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Distribution, Data, Deployment: 
Software Architecture Convergence 
in Big Data Systems 

INTRODUCTION 
The exponential growth of data in the last decade has fueled a new specialization 
for software technology, namely that of data-intensive, or big data, software sys-
tems [1]. Internet-born organizations such as Google and Amazon are at the cut-
ting edge of this revolution, collecting, managing, storing, and analyzing some of 
the largest data repositories that have ever been constructed. Their pioneering 
efforts [2,3], along with those of numerous other big data innovators, have made 
a variety of open source and commercial data-management technologies availa-
ble for any organization to exploit to construct and operate massively scalable, 
highly available data repositories. 

Data-intensive systems have long been built on SQL database technology, which 
relies primarily on vertical scaling—faster processors and bigger disks—as 
workload or storage requirements increase. Inherent vertical-scaling limitations 
of SQL databases [4] have led to new products that relax many core tenets of 
relational databases. Strictly defined normalized data models, strong data con-
sistency guarantees, and the SQL standard have been replaced by schema-less 
and intentionally denormalized data models, weak consistency, and proprietary 
APIs that expose the underlying data-management mechanisms to the program-
mer. These “NoSQL” products [4] are typically designed to scale horizontally 
across clusters of low-cost, moderate-performance servers. They achieve high 
performance, elastic storage capacity, and availability by replicating and parti-
tioning data sets across the cluster. Prominent examples of NoSQL databases 
include Cassandra, Riak, and MongoDB; the sidebar “NoSQL Databases” sur-
veys these advances. 

NoSQL Databases 
The rise of big data applications has caused significant flux in database technologies. 
While mature, relational database technologies continue to evolve, a spectrum of 
databases labeled NoSQL has emerged in the past decade. The relational model im-
poses a strict schema, which inhibits data evolution and causes difficulties with scal-
ing across clusters. In response, NoSQL databases have adopted simpler data mod-
els. Common features include schema-less records, allowing data models to evolve 
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dynamically, and horizontal scaling, by sharding and replicating data collections 
across large clusters. Figure S1 illustrates the four most prominent data models, and 
we summarize their characteristics below. More comprehensive information can be 
found at http://nosql-database.org. 

• Document databases store collections of objects, typically encoded using JSON 
or XML. Documents have keys, and secondary indexes can be built on non-key 
fields. Document formats are self-describing, and a collection may include doc-
uments with different formats. Leading examples are MongoDB 
(http://www.mongodb.org) and CouchDB (http://couchdb.apache.org). 

• Key-value databases implement a distributed hash map. Records can be accessed 
only through key searches, and the value associated with each key is treated as 
opaque, requiring reader interpretation. This simple model facilitates sharding 
and replication to create highly scalable and available systems. Examples are Ri-
ak (http://riak.basho.com) and DynamoDB (http://aws.amazon.com/dynamodb). 

• Column-oriented databases extend the key-value model by organizing keyed 
records as a collection of columns, where a column is a key-value pair. The key 
becomes the column name, and the value can be an arbitrary data type such as a 
JSON document or a binary image. A collection may contain records that have 
different numbers of columns. Examples are HBase (http://hadoop.apache.org) 
and Cassandra (https://cassandra.apache.org). 

• Graph databases organize data in a highly connected structure, typically some 
form of directed graph. They can provide exceptional performance for problems 
involving graph traversals and subgraph matching. As efficient graph partitioning 
is an NP-hard problem, these databases tend to be less concerned with horizontal 
scaling and commonly offer ACID transactions to provide strong consistency. 
Examples include Neo4j (http://www.neo4j.org) and GraphBase 
(http://graphbase.net). 

 
Figure S1: Examples of Major NoSQL Data Models 
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NoSQL technologies have many implications for application design. As there is no 
equivalent of SQL, each technology supports its own specific query mechanism. 
These typically make the application programmer responsible for explicitly formulat-
ing query executions, rather than relying on query planners that execute queries 
based on declarative specifications. The ability to combine results from different data 
collections also becomes the programmer’s responsibility. This lack of ability to per-
form JOINs forces extensive denormalization of data models so that JOIN-style que-
ries can be efficiently executed by accessing a single data collection. When databases 
are sharded and replicated, it further becomes the programmer’s responsibility to 
manage consistency when concurrent updates occur and to design applications that 
tolerate stale data due to latency in update replication.  

Distributed databases have fundamental quality constraints, defined by Brewer’s 
CAP Theorem [5]. When a network partition occurs (P: arbitrary message loss 
between nodes in the cluster), a system must trade consistency (C: all readers see 
the same data) against availability (A: every request receives a success/failure 
response). A practical interpretation of this theorem is provided by Abadi’s 
PACELC [6], which states that if there is a partition (P), a system must trade 
availability (A) against consistency (C); else (E) in the usual case of no partition, 
a system must trade latency (L) against consistency (C). 

