earlier exhibits parametric polymorphism,
and has typing:

map :: (a -> b) -> [a] -> [b]

Regardless of the kind of list given to map it behaves in the same way. In contrast,
consider the function + which we normally wish to behave differently for integer and
floating point numbers, and not at all (i.e. be a static error) for non-numeric arguments.
Another common example is the function == (equality) which certainly behaves differ-
ently when comparing the equlity of two numbers versus, say, two lists.

Ad hoc polymorphism is normally (and I suppose appropriately!) treated in an ad
hoc manner. Worse, there is no accepted convention for doing this; indeed ML, Miranda,
and Hope all do it differently. Recently, however, a uniform treatment for handling
overloading was discovered independently by Kaes [Kae88] (in trying to generalize ML’s
ad hoc “equality types”) and Wadler and Blott (as part of the process of defining Haskell).
Below I will describe the solution as adopted in Haskell; details may be found in [WB89].

52



The basic idea is introduce a notion of type classes that capture a collection of
overloaded operators in a consistent way. A class declaration is used to introduce a
new type class and the overloaded operators that must be supported by any type that
is an instance of that class. An instance declaration declares that a certain type is an
instance of a certain class, and thus included in the declaration are the definitions of
the overloaded operators instantiated on the named type.

For example, say that we wish to overload + and negate on types Int and Float.
To do so, we introduce a new type class called Num:

class Num a where
(+) :: a -> a -> a
negate :: a -> a

This declaration may be read “a type a belongs to the class Num if there are (overloaded)
functions + and negate, of the appropriate types, defined on it.”

We may then declare Int and Float to be instances of this class, as follows:

instance Num Int where
x + y = addInt x y
negate x = negateInt x

instance Num Float where
x + y = addFloat x y
negate x = negateFloat x

[Note how infix operators are defined; Haskell’s lexical syntax prevents ambiguities.]
where addInt, negateInt, addFloat, and negateFloat are assumed in this case to
be pre-defined functions, but in general could be any user-defined function. The first
declaration above may be read “Int is an instance of the class Num as witnessed by
these definitions of + and negate.”

Using type classes one can thus treat overloading in a consistent, arguably elegant,
way. Another nice feature is that type classes naturally support a notion of inheritance.
For example, we may define a class Eq by:

class Eq a where
(==) :: a -> a -> Bool

Given this class, we would certainly expect all members of the class Num, say, to have
== defined on them. Thus the class declaration for Num could be changed to:

class Eq a => Num a where
(+) :: a -> a -> a
negate :: a -> a
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which can be read as “only members of the class Eq may be members of the class Num,
and a type a belongs to the class Num if ... <as before>.” Given this class declaration,
instance declarations for Num must include a definition of ==, as in:

instance Num Int where
x + y = addInt x y
negate x = negateInt x
x == y = eqInt x y

The Haskell Report uses this inheritance mechanism to define a very rich hierarchical
numeric structure which reflects fairly well a mathematician’s view of numbers.

The traditional Hindley-Milner type system is extended in Haskell to include type
classes. The resulting type system is able to verify that the overloaded operators do
have the appropriate type. However, it is possible (but not likely) for ambiguous situa-
tions to arise, which in Haskell result in type error but can be reconciled explicitly by
the user (see [HWe88] for the details).

4.2 Purely Functional Yet Universal I/O

To many the notion of I/O conjures an image of state, side-effects, and sequencing.
Is there any hope at achieving purely functional, yet universal, and of course efficient
I/O? Suprisingly, the answer is yes. Perhaps even more surprising is that over the years
there have emerged not one, but two seemingly very different solutions:

• The lazy stream model, in which temporal events are modelled as lists, whose
lazy semantics mimics the demand-driven behavior of processes.

• The continuation model in which temporality is modelled via explicit continua-
tions.

Although papers have been written advocating both solutions, and indeed they are
very different in style, the two solutions turn out to be exactly equivalent in terms of
expressiveness; in fact there is an almost trivial translation from one to the other. The
Haskell I/O system takes advantage of this fact and provides a unified framework that
supports both styles. The specific I/O operations available in each style are identical—
what differs is the way they are expressed—and thus programs in either style may be
combined with a well-defined semantics. In addition, although certain of the primitives
rely on non-deterministic behavior in the operating system, referential transparency is
still retained internal to a Haskell program.

In this section the two styles will be described as they appear in Haskell, together
with the translation of one in terms of the other. Details of the actual Haskell design
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------- ------------ -------
| merge |------->| operating |------->| split |
------- | system | -------
| | | ------------ | | |
| | | | | |
|...| | | |...|
| | | ---------- | | |
| | ----------| program1 |<--------- | |
| | ---------- | |
| | | |
| | ---------- | |
| ------------| program2 |<----------- |

stream of| ---------- |stream of
requests | . |responses

| . |
| . |
| ---------- |
----------------| programn |<---------------

----------

Figure 1: Functional I/O

may be found in [HWe88], and a good discussion of the tradeoffs between the styles,
including examples, may be found in [HS88]. ML, by the way, uses an imperative, refer-
entially opaque, form of I/O (perhaps not surprising given the presence of references);
Miranda uses a rather restricted form of the stream model; and Hope uses the contin-
uation model but with a strict (i.e. call-by-value) semantics.

