

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Distribution, Data, Deployment:
Software Architecture Convergence
in Big Data Systems

INTRODUCTION
The exponential growth of data in the last decade has fueled a new specialization
for software technology, namely that of data-intensive, or big data, software sys-
tems [1]. Internet-born organizations such as Google and Amazon are at the cut-
ting edge of this revolution, collecting, managing, storing, and analyzing some of
the largest data repositories that have ever been constructed. Their pioneering
efforts [2,3], along with those of numerous other big data innovators, have made
a variety of open source and commercial data-management technologies availa-
ble for any organization to exploit to construct and operate massively scalable,
highly available data repositories.

Data-intensive systems have long been built on SQL database technology, which
relies primarily on vertical scaling—faster processors and bigger disks—as
workload or storage requirements increase. Inherent vertical-scaling limitations
of SQL databases [4] have led to new products that relax many core tenets of
relational databases. Strictly defined normalized data models, strong data con-
sistency guarantees, and the SQL standard have been replaced by schema-less
and intentionally denormalized data models, weak consistency, and proprietary
APIs that expose the underlying data-management mechanisms to the program-
mer. These “NoSQL” products [4] are typically designed to scale horizontally
across clusters of low-cost, moderate-performance servers. They achieve high
performance, elastic storage capacity, and availability by replicating and parti-
tioning data sets across the cluster. Prominent examples of NoSQL databases
include Cassandra, Riak, and MongoDB; the sidebar “NoSQL Databases” sur-
veys these advances.

NoSQL Databases
The rise of big data applications has caused significant flux in database technologies.
While mature, relational database technologies continue to evolve, a spectrum of
databases labeled NoSQL has emerged in the past decade. The relational model im-
poses a strict schema, which inhibits data evolution and causes difficulties with scal-
ing across clusters. In response, NoSQL databases have adopted simpler data mod-
els. Common features include schema-less records, allowing data models to evolve

Ian Gorton

John Klein

May 2014

dynamically, and horizontal scaling, by sharding and replicating data collections
across large clusters. Figure S1 illustrates the four most prominent data models, and
we summarize their characteristics below. More comprehensive information can be
found at http://nosql-database.org.

• Document databases store collections of objects, typically encoded using JSON
or XML. Documents have keys, and secondary indexes can be built on non-key
fields. Document formats are self-describing, and a collection may include doc-
uments with different formats. Leading examples are MongoDB
(http://www.mongodb.org) and CouchDB (http://couchdb.apache.org).

• Key-value databases implement a distributed hash map. Records can be accessed
only through key searches, and the value associated with each key is treated as
opaque, requiring reader interpretation. This simple model facilitates sharding
and replication to create highly scalable and available systems. Examples are Ri-
ak (http://riak.basho.com) and DynamoDB (http://aws.amazon.com/dynamodb).

• Column-oriented databases extend the key-value model by organizing keyed
records as a collection of columns, where a column is a key-value pair. The key
becomes the column name, and the value can be an arbitrary data type such as a
JSON document or a binary image. A collection may contain records that have
different numbers of columns. Examples are HBase (http://hadoop.apache.org)
and Cassandra (https://cassandra.apache.org).

• Graph databases organize data in a highly connected structure, typically some
form of directed graph. They can provide exceptional performance for problems
involving graph traversals and subgraph matching. As efficient graph partitioning
is an NP-hard problem, these databases tend to be less concerned with horizontal
scaling and commonly offer ACID transactions to provide strong consistency.
Examples include Neo4j (http://www.neo4j.org) and GraphBase
(http://graphbase.net).

Figure S1: Examples of Major NoSQL Data Models

2 | DISTRIBUTION, DATA, DEPLOYMENT

NoSQL technologies have many implications for application design. As there is no
equivalent of SQL, each technology supports its own specific query mechanism.
These typically make the application programmer responsible for explicitly formulat-
ing query executions, rather than relying on query planners that execute queries
based on declarative specifications. The ability to combine results from different data
collections also becomes the programmer’s responsibility. This lack of ability to per-
form JOINs forces extensive denormalization of data models so that JOIN-style que-
ries can be efficiently executed by accessing a single data collection. When databases
are sharded and replicated, it further becomes the programmer’s responsibility to
manage consistency when concurrent updates occur and to design applications that
tolerate stale data due to latency in update replication.