Additional design challenges for scalable data-intensive systems stem from the 
following issues: 

• Achieving high levels of scalability and availability leads to highly distribut-
ed systems. Distribution occurs in all tiers, from web server farms and cach-
es to back-end storage. 

• The abstraction of a single-system image, with transactional writes and con-
sistent reads using SQL-like query languages, is difficult to achieve at scale 
[7]. Applications must be aware of data replicas, handle inconsistencies from 
conflicting replica updates, and continue operation in spite of inevitable fail-
ures of processors, networks, and software. 

• Each NoSQL product embodies a specific set of quality attribute tradeoffs, 
especially in terms of their performance, scalability, durability, and con-
sistency. Architects must diligently evaluate candidate database technologies 
and select databases that can satisfy application requirements. This often 
leads to polyglot persistence [8], using different database technologies to 
store different data sets within a single system, in order to meet quality at-
tribute requirements. 

Further, as data volumes grow to petascale and beyond, the hardware resources 
required grow from hundreds up to tens of thousands servers. At this deployment 
scale, many widely used software architecture patterns are unsuitable, and over-
all costs can be significantly reduced by architectural and algorithmic approaches 

As data volumes 
grow to petascale 
and beyond, the 
required hardware 
resources may 
grow to thousands 
of servers. 
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that are sensitive to hardware resource utilization. These issues are explained in 
the sidebar “Why Scale Matters.” 

Addressing these challenges requires making careful design tradeoffs that span 
distributed software, data, and deployment architectures, and demands exten-
sions to traditional software architecture design knowledge to account for this 
tight coupling in scalable systems. Scale drives a consolidation of concerns, so 
that software, data, and deployment architectural qualities can no longer be ef-
fectively considered separately. In this paper, we draw from our current work in 
healthcare informatics to illustrate this. 

Why Scale Matters 
Scale has many implications for software architecture, and we describe two of them 
here. The first focuses on how scale changes the problem space of our designs. The 
second is based on economics: At very large scales, small optimizations in resource 
usage can lead to very large cost reductions in absolute terms. 

Designing for scale: Big data systems are inherently distributed systems, and their 
architectures must explicitly handle partial failures, communications latencies, con-
currency, consistency, and replication. As systems grow to utilize thousands of pro-
cessing nodes and disks, and become geographically distributed, these issues are 
exacerbated as the probability of a hardware failure increases. One study found that 
8% of servers in a typical data center experience a hardware problem annually, with 
disk failure most common [1]. Applications must also deal with unpredictable com-
munication latencies and network connection failures. Scalable applications must 
treat failures as common events that are handled gracefully to ensure that operation is 
not interrupted. 

To address these requirements, resilient architectures must 
• replicate data to ensure availability in the case of disk failure or network parti-

tion. Replicas must be kept strictly or eventually consistent, using either master-
slave or multi-master protocols. The latter needs mechanisms such as Lamport 
clocks [2] to resolve inconsistencies due to concurrent writes. 

• design components to be stateless, replicated, and tolerant of failures of depend-
ent services. For example, by using the Circuit Breaker pattern [3] and returning 
cached or default results whenever failures are detected, the architecture limits 
failures and allows time for recovery. 

Economics at scale: Big data systems can use many thousands of servers and disks. 
Whether these are capital purchases or rented from a service provider, they remain a 
major cost and hence a target for reduction. Elasticity is a tactic to reduce resource 
usage by dynamically deploying new servers as the load increases and releasing 
them as the load decreases. This requires servers that boot and initialize quickly and 
application-specific strategies to avoid premature resource release. 

Other strategies target the development tool chain to maintain developer productivity 
while decreasing resource utilization. For example, Facebook built HipHop, a PHP-
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to-C++ transformation engine [4] that reduced the CPU load for serving web pages 
by 50%. At the scale of Facebook’s deployment, this creates significant operational 
cost saving. Other targets for reduction are software license costs, which can be pro-
hibitive at scale. This has led some organizations to create custom database and mid-
dleware technologies, many of which have been released as open source. Leading 
examples of technologies for big data systems are from Netflix 
(http://netflix.github.io) and LinkedIn (http://linkedin.github.io). 

