
Oracle→OpenCyc Interface
release 0.71

3rd August 2004

Copyright (C)

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Found-
ation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

1

Contents

1 Introduction 1
1.1 Overview . 2
1.2 See also . 2

2 Installation 3
2.1 Prerequisites . 3
2.2 Get the files . 3
2.3 Installing it into Oracle . 3

2.3.1 Create user cyctest (install.sh) 4
2.3.2 Load the jars into Oracle (install.sh) 4
2.3.3 Load CycJsproc.java (install.sh) 5
2.3.4 Load the CYC package (install.sh) 5
2.3.5 Small test (install.sh) . 5

3 Usage 6
3.1 The first query . 6
3.2 Oracle puts data in OpenCyc . 7
3.3 Oracle gets data from OpenCyc . 9
3.4 Oracle removes data from OpenCyc 10

3.4.1 Killing constants . 10
3.5 End the connection to OpenCyc . 10
3.6 Type mapping . 11
3.7 Method summary . 11
3.8 Debugging . 13
3.9 Exceptions . 13

1 Introduction

This document contains information on how to install and use the Oracle Open-
Cyc Interface. The interface enables access to OpenCyc from within the Oracle
RDBMS. It is possible to ‘copy’ data from Oracle into OpenCyc, and it is possible
to ‘ask’ OpenCyc information. There are three ways to access OpenCyc from Oracle:

Java stored procedure Access to the complete OpenCyc Java API.
PL/SQL Access to Java stored procedures in CycJsprocs.java

SQL Access to functions in cyc.pkb

1

Figure 1: architecture

Writing Java stored procedures gives access to all the features supplied by the Open-
Cyc Java API, which includes using CycObjects like Cyclist, CycAssertions and
CycLobjects such as terms, formulas, predicates, narts etcetera. A small subset of
this functionality is visible from SQL. If you want features, go Java stored procedures.
If you want to do things quick, write SQL statements.

1.1 Overview

In figure 1, the two rectangles with dotted lines are the Oracle→OpenCyc interface.

1.2 See also

• OpenCyc Api Documentation

• OpenCyc Java Api Documentation

• Oracle Java Developer’s Guide

• Oracle Java Stored Procedures Developer’s Guide (especially part 3)

2

http://www.opencyc.org/doc/cycapi
http://www.cyc.com/doc/opencyc_api/java_api/
http://download-west.oracle.com/docs/cd/B10501_01/java.920/a96656/toc.htm
http://download-west.oracle.com/docs/cd/B10501_01/java.920/a96659/toc.htm

• Oracle JDBC Developer’s Guide and Reference (part 10 and 18 →connecting
to internal driver)

2 Installation

2.1 Prerequisites

You need the following installed on a linux server :

• OpenCyc

• Oracle9i (preferably release 2 for speed) or Oracle 10g1

2.2 Get the files

The files are downloadable from SourceForge with CVS (see the CVS link on the
OpenCyc Sourceforge Project page.) and alternatively in a tarball named ooi-x.tgz
where x is the version number2 from http://wwwhome.portavita.nl/~yeb/ This
tarball contains the following files:

install.sh A shell script to install the stuff into Oracle.
oracle-opencyc.jar This is a modified version of the official opencyc.jar,

which has a slightly modified CycAccess.java to remove refe-
rences to the Fipa Agent classes, and doesn’t contain
unused (by Oracle) classes.

CycJsprocs.java The Java Stored Procedures that wrap the methods
in the OpenCyc Java Api to Oracle call and data types.

cyc.pks The PL/SQL CYC package specification.
cyc.pkb The PL/SQL CYC package body, contains call specifications

for the Java Stored Procedures in CycJsprocs.java.
and some sql scripts that are used by the install script.

2.3 Installing it into Oracle

Untar ooi-0.71.tar.gz :

1The release of Oracle10g I tested is also MUCH slower than 9 release 2. (2 secs vs 78msecs on
a query from TOAD.)

2At the time of this writing it’s 0.71

3

http://download-west.oracle.com/docs/cd/B10501_01/java.920/a96654/toc.htm
http://www.opencyc.org
http://otn.oracle.com

~$ tar zxvf ooi-0.71.tar.gz

Change into the directory and start the install script:

~$ cd ooi-0.71

~/ooi-0.71$./install.sh

It will ask for the directory where OpenCyc was installed. Then it will ask for the
password of the Oracle SYSTEM user. The password of the system user is needed
to create the new user/schema to contain the java objects. The next few sections
describe the important parts of the script, in case you want to do it manually.