Distributed databases have fundamental quality constraints, defined by Brewer’s
CAP Theorem [5]. When a network partition occurs (P: arbitrary message loss
between nodes in the cluster), a system must trade consistency (C: all readers see
the same data) against availability (A: every request receives a success/failure
response). A practical interpretation of this theorem is provided by Abadi’s
PACELC [6], which states that if there is a partition (P), a system must trade
availability (A) against consistency (C); else (E) in the usual case of no partition,
a system must trade latency (L) against consistency (C).

Additional design challenges for scalable data-intensive systems stem from the
following issues:

• Achieving high levels of scalability and availability leads to highly distribut-
ed systems. Distribution occurs in all tiers, from web server farms and cach-
es to back-end storage.

• The abstraction of a single-system image, with transactional writes and con-
sistent reads using SQL-like query languages, is difficult to achieve at scale
[7]. Applications must be aware of data replicas, handle inconsistencies from
conflicting replica updates, and continue operation in spite of inevitable fail-
ures of processors, networks, and software.

• Each NoSQL product embodies a specific set of quality attribute tradeoffs,
especially in terms of their performance, scalability, durability, and con-
sistency. Architects must diligently evaluate candidate database technologies
and select databases that can satisfy application requirements. This often
leads to polyglot persistence [8], using different database technologies to
store different data sets within a single system, in order to meet quality at-
tribute requirements.

Further, as data volumes grow to petascale and beyond, the hardware resources
required grow from hundreds up to tens of thousands servers. At this deployment
scale, many widely used software architecture patterns are unsuitable, and over-
all costs can be significantly reduced by architectural and algorithmic approaches

As data volumes
grow to petascale
and beyond, the
required hardware
resources may
grow to thousands
of servers.

3 | DISTRIBUTION, DATA, DEPLOYMENT

that are sensitive to hardware resource utilization. These issues are explained in
the sidebar “Why Scale Matters.”

Addressing these challenges requires making careful design tradeoffs that span
distributed software, data, and deployment architectures, and demands exten-
sions to traditional software architecture design knowledge to account for this
tight coupling in scalable systems. Scale drives a consolidation of concerns, so
that software, data, and deployment architectural qualities can no longer be ef-
fectively considered separately. In this paper, we draw from our current work in
healthcare informatics to illustrate this.

Why Scale Matters
Scale has many implications for software architecture, and we describe two of them
here. The first focuses on how scale changes the problem space of our designs. The
second is based on economics: At very large scales, small optimizations in resource
usage can lead to very large cost reductions in absolute terms.

Designing for scale: Big data systems are inherently distributed systems, and their
architectures must explicitly handle partial failures, communications latencies, con-
currency, consistency, and replication. As systems grow to utilize thousands of pro-
cessing nodes and disks, and become geographically distributed, these issues are
exacerbated as the probability of a hardware failure increases. One study found that
8% of servers in a typical data center experience a hardware problem annually, with
disk failure most common [1]. Applications must also deal with unpredictable com-
munication latencies and network connection failures. Scalable applications must
treat failures as common events that are handled gracefully to ensure that operation is
not interrupted.

To address these requirements, resilient architectures must
• replicate data to ensure availability in the case of disk failure or network parti-

tion. Replicas must be kept strictly or eventually consistent, using either master-
slave or multi-master protocols. The latter needs mechanisms such as Lamport
clocks [2] to resolve inconsistencies due to concurrent writes.

• design components to be stateless, replicated, and tolerant of failures of depend-
ent services. For example, by using the Circuit Breaker pattern [3] and returning
cached or default results whenever failures are detected, the architecture limits
failures and allows time for recovery.