Other implications of scale for architecture include testing and fault diagnosis. Due 
to the deployment footprint of these systems and the massive data sets that they 
manage, it can be impossible to comprehensively validate code before deployment to 
production. Canary testing and “simian armies” are examples of the state of the art in 
testing at scale [5]. When problems occur in production, advanced monitoring and 
logging are needed for rapid diagnosis. In large-scale systems, log collection and 
analysis quickly become big data problems. Solutions must include a low overhead, 
scalable logging infrastructure such as Blitz4J [6]. 
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CHARACTERISTICS OF BIG DATA APPLICATIONS 
Big data applications are rapidly becoming pervasive across a wide range of 
business domains. Two examples for which big data–driven analytics loom 
prominently on the horizon are the airline and healthcare industries: 

1. Modern commercial airliners produce approximately 0.5 TB of operational 
data per flight [9]. This data can be used to diagnose faults in real time, op-
timize fuel consumption, and predict maintenance needs. Airlines must 
build scalable systems to capture, manage, and analyze this data to improve 
reliability and reduce costs. 

2. Across the healthcare field, big data analytics could save an estimated $450 
billion in the United States [10]. Analysis of petabytes of data across patient 
populations—taken from diverse sources such as insurance payers, public 
health, and clinical studies—can extract new insights for disease treatment 
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and prevention, and reduce costs by improving patient outcomes and opera-
tional efficiencies. 

Across these and many other domains, big data systems share common require-
ments that drive the design of suitable software solutions. Collectively, these 
requirements represent a significant departure from traditional business systems, 
which are relatively well constrained in terms of data growth, analytics, and 
scale. Requirements common to big data systems include 

• write-heavy workloads: From social media sites to high-resolution sensor 
data collection in the power grid, big data systems must be able to sustain 
write-heavy workloads [1]. As writes are more costly than reads, data parti-
tioning and distribution (sharding) can be used to spread write operations 
across disks, and replication can be used to provide high availability. Shar-
ding and replication introduce availability and consistency issues that the 
system must address. 

• variable request loads: Business and government systems experience high-
ly variable workloads for reasons that include product promotions, emergen-
cies, and statutory deadlines such as tax submissions. To avoid the costs of 
over-provisioning to handle these occasional spikes, cloud platforms are 
elastic, allowing an application to add processing capacity when needed and 
release resources when load drops. Effectively exploiting this deployment 
mechanism requires an architecture that has application-specific strategies to 
detect increased load, rapidly add new resources to share load, and release 
resources as load decreases. 

• computation-intensive analytics: Most big data systems must support di-
verse query workloads, mixing requests that require rapid responses with 
long-running requests that perform complex analytics on significant portions 
of the data collection. This leads to software and data architectures that are 
explicitly structured to meet these varying latency demands. Netflix’s Rec-
ommendations Engine [11] is a pioneering example of how software and da-
ta architectures can be designed to partition simultaneously between han-
dling low-latency requests and performing advanced analytics on large data 
collections to continually enhance the quality of personalized recommenda-
tions. 

• high availability: With hundreds of nodes in a horizontally scaled deploy-
ment, there are inevitable hardware and network failures. Distributed soft-
ware and data architectures must be designed to be resilient. Common ap-
proaches for high availability include replicating data across geographical 
regions [12], stateless services, and application-specific mechanisms to pro-
vide degraded service in the face of failures. 

Requirements for 
big data systems 
represent a 
significant 
departure from 
traditional 
business systems. 
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The solutions to these requirements crosscut the distributed software, data mod-
el, and physical deployment architectures. For example, elasticity requires pro-
cessing capacity that can be acquired from the execution platform on demand, 
policies and mechanisms to appropriately start and stop services as application 
load varies, and a database architecture that can reliably satisfy queries under 
increased load. This coupling of architectures to satisfy a particular quality at-
tribute is commonplace in big data applications and can be regarded as a tight 
coupling of the process, logical, and physical views in the 4+1 View Model [13]. 

EXAMPLE: CONSOLIDATION OF CONCERNS 
At the Software Engineering Institute, we are evolving a healthcare informatics 
system to aggregate data from multiple petascale medical-record databases for 
clinical applications. To attain high scalability and availability at low cost, we 
are investigating the use of NoSQL databases for this data aggregation. The de-
sign uses geographically distributed data centers to increase availability and re-
duce latency for users distributed globally. 

Consider the consistency requirements for two categories of data in this system: 
patient demographics (e.g., name, insurance provider) and diagnostic test results 
(e.g., results of blood or imaging tests). Patient demographic records are updated 
infrequently. These updates must be immediately visible at the local site where 
the data was modified (“read your writes”), but a delay is acceptable before the 
update is visible at other sites (“eventual consistency”). In contrast, diagnostic 
test results are updated more frequently, and changes must be immediately visi-
ble everywhere to support telemedicine and remote consultations with specialists 
(“strong consistency”). 