To begin, we can paint an appealing functional view of a collection of programs ex-
ecuting within an operating system (OS) as shown in Figure 1. With this view programs
are assumed to communicate with the OS via messages—programs issue “requests” to
the OS and receive “responses” from the OS.

Ignoring for now the OS itself as well as the merge and split operations, a pro-
gram can be seen as a function from a stream (i.e. list) of responses to a stream of
requests. Although the above picture is quite intuitive, this latter description may
seem counterintuitive—how can a program receive a list of responses before it has
generated any requests? But remember that we are using a lazy (i.e. non-strict) lan-
guage, and thus the program is not obliged to examine any of the responses before it
issues its first request. This application of lazy evaluation is in fact a very common
style of programming in functional languages.

Thus a Haskell program engaged in I/O is required to have type Behavior, where:
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type Behavior = [Response] -> [Request]

[Recall from Section 3.3 that [Response] is the type consisting of lists of values of
type Response.] The main operational idea is that the nth response is the reply of the
operating system to the nth request.

For simplicity we will assume that there are only two kinds of requests and three
kinds of responses, as defined below:

data Request = ReadFile Name | WriteFile Name Contents
data Response = Success | Return Contents | Failure ErrorMsg
type Name = String
type Contents = String
type ErrorMsg = String

[This is a subset of the requests available in Haskell.]

As an example, given this request list:

[ ..., WriteFile fname s1, Readfile fname, ... ]

and the corresponding response list:

[ ..., Success, Return s2, ... ]

then s1 == s2, unless there were some “intervening” external effect.

In contrast, the continuation model is normally characterized by a set of transac-
tions. Each transaction typically takes a success continuation and a failure continuation
as arguments. These continuations in turn are simply functions that generate more
transactions. For example:

data Transaction = ReadFile’ Name FailCont RetCont
| WriteFile’ Name Contents FailCont SuccCont
| Done

type FailCont = ErrorMsg -> Transaction
type RetCont = Contents -> Transaction
type SuccCont = Transaction

[In Haskell the transactions are actually provided as functions rather than construc-
tors; see below.] The special transaction Done represents program termination. These
declarations should be compared with those for the stream model given earlier.

Returning to the simple example given earlier, the request and response list are no
longer separate entities since their effect is “interwoven” into the continuation struc-
ture, yielding something like:
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WriteFile’ fname s1 exit
(ReadFile’ fname exit

(\s2 -> ...) )
where exit errmsg = Done

in which case, as before, we would expect s1 == s2 in the absence of external effects.
This is essentially the way I/O is handled in Hope.

Although these two styles seem very different, there is a very simple translation of
the continuation model into the stream model. In Haskell, instead of defining the new
datatype Transaction, a set of functions are defined that accomplish the same task,
but that are really stream transformers in the request/response style. In other words,
the type Transaction should be precisely the type Behavior, and should not be a new
datatype at all. Thus we arrive at:

readFile :: Name -> FailCont -> RetCont -> Behavior
writeFile :: Name -> Contents -> FailCont -> SuccCont -> Behavior
done :: Behavior
type FailCont = ErrorMsg -> Behavior
type RetCont = Contents -> Behavior
type SuccCont = Behavior

readFile name fail succ resps =
(ReadFile name) : case (head resps) of

Return contents -> succ contents (tail resps)
Failure msg -> fail msg (tail resps)

writeFile name contents fail succ resps =
(WriteFile name contents) : case (head resps) of

Success -> succ (tail resps)
Failure msg -> fail msg (tail resps)

done resps = []

This pleasing and very efficient translation allows one to write Haskell programs in
either style and mix them freely.

The complete design, of course, includes a fairly rich set of primitive requests be-
sides ReadFile and WriteFile, including a set of requests for communicating through
channels, which include things such as standard input and output. One of these re-
quests, in fact, takes a list of input channel names and returns their non-deterministic
merge. Because the merge itself is implemented in the operating system, referential
transparency is retained within a Haskell program.

Another useful aspect of the Haskell design is that it includes a partial (but rigorous)
specification of the behavior of the OS itself. For example, it introduces the notion of
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an agent that consumes data on output channels and produces data on input channels.
The user is then modelled as an agent that consumes standard output and produces
standard input. This particular agent is required to be strict in the standard output,
corresponding to the notion that the user reads the terminal display before typing
at the keyboard! No other language design that I am aware of has gone this far in
specifying the I/O system with this degree of precision; it is usually left implicit in
the specification. It is particularly important, however, in this context because the
proper semantics relies critically on how the OS consumes and produces the request
and response lists.