Economics at scale: Big data systems can use many thousands of servers and disks.
Whether these are capital purchases or rented from a service provider, they remain a
major cost and hence a target for reduction. Elasticity is a tactic to reduce resource
usage by dynamically deploying new servers as the load increases and releasing
them as the load decreases. This requires servers that boot and initialize quickly and
application-specific strategies to avoid premature resource release.

Other strategies target the development tool chain to maintain developer productivity
while decreasing resource utilization. For example, Facebook built HipHop, a PHP-

4 | DISTRIBUTION, DATA, DEPLOYMENT

to-C++ transformation engine [4] that reduced the CPU load for serving web pages
by 50%. At the scale of Facebook’s deployment, this creates significant operational
cost saving. Other targets for reduction are software license costs, which can be pro-
hibitive at scale. This has led some organizations to create custom database and mid-
dleware technologies, many of which have been released as open source. Leading
examples of technologies for big data systems are from Netflix
(http://netflix.github.io) and LinkedIn (http://linkedin.github.io).

Other implications of scale for architecture include testing and fault diagnosis. Due
to the deployment footprint of these systems and the massive data sets that they
manage, it can be impossible to comprehensively validate code before deployment to
production. Canary testing and “simian armies” are examples of the state of the art in
testing at scale [5]. When problems occur in production, advanced monitoring and
logging are needed for rapid diagnosis. In large-scale systems, log collection and
analysis quickly become big data problems. Solutions must include a low overhead,
scalable logging infrastructure such as Blitz4J [6].

References
1. K.V. Vishwanath and N. Nagappan, “Characterizing Cloud Computing Hardware Relia-

bility,” Proc. 1st ACM Symp. Cloud Computing (SoCC 10), 2010, pp. 193–204.
2. L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”

Comm. ACM, vol. 21, no. 7, 1978, pp. 558–565.
3. M.T. Nygard, Release It! Design and Deploy Production-Ready Software, Pragmatic

Bookshelf, 2007.
4. H. Zhao, “HipHop for PHP: Move Fast,” Feb. 2010. https://developers.facebook.com/

blog/post/2010/02/02/hiphop-for-php--move-fast
5. B. Schmaus, “Deploying the Netflix API,” Aug. 2013. http://techblog.netflix.com/2013/

08/deploying-netflix-api.html
6. K. Ranganathan, “Announcing Blitz4j: A Scalable Logging Framework,” Nov. 2012.

http://techblog.netflix.com/search/label/appender

CHARACTERISTICS OF BIG DATA APPLICATIONS
Big data applications are rapidly becoming pervasive across a wide range of
business domains. Two examples for which big data–driven analytics loom
prominently on the horizon are the airline and healthcare industries:

1. Modern commercial airliners produce approximately 0.5 TB of operational
data per flight [9]. This data can be used to diagnose faults in real time, op-
timize fuel consumption, and predict maintenance needs. Airlines must
build scalable systems to capture, manage, and analyze this data to improve
reliability and reduce costs.

2. Across the healthcare field, big data analytics could save an estimated $450
billion in the United States [10]. Analysis of petabytes of data across patient
populations—taken from diverse sources such as insurance payers, public
health, and clinical studies—can extract new insights for disease treatment

5 | DISTRIBUTION, DATA, DEPLOYMENT

and prevention, and reduce costs by improving patient outcomes and opera-
tional efficiencies.

Across these and many other domains, big data systems share common require-
ments that drive the design of suitable software solutions. Collectively, these
requirements represent a significant departure from traditional business systems,
which are relatively well constrained in terms of data growth, analytics, and
scale. Requirements common to big data systems include

• write-heavy workloads: From social media sites to high-resolution sensor
data collection in the power grid, big data systems must be able to sustain
write-heavy workloads [1]. As writes are more costly than reads, data parti-
tioning and distribution (sharding) can be used to spread write operations
across disks, and replication can be used to provide high availability. Shar-
ding and replication introduce availability and consistency issues that the
system must address.

