
March/Apr i l 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
29

C apture and comparison of results is one key to successful software testing. For

manual tests this often consists of viewing results to determine if they are any-

thing like what we might expect. It is more complicated with automated tests, as

each automated test case provides a set of inputs to the software under test (SUT) and com-

pares the returned results against what is expected. Expected results are generated using a

mechanism called a test oracle.

The term oracle may be used to mean several things in testing—the process of generat-

ing expected results, the expected results themselves, or the answer to whether or not the

actual results are what we expected. In this article, the word oracle is used to mean an alter-

nate program or mechanism used for generating expected results.

Tools & AutomationTools & Automation
QUICK LOOK

■ When and why to use
heuristic oracles

■ Choosing your heuristic

■ When heuristics won’t work

The heuristic approach is only one implement in a tool chest for SQA—the decision about which approach is best for you
depends on your test situation. The table below gives descriptions of five approaches to oracles that have been successfully

employed across the software industry to verify automated software tests.

TRUE ORACLE HEURISTIC ORACLE SAMPLING ORACLE CONSISTENT ORACLE NO ORACLE

Definition ■ Independent ■ Verifies some values, ■ Selects a specific ■ Verifies current run ■ Doesn’t check
generation of all as well as consistency collection of inputs results with a previous correctness of results
expected results of remaining values or results run (Regression Test) (only that some results

were produced)

Advantages ■ No encountered ■ Faster and easier ■ Can select easily ■ Fastest method ■ Can run any amount
errors go than True Oracle computed or using an oracle of data (limited only by
undetected ■ Much less expensive recognized results ■ Verification is the time the SUT takes)

to create and use ■ Can manually verify straightforward
with only simple ■ Can generate and
oracle verify large amounts

of data

Disadvantages ■ Expensive ■ Can miss systematic ■ May miss systematic ■ Original run may ■ Only spectacular
to implement errors (as in and specific errors include undetected failures are noticed

■ Complex and often following sine ■ Often “trains the errors
time-consuming wave example) software to pass
when run the test”

Table 1: Five Approaches to Oracles

Heuristic
Test Oracles

The balance between exhaustive comparison

and no comparison at all by Douglas Hoffman

It is often impractical to exactly reproduce or compare
accurate results, but it isn’t necessary for an oracle to be
perfect to be useful. Several categories of oracles are
described in Table 1. In this article, I’ll describe some ideas
associated with what I call heuristic oracles.

A heuristic oracle provides exact results for a few
inputs and uses simpler consistency checks (heuristics) for
the rest. Regardless of the complexity of the SUT, known or
easily-computed result values can be chosen for the exact
comparisons. The heuristic oracle can usually be built into
the test case or verifier to simplify testing. This approach
can have substantial advantages. Furthermore, the same
heuristic oracle or simple variations are often reusable
across broad classes of software.

As a simple example of the idea, consider the sine
function (see Figure 1). An implementation of sine could
be tested against a separately imple-
mented routine that uses a different
computational algorithm. That separate
routine is a True Oracle. Such an oracle
is very flexible—it can be used with as
many test inputs as you have time to
generate, it can accept any inputs the
SUT can, and it has a high likelihood of
identifying errors.

Note that it won’t necessarily find
all errors because it might share some
with the SUT. For example, the same
hardware or operating system fault
might affect both (such as the “Pen-
tium bug”), or both might use the
wrong units. In such cases, both the
SUT and the oracle could produce the
same wrong answer. Unfortunately,
this independent oracle is expensive
both to create and use, often costing
as much or more than the SUT to
develop and using equal or greater
machine resources. It also has a high
likelihood of having its own errors
because its complexity often rivals the
SUT.

The other extreme is to have no
oracle at all. I’ve reviewed automated
tests that were proudly created and
run, sending thousands or millions of
test values to the SUT—and confirming

nothing more than that the test does not crash the system
or provide some other spectacular notice to the tester.
That’s not expensive, but it’s also rarely useful and certain-
ly tells us nothing about whether the answers from the SUT
are correct.

A heuristic oracle provides a reasonable alternative
between slow, expensive, and voluminous results genera-
tion on the one hand, and unverified SUT results on the oth-
er. The approach can be used when the SUT can be charac-
terized as having a nice, predictable relationship between
the inputs and results—one that can be exploited in testing.
(See the sidebar for a further discussion of the relation-
ships where heuristic oracles can most easily be used.) For
the sine function, the predictable relationship used for the
heuristic is that the function increases between 0 and 90
degrees, decreases from 90 to 270 degrees, and increases

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing March/Apr i l 1999
30

What are nice,
predictable relationships?

Algorithms and results come in many forms. Often there are so many variables
involved that we despair at the prospect of entering arbitrary data in a test,

and we fall back on sets of input and result values we already know. Heuristic ora-
cles depend upon our seeing some relationship between the inputs and results in
the SUT and exploiting that relationship through an underlying simpler one.