2.3.1 Create user cyctest (install.sh)

The java classes of the OpenCyc Java API have to be loaded into the schema of
a user. Though it’s possible to separate the oracle user who’s schema contains the
jars from the users that actually use it, the examples in this guide put and use all
the stuff into the schema of a sinlge user named cyctest. The install.sh script
doesn’t use a TNS connect string, so if you want to install the stuff on a remote
Oracle server you need to add the TNS identifier.

The user needs the grant javauserpriv.

2.3.2 Load the jars into Oracle (install.sh)

Next in the install script is loading some of the jars supplied in the opencyc-0.x.0/lib
directory. Loading in Oracle 9i release 1 will take 15 to 30 minutes, in 9iR2 this is
done in max one minute. There should be no errors, but if there were, which might
occur if you try this with other jars a while after I write this documentation, you
can view the errors with

SQL> select * from user_errors

This will probably show that there were references to unresolved classes. Find these
classes, load them, and try the resolve command again. You can view the status of
all loaded java classes with the SQL command

SQL> SELECT dbms_java.longname(object_name) as name, status, created

FROM user_objects

WHERE object_type=’JAVA CLASS’

4

If the status is VALID is means that the class is resolved and can be used (called) by
the database. Status INVALID means that it hasn’t been resolved (yet). Please note:
The order of loading without resolving doesn’t matter. But the order of resolving
can be important, if not all necessary classes are loaded at before the first ’resolve’
attempt. It can happen that errors dissappear after dropping the user and loading
all classes from scratch, though this happens very rarely.

2.3.3 Load CycJsproc.java (install.sh)

Once CycAccess is resolved, the ‘Java Stored Procedure wrapper methods java source
file’ is loaded by the install.sh script. Note that this time a java source instead of
class is loaded. Also, the class is now resolved at load time.

2.3.4 Load the CYC package (install.sh)

After CycJsproc.java is loaded and resolved, the CYC PL/SQL package is loaded.

2.3.5 Small test (install.sh)

When the CYC package is loaded, a small test is done by executing test.sql which
asks opencyc for its current time. The following output should be displayed:

SQL*Plus: Release 9.2.0.1.0 - Production on Wo Dec 11 19:24:10 2002

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options

JServer Release 9.2.0.1.0 - Production

make connection to opencyc

PL/SQL procedure successfully completed.

ask for the time

CYCS_TIME

5

--

(SecondFn 12 (MinuteFn 24 (HourFn 19 (DayFn 11 (MonthFn December (YearFn 2002)))

)))

end connection to opencyc

PL/SQL procedure successfully completed.

Disconnected from Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options

JServer Release 9.2.0.1.0 - Production

3 Usage

At this point access to OpenCyc is enable from Oracle. Every function in the CYC
package can be used in every SQL query (issued from SQLPlus, or for example a
PHP script in a web page), and in PL/SQL you can call every function or procedure.

3.1 The first query

All the following commands can be performed in sqlplus in the cyctest schema.
Connect to the database, and in the database session, connect to cyc

SQL> BEGIN cyc.makeconnection(); END;

2 /

Begin and end in SQL? Well, it’s actually PL/SQL. Oracle allows you to give ’an-
onymous’ PL/SQL blocks (a block can be recognized by BEGIN and END) where a
SQL query could be executed. This is the way a PL/SQL procedure is called from
an SQL frontend.3 Now to the first question is Dog a collection?

SQL> SELECT cyc.isquerytrue(

’(#$isa #$Dog #$Collection)’, ’InferencePSC’)

FROM DUAL

this proceduces the following output

3The same syntax is also used when calling PL/SQL from e.g. PHP ($query = ”BEGIN ...
END’”) or from a handy Oracle client like TOAD.

6

CYC.ISQUERYTRUE(’(#$ISA#$DOG#$COLLECTION)’,’INFERENCEPSC’)

--

1

For the type mapping between the different Cyc and Oracle types, see the source
CycJsproc.java and cyc.pkb, or the summary below. Note that a query like this
could also be put in e.g. a before trigger, and raise an exception if something is not
true.

3.2 Oracle puts data in OpenCyc

Before OpenCyc can say anything interesting about your data, you have to put
some information in your database into OpenCyc. This is easy. In the Oracle demo
user SCOTT’s schema is a table EMP. This table contains 14 employees, with the
following names

SQL> SELECT ename FROM scott.emp;

ENAME

SMITH

ALLEN

WARD

JONES

MARTIN

BLAKE

CLARK

SCOTT

KING

TURNER

ADAMS

JAMES

FORD

MILLER

14 rows selected.