To conclude this section I will show two Haskell programs that perform the follow-
ing task: prompt the user for the name of a file, read and echo the file name, and then
look up and display the contents of the file on standard-output. The first version uses
the stream model, the second the continuation model.

main resps =
[ AppendChannel "stdout" "please type a filename\CR\",
if (resps!!1 == Success) then (ReadChannel "stdin"),
AppendChannel "stdout" fname,
if (resps!!3 == Success) then (ReadFile fname),
AppendChannel "stdout" (case resps!!4 of

Failure msg -> "can’t open"
Return file_contents -> file_contents)

] where fname = case resps!!2 of
Return user_input -> get_line user_input

[The operator !! is the list selection operator; thus xs!!n is the nth element in the list
xs.]

main = appendChannel "stdout" "please type a filename\CR\" exit
(readChannel "stdin" exit (\user_input ->
appendChannel "stdout" fname exit
(readFile fname (\msg -> appendChannel "stdout" "can’t open" exit done)

(\contents ->
appendChannel "stdout" contents exit done))
where fname = get_line user_input))

exit msg = done

4.3 Arrays

As it turns out, arrays can be expressed rather nicely in a functional language, and in
fact all of the arguments about mathematical elegance fall in line when using arrays.
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This is especially true of program development in scientific computation, where text-
book matrix algebra can often be translated almost verbatim into a functional language.
The main philosophy is to treat the entire array as a single entitiy defined declaratively,
rather than as a place-holder of values that is updated incrementally. This in fact is
the basis of the APL philosophy (see Section 2.4), and some researchers have concen-
trated on combining functional programming ideas with those from APL [Tu86, TP86].
The reader may find good general discussions of arrays in functional programming
languages in [Wad86, Hud86a, Wis87]. In the remainder of this section I will describe
Haskell’s arrays, which originated from some ideas in Id Nouveau [NPA86].

Haskell has a family of multi-dimensional non-strict immutable arrays whose spe-
cial interaction with list comprehensions provides a convenient “array comprehension”
syntax for defining arrays monolithically. As an example, here is how to define a vector
of squares of the integers from 1 to n:

a = array (1,n) [ (i,i*i) | i <- [1..n] ]

The first argument to array is a tuple of bounds, and thus this array has size n and is
indexed from 1 to n. The second argument is a list of index/value pairs, and is written
here as a conventional list comprehension. The ith element of an array a is written
a!i, and thus in the above case we have that a!i = i*i.

There are several useful semantic properties of Haskell’s arrays. First, they can be
recursive—here is an example of defining the firstn numbers in the Fibonacci sequence:

fib = array (1,n) ( [ (0,1), (1,1) ] ++
[ (i,fib!(i-1)+fib!(i-2)) | i <- [2..n] ] )

This example demonstrates how one can use an array as a cache, which in this case
turns an exponentially poor algorithm into an efficient linear one.

Another important property is that array comprehensions are constructed lazily,
and thus the order of the elements in the list is completely irrelevant. For example,
we can construct a m-by-n matrix using a “wavefront recurrence” where the north and
west borders are 1, and each other element is the sum of its north, north-west, and
west neighbors, as follows:

a = array ((1,m),(1,n))
( [ ((1,1),1) ] ++
[ ((i,1),1) | i <- [2..m] ] ++
[ ((1,j),1) | j <- [2..n] ] ++
[ ((i,j), a!(i-1,j) + a!(i,j-1) + a!(i-1,j-1))

| i <- [2..m], j <- [2..n] ] )
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The elements in this result can be accessed in any order—the “demand-driven” effect
of lazy evaluation will cause the necessary elements to be evaluated in an order con-
strained only by data dependencies. It is this property that makes array comprehen-
sions so useful in scientific computation, where recurrence equations express the same
kind of data dependencies. In implementing such recurrences in Fortran one must be
sure that the elements are evaluated in an order consistent with the dependencies—
lazy evaluation accomplishes that for us.

On the other hand, although elegant, array comprehensions may be difficult to im-
plement efficiently. There are two main difficulties: the standard problem of over-
coming the inefficiencies of lazy evaluation, and the problem of avoiding the con-
struction of the many intermediate lists that the second argument to array seems
to need. A discussion of ways to overcome these problems is found in [AH89]. Al-
ternative designs for functional arrays and their implementations may be found in
[Hol83, Hug85a, AHN87, Wis87].

Another problem is that array comprehensions are not quite expressiveness enough
to capture all behaviors. The most conspicuous example of this is the case where an
array is being used as an “accumulator,” say in building a histogram, and thus one actu-
ally wants an incremental update effect. Thus in Haskell a function called accumArray
is provided to capture this kind of behavior in a way consistent with the “monolithic”
nature of array comprehensions (similar ideas are found in [SH86, Wad86]). However,
it is not clear that this is the most general solution to the problem. An alternative
approach is to define an incremental update operator on arrays, but then even nas-
tier efficiency problems arise, since (conceptually at least) the updates involve copying.
Work on detecting when it is safe to implement such updates destructively has resulted
in at least one efficient implementation [BH88, Blo88, HB85], although the analysis itself
is costly.

Nevertheless, array comprehensions have the potential for being very useful, and
many interesting applications have already been programmed using them (see [HA88]
for some examples). Hopefully future research will lead to solutions to the remaining
problems.

4.4 Views

Pattern-matching (see Section 3.4) is very useful in writing compact and readable pro-
grams. Unfortunately, knowledge of the concrete representation of an object is nec-
essary before pattern-matching can be invoked, which seems to be at odds with the
notion of an abstract datatype. To reconcile this conflict Wadler introduced a notion
of views [Wad87].

A view declaration introduces a new algebraic datatype, just like a data declaration,
but in addition establishes an isomorphism between the values of this new type and a
subset of the values of an existing algebraic datatype. For example:
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data Complex = Rectangular Float Float
view Complex = Polar Float Float
where toView (Rectangular x y) = Polar (sqrt (x**2+y**2))

(arctan (y/x))
fromView (Polar r t) = Rectangular (r*(cos t))

(r*(sin t))

[Views are not part of Haskell, but as with abstract datatypes we will use Haskell syntax,
here extended with the keyword view.] Given the datatype Complex, we can read the
view declaration as: “one view of Complex contains only Polar values; to translate
from a Rectangular to a Polar value, use the function toView; to translate the other
way, use fromView.”