• variable request loads: Business and government systems experience high-
ly variable workloads for reasons that include product promotions, emergen-
cies, and statutory deadlines such as tax submissions. To avoid the costs of
over-provisioning to handle these occasional spikes, cloud platforms are
elastic, allowing an application to add processing capacity when needed and
release resources when load drops. Effectively exploiting this deployment
mechanism requires an architecture that has application-specific strategies to
detect increased load, rapidly add new resources to share load, and release
resources as load decreases.

• computation-intensive analytics: Most big data systems must support di-
verse query workloads, mixing requests that require rapid responses with
long-running requests that perform complex analytics on significant portions
of the data collection. This leads to software and data architectures that are
explicitly structured to meet these varying latency demands. Netflix’s Rec-
ommendations Engine [11] is a pioneering example of how software and da-
ta architectures can be designed to partition simultaneously between han-
dling low-latency requests and performing advanced analytics on large data
collections to continually enhance the quality of personalized recommenda-
tions.

• high availability: With hundreds of nodes in a horizontally scaled deploy-
ment, there are inevitable hardware and network failures. Distributed soft-
ware and data architectures must be designed to be resilient. Common ap-
proaches for high availability include replicating data across geographical
regions [12], stateless services, and application-specific mechanisms to pro-
vide degraded service in the face of failures.

Requirements for
big data systems
represent a
significant
departure from
traditional
business systems.

6 | DISTRIBUTION, DATA, DEPLOYMENT

The solutions to these requirements crosscut the distributed software, data mod-
el, and physical deployment architectures. For example, elasticity requires pro-
cessing capacity that can be acquired from the execution platform on demand,
policies and mechanisms to appropriately start and stop services as application
load varies, and a database architecture that can reliably satisfy queries under
increased load. This coupling of architectures to satisfy a particular quality at-
tribute is commonplace in big data applications and can be regarded as a tight
coupling of the process, logical, and physical views in the 4+1 View Model [13].

EXAMPLE: CONSOLIDATION OF CONCERNS
At the Software Engineering Institute, we are evolving a healthcare informatics
system to aggregate data from multiple petascale medical-record databases for
clinical applications. To attain high scalability and availability at low cost, we
are investigating the use of NoSQL databases for this data aggregation. The de-
sign uses geographically distributed data centers to increase availability and re-
duce latency for users distributed globally.

Consider the consistency requirements for two categories of data in this system:
patient demographics (e.g., name, insurance provider) and diagnostic test results
(e.g., results of blood or imaging tests). Patient demographic records are updated
infrequently. These updates must be immediately visible at the local site where
the data was modified (“read your writes”), but a delay is acceptable before the
update is visible at other sites (“eventual consistency”). In contrast, diagnostic
test results are updated more frequently, and changes must be immediately visi-
ble everywhere to support telemedicine and remote consultations with specialists
(“strong consistency”).

We are prototyping solutions using several NoSQL databases. We focus here on
one prototype using MongoDB to illustrate the architecture drivers and design
decisions. The design segments data across three shards and replicates data
across two data centers (Figure 1).

MongoDB enforces a master-slave architecture, in which every data collection
has a master replica that serves all write requests and propagates changes to other
replicas. Clients may read from any replica, opening an inconsistency window
between writes to the master and reads from other replicas.

7 | DISTRIBUTION, DATA, DEPLOYMENT

Figure 1: MongoDB-Based Healthcare Data-Management Solution

MongoDB allows tradeoffs between consistency and latency through parameter
options on each write and read. A write can be unacknowledged (no assurance of
durability, low latency), durable on the master replica, or durable on the master
and one or more replicas (consistent, high latency). A read can prefer the closest
replica (low latency, potentially inconsistent), be restricted to the master replica
(consistent, partition intolerant), or require a majority of replicas to agree on the
data value to be read (consistent, partition tolerant).

The application developer must choose appropriate write and read options to
achieve the desired performance, consistency, and durability and must handle
partition errors to achieve the desired availability. In our example, patient-
demographic data writes must be durable on the primary replica, but reads may
be directed to the closest replica for low latency, making patient-demographic
reads insensitive to network partitions at the cost of potentially inconsistent re-
sponses.