The first thing that will be added is a Microtheory to put SCOTT’s stuff in. This
microtheory will be called #$OOITestMt. Execute the following PL/SQL anonymous
block:

7

DECLARE

genmts_tab cyclist_type;

BEGIN

genmts_tab := cyclist_type(’BaseKB’, ’HumanSocialLifeMt’);

cyc.createMicrotheory(

’OOITestMt’,

’A Microtheory to test the Oracle OpenCyc Interface.’,

’Microtheory’,

genmts_tab);

END;

/

Now assert that each person that is named ENAME in SCOTT.EMP is an employee:

SELECT cyc.assertWithTranscript(

’(#$isa #$OOITest:’ || ename || ’ #$Employee)’, ’OOITestMt’)

FROM scott.emp;

CYC.ASSERTWITHTRANSCRIPT(’(#$ISA#$OOITEST:’||ENAME||’#$EMPLOYEE)’,’OOITESTMT’)

--

(#$isa #$OOITest:SMITH #$Employee)

(#$isa #$OOITest:ALLEN #$Employee)

(#$isa #$OOITest:WARD #$Employee)

(#$isa #$OOITest:JONES #$Employee)

(#$isa #$OOITest:MARTIN #$Employee)

(#$isa #$OOITest:BLAKE #$Employee)

(#$isa #$OOITest:CLARK #$Employee)

(#$isa #$OOITest:SCOTT #$Employee)

(#$isa #$OOITest:KING #$Employee)

(#$isa #$OOITest:TURNER #$Employee)

(#$isa #$OOITest:ADAMS #$Employee)

(#$isa #$OOITest:JAMES #$Employee)

(#$isa #$OOITest:FORD #$Employee)

(#$isa #$OOITest:MILLER #$Employee)

14 rows selected.

8

3.3 Oracle gets data from OpenCyc

Now OpenCYC knows about the employees, we can ask stuff... Is Smith a person?

SELECT cyc.isQueryTrue(

’(#$isa #$OOITest:SMITH #$Person)’, ’InferencePSC’)

FROM dual;

CYC.ISQUERYTRUE(’(#$ISA#$OOITEST:SMITH#$PERSON)’,’INFERENCEPSC’)

--

1

Who are all the employees known to OpenCyc?

SELECT *

FROM TABLE(

SELECT cyc.askwithvariable(

’(#$isa ?X #$Employee)’, ’?X’, ’InferencePSC’)

FROM DUAL);

COLUMN_VALUE

--

OOITest:SMITH

OOITest:ALLEN

OOITest:WARD

OOITest:JONES

OOITest:MARTIN

OOITest:BLAKE

OOITest:CLARK

OOITest:SCOTT

OOITest:KING

OOITest:TURNER

OOITest:ADAMS

OOITest:JAMES

OOITest:FORD

OOITest:MILLER

14 rows selected.

Because the type of this result is an Oracle SQL resultset, it can be used in all Oracle
SQL constructs. Union, order, group by etc etc.

9

3.4 Oracle removes data from OpenCyc

Removing of knowledge is either removing axioms or removing constants (with all
axioms asserted on those constants).

3.4.1 Killing constants

Completely deleting a constant and all the knowledge asserted on the constans is
done with the kill procedure. There is not a functional variant to enable kill

from an SQL query, because that would make it too easy. Now, first make a query
that returns a list of the OpenCyc constant names of all the constants you want to
remove. For example

SELECT *

FROM TABLE(

SELECT cyc.askWithVariable(

’(#$isa ?X #$Employee)’, ’?X’, ’OOITestMt’)

FROM DUAL);

If it returns the right list of constants to kill, cut and paste it into the following
procedure.

BEGIN

FOR r IN (

SELECT COLUMN_VALUE AS cons FROM TABLE (

SELECT cyc.askwithvariable(

’(#$isa ?X #$Employee)’,

’?X’,

’OOITestMt’

) FROM DUAL

)

)

LOOP

cyc.kill(r.cons);

END LOOP;

END;

3.5 End the connection to OpenCyc

Don’t forget to end the connection at the end of the Oracle session

10

SQL> begin cyc.endconnection(); end;

3.6 Type mapping

OpenCyc Java Oracle
list java.lang.Array↔oracle.sql.ARRAY VARRAY (aka PL/SQL Table)
- java.lang.? DATE
- boolean NUMBER in [0,1]

In

this case, 1 means true. (yes, Oracle SQL doesn’t know booleans. PL/SQL does
however.)