Having declared this view we can now use pattern-matching using either the Rectangular
constructor or the Polar constructor; similarly, new objects of type Complex can be
built with either the Rectangular or Polar constructors. They have precisely the same
status, and the coercions are done automatically. For example:

rotate (Polar r t) angle = Polar r (t+angle)

As the example stands, objects of type Complex are concretely represented with the
Rectangular constructor, but this decision could be reversed by making Polar the
concrete constructor and Rectangular the view, without altering any of the functions
which manipulate objects of type Complex.

Whereas traditionally abstract data types are regarded as hiding the representation,
with views one can reveal as many representations (zero, one, or more) as are required.

As a final example, consider this definition of “Peano’s view” of the natural number
subset of integers:

view Integer = Zero | Succ Integer
where fromView Zero = 0

’ (Succ n) | n>=0 = n+1
toView 0 = Zero
’ n | n>0 = Succ (n-1)

With this view, 7 is viewed as equivalent to

Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))

Note that fromView defines a mapping of any finite element of peano into an integer,
and toView defines the inverse mapping. Given this view, we can write definitions such
as
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fac Zero = 1
’ (Succ n) = (Succ n) * (fac n)

which is very useful from an “equational reasoning” standpoint, since it allows us to use
an abstract representation of integers without incurring any performance overhead—
the view declarations provide enough information to map all of the abstractions back
into concrete implementations at compile time.

On the other hand, perhaps the most displeasing aspect of views is that an implicit
coercion is taking place, which may be confusing to the user. For example, in:

case (Foo a b) of
Foo x y -> exp

one cannot be sure in exp that a==x and b==y! Although views were considered in an
initial version of Haskell, they were eventually discarded, in a large part because of this
problem.

4.5 Parallel Functional Programming

An often-heralded advantage of functional languages is that parallelism in a functional
program is implicit; it is manifested solely through data dependencies and the seman-
tics of primitive operators. This is in contrast to more conventional languages, where
explicit constructs are typically used to invoke, synchronize, and in general coordi-
nate the concurrent activities. In fact, as discussed earlier, many functional languages
were developed simultaneously with work on highly-parallel dataflow and reduction
machines, and such research continues today.

In most of this work parallelism in a functional program is detected by the system
and allocated to processors automatically. Although in certain constrained classes of
functional languages the mapping of process to processor can be determined optimally
[Che86, DI85], in the general case the optimal strategy is undecidable, so heuristics such
as load-balancing are often employed instead.

But what if a programmer knows a good (perhaps optimal) mapping strategy for a
program executing on a particular machine, but the compiler is not smart enough to
determine it? And even if the compiler is smart enough, how does one reason about
such behavior? One could argue that the programmer should not be concerned about
such details, but that is a difficult argument to make to someone whose job is precisely
to invent such algorithms!

To meet these needs various researchers have designed extensions to functional
languages, resulting in what I like to call para-functional programming languages. The
extensions amount to a meta-language (for example annotations) to express the desired
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behavior. Examples include annotations to control evaluation order [Bur84, DW87,
Sri85], prioritize tasks, and map processes to processors [Hud86c, HS86, KL85]. Sim-
ilar work has taken place in the Prolog community [Sha84]. In addition, research has
resulted in formal operational semantics for such extensions [Hud86b, HA87]. In the
remainder of this section one kind of para-functional behavior will be demonstrated:
that of mapping program to machine (based on the work in [Hud86c, HS86]).

The fundamental idea behind process-to-processor mapping is quite simple. Con-
sider the expression e1+e2. The strict semantics of + allows the subexpressions e1 and
e2 to be executed in parallel—this is an example of what is meant by saying that “the
parallelism in a functional program is implicit.” But suppose now that we wish to ex-
press precisely where (i.e., on which processor) the subexpressions are to be evaluated;
we may do so quite simply by annotating the subexpressions with appropriate map-
ping information. An expression annotated in this way is called a mapped expression,
which has the following form:

exp on proc

[on is a hypothetical keyword, and is not valid Haskell.] which intuitively declares that
exp is to be computed on the processor identified by proc. The expression exp is the
body of the mapped expression, and represents the value to which the overall expres-
sion will evaluate (and thus can be any valid expression, including another mapped
expression). The expression proc must evaluate to a processor id. Without loss of
generality the processor ids, or pids, are assumed to be integers, and there is some
pre-defined mapping from those integers to the physical processors they denote.