So, one question is what types of relationships should we look for? I define
“nice relationships” as ones that work for ranges of inputs and/or outputs. The
heuristic must hold for all values in the definable range(s) of inputs or results—
without gaps. When there are exceptions in the range, the function (or compari-
son) gets extremely complicated, usually negating the value of using the heuristic
oracle. It gets really difficult to sort through input values to decide if the relation-
ship applies. If the sine relationship (sequential results getting larger or smaller)
only worked for integer degree values, the heuristic wouldn’t be very useful. In
order to be “nice” the relationship needs to be continuous. It may only apply for
one range of values, as is the case in the sine example, but a few simple checks on
the input values easily put the results into one of the two heuristics.

“Predictable relationships” are fairly easy to identify—and the nature of the
predictability is what we use to come up with the heuristic. In the sine example,
the results predictably increase or decrease between the minima and maxima, and
this is the basis of discovering the simple heuristic.

FIGURE 1 A sine wave FIGURE 2 A sine wave with errors
that could be detected by a heuristic oracle

FIGURE 3 Another incorrect sine
wave

again to 360 degrees. The exact value of sine at 34 degrees
is hard to predict, but you can easily check that it’s larger
than the value at 33 degrees and smaller than the value at
35 degrees. For the values of sine that are easy to predict
[sin(0) is 0, sin(90 degrees) is 1, sin(180 degrees) is 0, and
sin(270 degrees) is –1], exact results can be checked.
Between the four values the heuristic applies.

This heuristic oracle is very easy to implement com-
pared to an alternate version of sine and runs much faster.
The number of inputs to try can be chosen based on the
time allocated to run the test. It will find errors such as
those shown in Figures 2 and 3. In Figure 2, the predictable
descent from crest to trough is violated. In Figure 3, the
curve is too large in the vertical direction. Heuristic oracles
are also good at finding errors such as the discontinuous
(incorrect) sine wave in Figure 4. This heuristic approach
also finds most problems at internal boundary conditions
and special value cases.

Larger Examples
Math functions are not the only place that heuristic ora-
cles are useful. I recall two database applications where
we overcame practical limitations of automated testing
using heuristic oracles. The first case was with a software
company that produced commercial relational database
systems. Large databases were needed, with a staggering
number of transactions. Verification of results from the
automated tests meant sifting through huge binary files
containing complex interconnections, and verifying the
correctness of all the data values and interconnections.
That was not going to happen in our lifetimes.

But by applying heuristics to the relationships we were
able to write oracles and automate verification for most of
the database results. For example, auto-generated fields
like Invoice Number correspond with Date/Time of cre-
ation, so when the results of searches are sorted by
Date/Time they should have ascending (or descending)
Invoice Numbers.

At another company the biggest challenge in testing
the database was the vast size and dynamic updating of the
data sets. Testing had to be done on the live data because it
wasn’t practical to duplicate a reasonable test set from the
two hundred on-line data bases of 5 to 30GB each. The data
within each record varied from a few thousand characters
to several megabytes, making complete record comparison
impractical. The data content in the live databases was also

being modified daily, making it impossible to know in
advance how many responses there would be to any reason-
able query. However, we knew that old records weren’t sup-
posed to be dropped from the database, and we knew when
each test was written. So we divided the results of a search
into two sets: those records that predated the test (and
were known), and those that came after (and the test could-
n’t predict). We checked that the first set was the right size
(that no records had been incorrectly dropped), and that
specific values appeared in each record. (Since we knew
about these records, we selected information that was
unique to the record and not likely to appear in new ones.)
This meant the records contained specific expected values.

For the second set, we could only apply weaker
heuristics to test that the search criteria had been met. In
both cases, we could only check that the returned records
matched (in some way) the search criteria. We couldn’t
check that all matching records had been returned. Even
at the point the test was written, it would have been
impractical to independently check every record in the
databases.

Another example of heuristic oracle application
occurred where the data integrity over a data communica-
tions link was tested with huge amounts of auto-generated,
pseudo-random, binary data using simple algorithms for
generation and checking (see Figure 5). We needed to gen-
erate a vast amount of random traffic and confirm that no
data had been lost or corrupted. The sending test driver
generated sequences of ascending or descending values
with random start values, random lengths, and constant
sequential differences chosen at random. The receiving test
driver only needed to compute differences between sequen-
tial values, verify that the differences remained constant,
and then send back the start value, end value, increment,
and number of values to confirm any transmission.