In contrast, writes for diagnostic test results must be durable on all replicas.
Reads can be performed from the closest replica since the write ensures that all
replicas are consistent. This means that writes must handle failures caused by
network partitions, while read operations are insensitive to partitions.

Today, our healthcare informatics application runs atop a SQL database, which
hides the physical data model and deployment topology from developers. SQL
databases provide a single-system image abstraction, which separates concerns

8 | DISTRIBUTION, DATA, DEPLOYMENT

between the application and database by hiding the details of data distribution
across processors, storage, and networks behind a transactional read/write inter-
face [14]. In shifting to a NoSQL environment, an application must directly han-
dle the faults that will depend on the physical data distribution (sharding and
replication) and the number of replica sites and servers. These low-level infra-
structure concerns, traditionally hidden under the database interface, must now
be explicitly handled in application logic.

SYSTEMATIC DESIGN USING TACTICS
In designing an architecture to satisfy quality drivers like those discussed in this
healthcare example, one proven approach is to systematically select and apply a
sequence of architecture tactics [15]. Tactics are elemental design decisions that
embody architecture knowledge of how to satisfy one design concern of a quality
attribute. Tactic catalogs enable reuse of this knowledge. However, existing cata-
logs do not contain tactics specific to big data systems. In Figures 2 and 3, we
extend the basic tactics [15] for performance and availability specifically for big
data systems, and in Figure 4 we define tactics for scalability, focused on the
design concern of increased workload. Each figure shows how the design deci-
sions span data, distribution, and deployment architectures.

For example, achieving availability requires masking faults that inevitably occur
in a distributed system. At the data level, replicating data items is an essential
step to handle network partitions. When an application cannot access any data-
base partition, another tactic to enhance availability is to design a data model that
can return meaningful default values without accessing the data. At the distribut-
ed software layer, caching is a tactic to achieve the “default values” tactic de-
fined in the data model. At the deployment layer, an availability tactic is to geo-
graphically replicate the data and distributed application software layers to
protect against power and network outages. Each of these tactics is required to
handle the different types of faults that threaten availability, and their combined
representation in Figure 3 provides an architect with comprehensive guidance to
achieve a highly available system.

Low-level
infrastructure
concerns,
traditionally
hidden under the
database
interface, must be
explicitly handled
in big data
systems.

9 | DISTRIBUTION, DATA, DEPLOYMENT

Figure 2: Performance Tactics

Figure 3: Availability Tactics

10 | DISTRIBUTION, DATA, DEPLOYMENT

Figure 4: Scalability Tactics

ARCHITECTURE CONVERGENCE IMPLICATIONS
Big data applications are pushing the limits of software engineering on multiple
horizons. Successful solutions span the design of the data, distribution, and de-
ployment architectures. It is essential that the body of software architecture
knowledge evolves to capture this advanced design knowledge for big data sys-
tems.

This paper is a first step on this path. Our work is proceeding in two complemen-
tary directions. First, we are expanding the collection of architecture tactics pre-
sented in this paper and encoding these in an environment that supports naviga-
tion between quality attributes and tactics, making crosscutting concerns for
design choices explicit. We are also linking tactics to design solutions based on
specific big data technologies, enabling architects to rapidly relate the capabili-
ties of a particular technology to a specific set of architecture tactics.

11 | DISTRIBUTION, DATA, DEPLOYMENT

AUTHORS
Ian Gorton is a Senior Member of the Technical Staff in Architecture Practices at
the Carnegie Mellon Software Engineering Institute, where he is investigating
issues related to software architecture at scale. This includes designing large-
scale data-management and analytics systems, and understanding the inherent
connections and tensions between software, data, and deployment architectures.
He has a PhD from Sheffield Hallam University and is a Senior Member of the
IEEE Computer Society.