Returning now to the example, we may annotate the expression (e1+e2) as follows:

(e1 on 0) + (e2 on 1)

where 0 and 1 are processor ids. Of course, this static mapping is not very interesting.
It would be nice, for example, if we were able to refer to a processor relative to the
currently executing one. We can do this through the use of the reserved identifier self,
which when evaluated returns the pid of the currently executing processor. Using self
we can now be more creative. For example, suppose we have a ring of n processors
that are numbered consecutively; we may then rewrite the above expression as:

(e1 on left self) + (e2 on right self)
where left pid = mod (pid-1) n

right pid = mod (pid+1) n

[mod x y computes x modulo y.] which denotes the computation of the two subex-
pressions in parallel on the two neighboring processors, with the sum being computed
on self.
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To see that it is desirable to dynamically bind self, consider that one may wish
successive invocations of a recursive call to be executed on different processors—this
is not easily expressed with lexically bound annotations. For example, consider the
following list-of-factorials program, again using a ring of processors:

(map fac [2,3,4]) on 0
where map f [] = []

’ f (x:xs) = f x : ((map f xs) on (right self))

Note that the recursive call to map is mapped onto the processor to the right of the
current one, and thus the elements 2, 6, and 24 in the result list are computed on
processors 0, 1, and 2, respectively.

Para-functional programming languages have been shown to be adequate in ex-
pressing a wide range of deterministic parallel algorithms clearly and concisely [Hud86c,
HS86]. It remains to be seen, however, whether the pragmatic concerns that motivate
these kinds of language extensions persist, and if they do, whether or not compilers can
become smart enough to perform the optimizations automatically. Indeed these same
questions can be asked about other language extensions, such as the “memoization”
techniques discussed in the next section.

4.6 Caching and Memoization

Consider this simple definition of the Fibonacci function:

fib 0 = 1
’ 1 = 1
’ n = fib (n-1) + fib (n-2)

Although simple, it is hopelessly inefficient. One could rewrite it in one of the classic
ways, but then the simplicity and elegance of the original definition is lost. Keller
and Sleep suggest an elegant alternative: provide syntax for expressing the caching or
memoization of selected functions [KS86]. For example, the syntax might take the form
of a declaration that precedes the function definition, as in:

memo fib using cache
fib 0 = 1
’ 1 = 1
’ n = fib (n-1) + fib (n-2)

which would be syntactic sugar for:
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fib = cache fib1
where fib1 0 = 1

’ 1 = 1
’ n = fib (n-1) + fib (n-2)

The point is that cache is a user-defined function that specifies a strategy for caching
values of fib. For example, to cache values in an array, one might define cache by:

cache fn = \n -> (array (0,max) [(i,fn i) | i<-[0..max]]) ! n

where we assume max is the largest argument to which fib will be applied. Expanding
out the definitions and syntax yields:

fib n = (array (0,max) [(i,fib1 i) | i<-[0..max]]) ! n
where fib1 0 = 1

’ 1 = 1
’ n = fib (n-1) + fib (n-2)

which is exactly the desired result.20 As a methodology this is very nice, since libraries
of useful caching functionals may be produced and reused to cache many different
functions. There are limitations to the approach, as well as extensions, all of which are
described in [KS86].

One of the limitations of this approach is that in general it can only be used with
strict functions, and even then the expense of performing equality checks on, for exam-
ple, list arguments can be expensive. As a solution to this problem, Hughes introduced
the notion of “lazy memo-functions,” in which the caching strategy utilizes an identity
test (“EQ” in Lisp terminology) instead of an equality test [Hug85b]. Such a strategy can
no longer be considered as syntactic sugar, since an identity predicate is not something
normally provided as a primitive in functional languages because it is implementation
dependent. Nevertheless, if built into a language lazy memo-functions provide a very
efficient (constant time) caching mechanism, and allow very elegant solutions to a class
of problems not solved by Keller and Sleep’s strategy: those involving “infinite” data
structures. For example, consider this definition of the infinite list of ones:

ones = 1 : ones

Any reasonable implementation will represent this as a cyclic list, thus consuming
constant space. Another common idiom is the use of higher order functions such as
map:

twos = map (\x->2*x) ones

20This is essentially the same solution as the one given in Section 4.3.
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But now note that only the cleverest of implementations will represent this as a cyclic
list, since map normally generates a new list cell on every recursive call. By lazy mem-
oizing map, however, the cyclic list will be recovered. To see how, note that the first
recursive call to map will be map (\x->2*x) (tail ones) — but (tail ones) is
identical to ones (remember that ones is cyclic), and thus map is called with arguments
identical to the first call. Thus the old value is returned, and the cycle is created. Many
more practical examples are discussed in [Hug85b].

The interesting thing about memoization in general is that it begins to touch on
some of the limitations of functional languages—in particular the inability to side effect
global objects such as caches—and solutions such as lazy memo-functions represent
useful compromises. It remains to be seen whether more general solutions can be
found that eliminate the need for these special-purpose features.

4.7 Non-Determinism

Most programmers (including the very idealistic among us) admit the need for non-
determinism, despite the semantic difficulties that it introduces. It seems to be an
essential ingredient of “real-time systems,” such as operating systems and device con-
trollers. Non-determinism in imperative languages is typically manifested by run-
ning in parallel several processes that are side-effecting some global state—the non-
determinism is thus implicit in the semantics of the language. In functional languages
non-determinism is manifested through the use of primitive operators such as amb
or merge—the non-determinism is thus made explicit. Several papers have been pub-
lished on the use of such primitives in functional programming, and it appears quite
reasonable to program conventional non-deterministic applications using them [Hen82,
Sto85]. The problem is, once introduced, non-determinism completely destroys refer-
ential transparency, as we shall see.