3.7 Method summary

This is a list of the methods specified in the package specification cyc.pks:

PROCEDURE makeConnection;

PROCEDURE makeConnection(hostname_in IN VARCHAR2);

PROCEDURE endConnection;

PROCEDURE makeCycConstant(constant_in IN VARCHAR2);

PROCEDURE createMicrotheory(

mtname_in IN VARCHAR2,

comment_in IN VARCHAR2,

isamt_in IN VARCHAR2,

genlmts_in IN cyclist_type);

PROCEDURE createMicrotheorySystem(

mtname_in IN VARCHAR2,

isamt_in IN VARCHAR2,

genlmts_in IN cyclist_type);

PROCEDURE assertGaf(

gaf_in IN VARCHAR2,

mt_in IN VARCHAR2);

11

PROCEDURE unassertGaf(

gaf_in IN VARCHAR2,

mt_in IN VARCHAR2);

FUNCTION assertGaf(

gaf_in IN VARCHAR2,

mt_in IN VARCHAR2)

RETURN VARCHAR2;

PROCEDURE assertWithTranscript(

sentence_in IN VARCHAR2,

mt_in IN VARCHAR2);

FUNCTION assertWithTranscript(

sentence_in IN VARCHAR2,

mt_in IN VARCHAR2)

RETURN VARCHAR2;

FUNCTION isQueryTrue(

query_in IN VARCHAR2,

mt_in IN VARCHAR2)

RETURN NUMBER;

FUNCTION askWithVariable(

query_in IN VARCHAR2,

variable_in IN VARCHAR2,

mt_in VARCHAR2)

RETURN cyclist_type;

FUNCTION askWithVariable(

query_in IN VARCHAR2,

variable_in IN VARCHAR2,

mt_in IN VARCHAR2,

backchain_in IN NUMBER)

RETURN cyclist_type;

FUNCTION askWithVariables(

query_in IN VARCHAR2,

12

variables_in IN VARCHAR2,

mt_in IN VARCHAR2)

RETURN cyclist_type;

FUNCTION getBackChainRules(predicate_in IN VARCHAR2)

RETURN cyclist_type;

FUNCTION converseList(command_in IN VARCHAR2)

RETURN cyclist_type;

FUNCTION converseString(command_in IN VARCHAR2)

RETURN VARCHAR2;

FUNCTION converseObjectToString(command_in IN VARCHAR2)

RETURN VARCHAR2;

FUNCTION converseEscapedList(command_in IN VARCHAR2)

RETURN VARCHAR2;

PROCEDURE converseVoid(command_in IN VARCHAR2);

FUNCTION converseVoid(command_in IN VARCHAR2)

RETURN cyclist_type;

FUNCTION getKnownConstantByName(name_in IN VARCHAR2)

RETURN VARCHAR2;

PROCEDURE kill(constant_in IN VARCHAR2);

FUNCTION escapeList(list_in IN VARCHAR2)

RETURN VARCHAR2;

PROCEDURE truncate_collection (collection_name_in IN VARCHAR2);

PROCEDURE openAskWithVariable(

query_in IN VARCHAR2,

variable_in IN VARCHAR2,

mt_in IN VARCHAR2,

13

backchain_in IN NUMBER,

bindings_out OUT generic_curtype -- reference cursor

);

3.8 Debugging

In the beginning of the CycJsprocs.java source you’ll find the method named
makeConnection(). At the end of this method is the call to CycAccess.traceOn.
The trace of CycAccess is default on. If you do not want a lot of logging, com-
ment this call and reload CycJsprocs.java. Standard output (System.out.println) is
dumped by oracle in trace files in the directory
$ORACLE BASE/admin/<instancename>/udump. Find the last trace file with ls -l

--sort=time -r and then monitor the contents with less or tail -f.

3.9 Exceptions

In Oracle, all java exceptions appear as ORA-29532 errors. At the end of the text
of the error message you should see the java error. So, if there is an error in your
OpenCyc formula, look good at the ORA-29532 errors!
If you get only errors when calling cyc functions; check whether you issued a
cyc.makeconnection()!

14

	Introduction
	Overview
	See also

	Installation
	Prerequisites
	Get the files
	Installing it into Oracle
	Create user cyctest (install.sh)
	Load the jars into Oracle (install.sh)
	Load CycJsproc.java (install.sh)
	Load the CYC package (install.sh)
	Small test (install.sh)

	Usage
	The first query
	Oracle puts data in OpenCyc
	Oracle gets data from OpenCyc
	Oracle removes data from OpenCyc
	Killing constants

	End the connection to OpenCyc
	Type mapping
	Method summary
	Debugging
	Exceptions