We are prototyping solutions using several NoSQL databases. We focus here on 
one prototype using MongoDB to illustrate the architecture drivers and design 
decisions. The design segments data across three shards and replicates data 
across two data centers (Figure 1). 

MongoDB enforces a master-slave architecture, in which every data collection 
has a master replica that serves all write requests and propagates changes to other 
replicas. Clients may read from any replica, opening an inconsistency window 
between writes to the master and reads from other replicas. 
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Figure 1: MongoDB-Based Healthcare Data-Management Solution 

MongoDB allows tradeoffs between consistency and latency through parameter 
options on each write and read. A write can be unacknowledged (no assurance of 
durability, low latency), durable on the master replica, or durable on the master 
and one or more replicas (consistent, high latency). A read can prefer the closest 
replica (low latency, potentially inconsistent), be restricted to the master replica 
(consistent, partition intolerant), or require a majority of replicas to agree on the 
data value to be read (consistent, partition tolerant). 

The application developer must choose appropriate write and read options to 
achieve the desired performance, consistency, and durability and must handle 
partition errors to achieve the desired availability. In our example, patient-
demographic data writes must be durable on the primary replica, but reads may 
be directed to the closest replica for low latency, making patient-demographic 
reads insensitive to network partitions at the cost of potentially inconsistent re-
sponses. 

In contrast, writes for diagnostic test results must be durable on all replicas. 
Reads can be performed from the closest replica since the write ensures that all 
replicas are consistent. This means that writes must handle failures caused by 
network partitions, while read operations are insensitive to partitions. 

Today, our healthcare informatics application runs atop a SQL database, which 
hides the physical data model and deployment topology from developers. SQL 
databases provide a single-system image abstraction, which separates concerns 
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between the application and database by hiding the details of data distribution 
across processors, storage, and networks behind a transactional read/write inter-
face [14]. In shifting to a NoSQL environment, an application must directly han-
dle the faults that will depend on the physical data distribution (sharding and 
replication) and the number of replica sites and servers. These low-level infra-
structure concerns, traditionally hidden under the database interface, must now 
be explicitly handled in application logic. 

SYSTEMATIC DESIGN USING TACTICS 
In designing an architecture to satisfy quality drivers like those discussed in this 
healthcare example, one proven approach is to systematically select and apply a 
sequence of architecture tactics [15]. Tactics are elemental design decisions that 
embody architecture knowledge of how to satisfy one design concern of a quality 
attribute. Tactic catalogs enable reuse of this knowledge. However, existing cata-
logs do not contain tactics specific to big data systems. In Figures 2 and 3, we 
extend the basic tactics [15] for performance and availability specifically for big 
data systems, and in Figure 4 we define tactics for scalability, focused on the 
design concern of increased workload. Each figure shows how the design deci-
sions span data, distribution, and deployment architectures. 

For example, achieving availability requires masking faults that inevitably occur 
in a distributed system. At the data level, replicating data items is an essential 
step to handle network partitions. When an application cannot access any data-
base partition, another tactic to enhance availability is to design a data model that 
can return meaningful default values without accessing the data. At the distribut-
ed software layer, caching is a tactic to achieve the “default values” tactic de-
fined in the data model. At the deployment layer, an availability tactic is to geo-
graphically replicate the data and distributed application software layers to 
protect against power and network outages. Each of these tactics is required to 
handle the different types of faults that threaten availability, and their combined 
representation in Figure 3 provides an architect with comprehensive guidance to 
achieve a highly available system. 

Low-level 
infrastructure 
concerns, 
traditionally 
hidden under the 
database 
interface, must be 
explicitly handled 
in big data 
systems. 
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Figure 2: Performance Tactics 

 

 

Figure 3: Availability Tactics 
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Figure 4: Scalability Tactics 

ARCHITECTURE CONVERGENCE IMPLICATIONS 
Big data applications are pushing the limits of software engineering on multiple 
horizons. Successful solutions span the design of the data, distribution, and de-
ployment architectures. It is essential that the body of software architecture 
knowledge evolves to capture this advanced design knowledge for big data sys-
tems. 

This paper is a first step on this path. Our work is proceeding in two complemen-
tary directions. First, we are expanding the collection of architecture tactics pre-
sented in this paper and encoding these in an environment that supports naviga-
tion between quality attributes and tactics, making crosscutting concerns for 
design choices explicit. We are also linking tactics to design solutions based on 
specific big data technologies, enabling architects to rapidly relate the capabili-
ties of a particular technology to a specific set of architecture tactics. 
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