By way of introduction, McCarthy [McC63] defined a binary non-deterministic oper-
ator called amb having the following behavior:

amb(e1,⊥) = e1

amb(⊥, e2) = e2

amb(e1, e2) = either e1 or e2, chosen non−deterministically

The “operational reading” of amb(e1, e2) is that e1 and e2 are evaluated in parallel,
and the one that completes first is returned as the value of the expression.

To see how referential transparency is lost, consider this simple example:

(amb 1 2) + (amb 1 2)

Is the answer 2 or 4? Or perhaps 3? It is this last answer that indicates that referential
transparency is lost—there does not appear to be any simple syntactic mechanism for
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ensuring that one could not replace “equals-for-equals” in a misleading way. Shortly we
will discuss possible solutions to this problem, but for now let us look at an example
using this style of non-determinism.

Using amb one can easily define things such as merge that non-deterministically
merge two lists, or streams:21

merge as bs = amb (if (as==[]) then bs else (head as : merge (tail as) bs))
(if (bs==[]) then as else (head bs : merge as (tail bs)))

which then can be used, for example, in combining streams of characters from different
computer terminals:

process (merge term1 term2)

Using this is a basis, Henderson shows how many operating system problems can be
solved in a “pseudo-functional” language [Hen82]. Hudak uses non-determinism of a
slightly different kind to emulate the parallel updating of arrays [Hud86a].

Although satisfying in the sense of being able to solve real-world kinds of non-
determinism, these solutions are dissatisfying in the way they destroy referential trans-
parency. One might argue that the situation is at least somewhat better than the con-
ventional imperative one in that the non-determinism is at least made explicit, and thus
one could induce extra caution when reasoning about those sections of a program ex-
hibiting non-deterministic behavior. The only problem with this is that determining
which sections of a program are non-deterministic may be difficult—it is not a lexi-
cal property, but rather is dynamic, since any function may call a non-deterministic
sub-function.

At least two solutions have been proposed to this problem. One, proposed by War-
ren Burton [Bur88], is to provide a tree-shaped “oracle” as an argument to a program
from which non-deterministic choices may be selected. By passing the tree and its
sub-trees around explicitly, referential transparency can be preserved. The problem
with this approach is that carrying the oracle around explicitly is cumbersome at best.
On the other hand, functional programmers already carry around a greater amount of
state to avoid problems with side-effects, so perhaps the extra burden is not too great!

Another (at least partial) solution was proposed by Stoye [Sto85] in which all of the
non-determinism in a program is forced to be in one place. Indeed to some extent this

21Note that this version of merge:
merge [] bs = bs
merge as [] = as
merge (a:as) (b:bs) = amb (a : merge as (b:bs)) (b : merge (a:as) bs)

is not correct, since “merge ⊥ bs” evaluates to “⊥,” whereas we would like it to be “bs ++ ⊥,” which in
fact the definition in the text yields.
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was the solution adopted in Haskell, although for somewhat different reasons. The
problem with this approach is that the non-determinism is not eliminated completely,
but rather centralized. It allows reasoning equationally within the isolated pieces, but
not within the collection of pieces as a whole. Nevertheless, the isolation (at least in
Haskell) is achieved syntactically, and thus it is easy to determine when equational
reasoning is valid. A general discussion of these issues is found in [HS88].

An interesting variation on these two ideas is to combine them—centralize the non-
determinism and then use an oracle to define it in a referentially transparent way. Thus
the disadvantages of both approaches would seem to dissappear.

In any case, I should point out that none of these solutions makes reasoning about
non-determinism any easier, they just make reasoning about programs easier.

4.8 Extensions to Polymorphic Type Inference

The Hindley-Milner type system has certain limitations; an example of this was given
in Section 2.6.1. Some success has been achieved in extending the type system to
include other kinds of data objects, but surprisingly little success has been achieved
at removing the fundamental limitations while still retaining the tractability of the
type inference problem. It is a somewhat fragile system, but is fortunately expressive
enough to base practical languages on it. Nevertheless, research continues in this area.

Independently of type inference, considerable research is underway on the expres-
siveness of type systems in general. The most obvious thing to do is allow types to
be “first-class,” thus allowing abstraction over them in the obvious way. Through gen-
eralizations of the type system it is possible to model such things as parameterized
modules, inheritance, and sub-typing. This area has indeed taken on a character of its
own; a good summary of current work may be found in both [CW85] and [Rey85].

4.9 Combining Other Programming Language Paradigms

A time-honored tradition in programming language design is to come up with “hybrid”
designs that combine the best features of several different paradigms, and functional
programming language research has not escaped that tradition! I will only discuss
briefly two such hybrids here, although others exist.

The first is combining logic programming with functional programming. The “log-
ical variable” permits two-way matching (via unification) in logic programming lan-
guages, as opposed to the one-way matching (via pattern-matching) in functional lan-
guages, and thus seems like a desirable feature to have in a language. Indeed its
declarative nature fits in well with the ideals of functional programming. However
the integration is not easy—many proposals have been made yet none are completely
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satisfactory, especially in the context of higher-order functions and lazy evaluation.
See [DL85] for a good summary of results.

The second area reflects an attempt to combine the state-oriented behavior of im-
perative languages in a semantically clean way. The same problems arise here as they
do with non-determinism—simply adding the assignment statement means that equa-
tional reasoning must always be qualified, since it is difficult to determine whether
or not a deeply nested call is made to a function that induces a side-effect. However,
there are some possible solution to this, most notably work by Gifford and Lucassen
[GL86, LG88] in which effects are captured in the type system. In Gifford’s system it
is possible to determine from a procedure’s type whether or not it is side-effect free.
However, it is not currently known whether such a system can be made into a type
inference system in which type declarations are not required. This is an active area of
current research.