John Klein is a Senior Member of the Technical Staff at the Carnegie Mellon
Software Engineering Institute, where he does consulting and research on scala-
ble software systems as a member of the Architecture Practices team. He re-
ceived a BE from Stevens Institute of Technology and an ME from Northeastern
University. He serves as Secretary of the IFIP Working Group 2.10 on Software
Architecture, is a member of the IEEE Computer Society, and is a Senior Mem-
ber of the ACM.

REFERENCES
1. D. Agrawal, S. Das, and A. El Abbadi. “Big Data and Cloud Computing:

Current State and Future Opportunities,” Proc. 14th Int’l Conf. Extending
Database Technology (EDBT/ICDT 11), ACM, 2011, pp. 530–533.

2. W. Vogels, “Amazon DynamoDB: A Fast and Scalable NoSQL Database
Service Designed for Internet Scale Applications,” Jan. 2012.
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html

3. F. Chang, J. Dean, S. Ghemawat, et al., “Bigtable: A Distributed Storage
System for Structured Data,” ACM Trans. Comput. Syst., vol. 26, no. 2,
2008.

4. P.J. Sadalage and M. Fowler, NoSQL Distilled, Addison-Wesley Profes-
sional, 2012.

5. E. Brewer, “CAP Twelve Years Later: How the ‘Rules’ Have Changed,”
Computer, vol. 45, no. 2, 2012, pp. 23–29.

6. D.J. Abadi, “Consistency Tradeoffs in Modern Distributed Database Sys-
tem Design: CAP Is Only Part of the Story,” Computer, vol. 45, no. 2,
2012, pp. 37–42.

7. J. Shute, R. Vingralek, B. Samwel, et al., “F1: A Distributed SQL Database
That Scales,” Proc. VLDB Endowment, vol. 6, no. 11, 2013, pp. 1068–
1079.

8. M. Fowler, “Polyglot Persistence,” Nov. 2011. http://www.martinfowler.
com/bliki/PolyglotPersistence.html

12 | DISTRIBUTION, DATA, DEPLOYMENT

9. M. Finnegan, “Boeing 787s to Create Half a Terabyte of Data per Flight,”
ComputerWorld UK, Mar. 2013. http://www.computerworlduk.com/news/
infrastructure/3433595/boeing-787s-to-create-half-a-terabyte-of-data-per-
flight-says-virgin-atlantic

10. P. Groves, B. Kayyali, D. Knott, et al., The ‘Big Data’ Revolution in
Healthcare, McKinsey & Company, 2013. http://www.mckinsey.com/
insights/health_systems_and_services/the_big-data_revolution_in_us_
health_care

11. X. Amatriain and J. Basilico, “System Architectures for Personalization and
Recommendation,” Netflix Techblog, Mar. 2013. http://techblog.netflix.
com/2013/03/system-architectures-for.html

12. M. Armbrust, “A View of Cloud Computing,” Comm. ACM, vol. 53, no. 4,
2010, pp. 50–58.

13. P.B. Kruchten, “The 4+1 View Model of Architecture,” IEEE Software,
vol. 12, no. 6, 1995, pp. 42–50.

14. J. Gray and A. Reuter. Transaction Processing, Kaufmann, 1993.
15. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice

(3rd ed.), Addison-Wesley, 2012.

13 | DISTRIBUTION, DATA, DEPLOYMENT

Copyright 2014 IEEE and Carnegie Mellon University

This article will appear in an upcoming issue of IEEE Software.

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Universi-
ty for the operation of the Software Engineering Institute, a federally funded re-
search and development center.

References herein to any specific commercial product, process, or service by
trade name, trade mark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.

This material has been approved for public release and unlimited distribution.

DM-0000810

14 | DISTRIBUTION, DATA, DEPLOYMENT

	Distribution, Data, Deployment: Software Architecture Convergence in Big Data Systems
	Introduction
	NoSQL Databases
	Why Scale Matters
	References

	Characteristics of Big Data Applications
	Example: Consolidation of Concerns
	Systematic Design using Tactics
	Architecture Convergence Implications
	Authors
	References