Choosing
Your Heuristic
The big trick with this approach is to come up with the
heuristic to apply in the oracle. Most complex algorithms
contain simpler patterns. If you step back and look at the
relationships between the inputs and the results, you
often can come up with really simple approximations or
observations that give you the heuristic. Pictures of the
functions, the data, and the SUT may help you visualize
the patterns. Patterns may be based on only some of the

March/Apr i l 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
31

FIGURE 4 An invalid sine wave
with inverted values

FIGURE 5 A heuristic for data communications verification

Remote Device
• Save first value (V1)

• Check for same interval
between sequential values (I)

• Count number of values (n)

• Return V1, Vn, I, n to confirm

Data Source
• Binary values (Vn)

• Randomly chosen start (V1)

• Randomly chosen interval (I)

• Random number of values (m)

• Each sequential value interval
more than previous (Vn+1=Vn+I)

33

input variables or results. There may be more than one
pattern; so look for more than one, and then pick the sim-
plest one that will do the job. The simpler the algorithm
the faster, cheaper, and more reliable the heuristic oracle.
If you can’t see the simple approximation or rule-of-
thumb, then you can’t create a heuristic oracle for the
function.

Some tricks may help. Break the SUT up into pieces.
Each piece may be based on a range of inputs (or results).
In the sine example, I broke the function into two ranges
for the heuristics: rising results and falling results. The
mega-databases were verified by splitting the results into
two categories: those known at the time of writing the tests,
and new results. Then two different heuristic approaches
were applied to verify them.

Another trick is to look for other simple relationships
between the input variables and results related to those you
are testing. For example, the date/time of creation for a
record may correlate with the record number, and therefore
all records created on a specific date should form a block.
(If there is a gap in the record numbers, the missing record
must be absent from the database. It cannot have been cre-
ated on any other day.)

You can often divide test results into two groups: what
we know to expect, and what we can’t predict. In the sine
example, there were four values that could be predicted
exactly. The rest were verified using a heuristic oracle.

When looking for patterns, consider reordering the
data. For example, two equivalent sets of elements can be
sorted and compared to show they do (or do not) contain
the same items.

Blocks of information can often be represented by the
starting value and count of elements. Variations are possi-
ble by using fixed increments between values or using sim-
ple patterns for changing increments.

When Heuristic
Oracles Don’t Work
If you don’t have a simple pattern to work from, you don’t
have the necessary heuristic. GUI contents and navigations
usually don’t have simple patterns, and heuristic oracles
won’t apply. If your pattern is too complex, then you add
the risk that the heuristic oracle will introduce errors (and
therefore produce false reports of errors in the SUT). Over-
ly complex patterns lead to expensive heuristic oracles that
don’t verify the accuracy of the SUT’s results. If you’re
going to all that expense it might be better to use a True
Oracle.

Keep in mind that the very nature of a heuristic means
that it is not exact. The general rules can miss detecting
actual problems. For instance, the heuristic oracle for the
sine example would erroneously pass the sawtooth func-
tion in Figure 6. The four exact points are correct, and that
function smoothly increases or decreases in the appropri-
ate regions—but if verifying the accuracy is critical for all
the values, then the heuristic oracle won’t do the job.

However, it’s not likely that a sine function would be
incorrectly implemented as a sawtooth function. That’s an
important point. Heuristic oracles work when the failures
they detect are failures that real programmers are likely to
make. Heuristic oracles don’t work if plausible mistakes
would produce results that still satisfy the predictable rela-
tionship behind the oracle. For example, in the case of the
sine function, rounding errors might lead to the kind of
incorrect graphs shown in Figure 7, but these variances
would still pass the heuristic oracle’s test.

When planning to use a heuristic oracle, try to predict
what failures it should catch and which it might miss, and
ask if you’re willing to accept that risk. In the sine example
in Figure 7, other tests would be required to check for the
rounding errors.

Care must be taken to choose the best method of
results comparison when you are creating a test environ-
ment architecture and planning automated tests. Oracles
are required for verification, but the nature of an oracle
depends on several factors—most of which are under the
control of the automation architect and test designer. In the
range of oracles you have to choose from, heuristic oracles
provide alternatives to more expensive or impractical True
Oracles, while providing useful data about characteristics
of expected results. When you find yourself in situations
where complete information is unavailable or impractical to
acquire, a heuristic oracle can offer you an important
potential method of verification. STQE

Douglas Hoffman has been in the software engineering
and quality assurance fields for over 25 years and is
currently an independent consultant with Software
Quality Methods, LLC. He is very active professionally,
is a member of several professional societies, and has
been a participant at dozens of software quality and
metrics conferences. He has earned a Certificate in Soft-
ware Quality Engineering from ASQ and has degrees in
CS, EE, and an MBA. His email address is doug.hoff-
man@asqnet.org.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing March/Apr i l 1999
32

FIGURE 6 A sawtooth graph the
oracle accepts

FIGURE 7 Graphs (due to rounding
errors) the oracle accepts