5 Dispelling Myths About Functional Programming

To gain further insight into the nature of functional languages, it is helpful to discuss,
with the hope of dispelling, certain myths that have arisen over the years.

Myth #1: Functional programming is the antithesis of conventional imperative pro-
gramming.

This myth is largely responsible for alienating imperative programmers from func-
tional languages. But in fact, there is much in common between the two styles of
programming, which I hope to make evident by two simple arguments.

Consider first that one of the key evolutionary characteristics of high-level impera-
tive programming languages has been the use of expressions to denote a result rather
than a sequence of statements to put together a result imperatively and in piecemeal.
Expressions were an important feature of Fortran, for example, had more of a mathe-
matical flavor, and freed the programmer of low-level operational detail (this burden
was of course transferred to the compiler). From Fortran expressions, to functions in
Pascal, to expression oriented programming style in Scheme—these advances are all
on the same evolutionary path. Functional programming can be seen as carrying this
evolution to its logical conclusion—everything is an expression.

The second argument is based on an analogy between functional (i.e. side-effect-
free) programming and structured (i.e. goto-less) programming. The fact is, it is hard to
imagine doing without either goto’s or assignment statements, until one is shown what
to use in their place. In the case of goto, one uses instead “structured commands,” and
in the case of assignment statements one uses instead lexical binding and recursion.

As an example, this simple program fragment with goto’s:
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x := init;
i := 0;

loop: x := f(x,i);
i := i+1;
if i<10 goto loop;

can be rewritten in a structured style as:

x := init;
i := 0;
while i<10
begin x := f(x,i);

i := i+1
end;

In capturing this disciplined use of goto, arbitrary jumps into or out of the body of
the block now cannot be made. Although this can be viewed as a constraint, most
people now feel that the resulting disciplined style of programming is clearer, easier to
maintain, etc.

But in fact more discipline is evident here than just the judicious use of goto. Note in
the original program fragment that x and i are assigned to exactly once in each iteration
of the loop; the variable i, in fact, is only being used to control the loop termination
criteria, and the final value of x is intended as the value computed by the loop. This
disciplined use of assignment can be captured by the following assignment-free Haskell
program:

loop init 0
where loop x i = if i<10 then (loop (f x i) (i+1))

else x

Functions (and procedures) can in fact be thought of as a disciplined use of goto and
assignment—the transfer of control to the body of the function and the subseqent
return capture a discplined use of goto, and the formal to actual parameter binding
captures a disciplined use of assignment.

By inventing a bit of syntactic sugar to capture the essence of tail recursion, the
above program could be rewritten as:

let x = init
i = 0

in while i<10
begin next x = f(x,i)
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next i = i+1
end
result x

[This syntactic sugar is not found in Haskell, although some other functional (especially
dataflow) languages have similar features, including Id, Val, and Lucid.] where the form
“next x = ...” is a construct (next is a keyword) used to express what the value of
x will be on the next iteration of the “loop.” Note the similarity of this program to
the structured one given earlier. In order to properly enforce a “disciplined” use of
assignment, we can constrain the syntax so that only one “next” statement is allowed
for each identifier (stated another way, this constraint means that it is a trivial matter
to convert such programs into the tail recursive form shown earlier). If one thinks of
“next x” and “next i” as new identifiers (just as the formal parameters of loop can
be thought of as new identifiers for every call to loop), then referential transparency is
preserved. Functional programming advocates argue that this results in a better style
of programming, in much the same way that structured programming advocates argue
for their cause.

Thus the analogy between goto-less programming and assignment-free program-
ming runs deep. When Dijkstra first introduced structured programming, much of the
programming community was aghast—how could one do without goto? But as peo-
ple programmed in the new style, it was realized that what was being imposed was
a “discipline” for good programming, not a “police state” to inhibit expressiveness.
Exactly the same can be said of side-effect-free programming, and its advocates hope
that as people become more comfortable programming in the functional style, they will
appreciate the good sides of the discipline thus imposed.

When viewed in this way functional languages can be seen as a logical step in the
evolution of imperative languages—thus, of course, rendering them non-imperative.
On the other hand, it is exactly this purity that some programmers object to, and one
could argue that just as a “tasteful” use of goto here or there is acceptable, so is a
“tasteful” use of a side-effect. Such small impurities certainly shouldn’t invalidate the
functional programming style, and thus may be acceptable.

Myth #2: Functional programming languages are toys.

The first step toward dispelling this myth is to cite examples of efficient implemen-
tations of functional languages, of which there now exists several. The Alfl compiler
at Yale, for example, generates code that is competitive with that generated by con-
ventional language compilers [You88]. Other notable compiler efforts include the LML
compiler at Chalmers University [Aug84], the Ponder compiler at Cambridge University
[Fai85], and the ML compilers developed at Bell Labs and Princeton [AM87].

On the other hand, there are still inherent inefficiencies that cannot be ignored.
Higher-order functions and lazy evaluation certainly increase expressiveness, but in the

71



general case the overhead of, for example, the dynamic storage management necessary
to support them, cannot be eliminated.

The second step toward dispelling this myth amounts to pointing to real applica-
tions development in functional languages, including “real-world” situations involving
non-determinism, databases, parallelism, etc. Although examples of this sort are not
plentiful (primarily because of the youth of the field) and are hard to cite (since pa-
pers are not usually written about applications), they do exist. For example, I know of
several:

1. The dataflow groups at MIT and the functional programming groups at Yale have
written numerous functional programs for scientific computation. So has two
national labs: Los Alamos and Lawrence Livermore.

2. MCC has written a reasonably large expert system (EMYCIN) in SASL.

3. At least one company is currently marketing a commercial product (a CAD pack-
age) that uses a lazy functional language.

4. A group at IBM uses a lazy functional language for graphics and animation.

5. The LML (lazy ML) compiler at Chalmers was written almost entirely in LML, and
the new Haskell compilers at both Glasgow and Yale are being written in Haskell.

6. GEC Hirst Research Lab is using a program for designing VLSI circuits that was
written by some researchers at Oxford using a lazy functional language.

I am sure that there are many other examples that I am not aware of. In particular,
there are many Scheme and Lisp programs that are predominantly side-effect-free, and
could properly be thought of as functional programs.

Myth #3: Functional languages cannot deal with state.

This criticism is often expressed as a question: “how can one program in a language
that does not have a notion of state?” The answer, of course, is that you cannot, and
in fact functional languages deal with state very nicely, although the state is expressed
explicitly rather than implicitly. So the issue is more a matter of how one expresses state
and manipulations of it.

State in a functional program is usually carried around explicitly in one of two ways:
(1) in the values of bound variables of functions, in which case it is updated by making
a recursive call to the function with new values as arguments, or (2) in a data struc-
ture that is updated non-destructively so that, at least conceptually, the “old” value
of the data structure remains intact and can be accessed later. Although declarative
and referentially transparent, this treatment of state can present problems to an im-
plementation, but it is certainly not a problem in expressiveness. Furthermore, the
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implementation problems are not as bad as they first seem, and recent work has gone
a long way toward solving them. For example, a compiler can convert tail recursions
into loops and “single-threaded” data structures into mutable ones.

It turns out that, with respect to expressiveness, one can use higher-order functions
not only to manipulate state, but also to make it appear implicit. To see how, consider
the imperative program given earlier:

x := init;
i := 0;

loop: x := f(x,i);
i := i + 1;
if (i < 10) goto loop;

We can model the implicit state in this program as a pair (xval,ival), and define
several functions that update this state in a way that mimics the assignment statements:

x (xval,ival) xval’ = (xval’,ival)
i (xval,ival) ival’ = (xval,ival’)
x’ (x,i) = x
i’ (x,i) = i
const v s = v

We will take advantage of the fact that these functions are defined in curried form.

Note how x and i are used to update the state, and x’ and i’ are used to access the
state. For example, the following function, when applied to the state, will increment i:

\s -> i s ((i’ s) + 1)

For expository purposes we would like to make the state as implicit as possible,
and thus we express the result as a composition of higher-order functions. To facilitate
this, and to make the result look as much like the original program as possible, we
define the following higher-order infix operators and functions:22

f := g = \s -> f s (g s)
f ; g = \s -> g (f s)
goto f = f
f +’ g = \s -> f s + g s
f <’ g = \s -> f s < g s
if’ p c = \s -> (if (p s) then (c s) else s)

22It is interesting to note that :=, const, and goto correspond precisely to the combinators S, K, and I,
and ; is almost the combinator B, but is actually CB.
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[I am cheating slightly here in that ; is a reserved operator in Haskell, and thus cannot
really be redefined in this way.]

Given these definitions we can now write the following functional (albeit contrived)
version of the imperative program given earlier:

x := const init;
i := const 0;

loop where
loop = x := f;

i := i’ +’ const 1;
if’ (i’ <’ const 10) (goto loop)

This result is rather disquieting—it looks very much like the original imperative pro-
gram! Of course, we worked hard to make it that way, which in the general case is much
harder to do, and it is certainly not the recommended way to do functional program-
ming. Nevertheless it exemplifies the power and flexibility of higher-order functions—
note how they are used here both to manipulate the state and to implement the goto
(where in particular the definition of loop is recursive, since the goto implements a
loop).

6 Conclusions

In this paper I have attempted to present functional programming in all of its many
shapes and forms. In so doing I have only touched on the surface of many issues. It is
hoped that enough of a foundation has been given that the interested researcher may
explore particularly interesting topics in more depth, and that the interested program-
mer may learn to use functional languages in a variety of applications.

The reader will note that I have said very little about how to implement functional
languages, primarily because doing that subject justice would probably double the
size of this paper! Nevertheless, I feel compelled to point the interested reader in
the right direction for such a study. By far the best single reference to sequential
implementations is Peyton Jones’ text [PJ87], although recently other techniques have
appeared viable (see [BHY88, BPJR88, FW87]). Parallel implementations have taken
a variety of forms. On commercial machines the state of the art on parallel graph
reduction implementations may be found in [GH88, Gol88b, Gol88a]. The latest on
special-purpose parallel graph reducers can be found in [PJCSH87, WW87]. For a very
different kind of implementation see [HM88]. References to dataflow machines were
given in Section 2.8.
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