
Hypercomputation

B. JACK COPELAND
Department of Philosophy, Canterbury University, Private Bag 4800, Christchurch, New Zealand;
E-mail: j.copeland@phil.canterbury.ac.nz

Abstract. A survey of the field of hypercomputation, including discussion of a variety of objections.

Key words: analog, computability, hypercomputation, mind, neural network, oracle, recursion the-
ory, super-Turing, Turing, Turing machine

Hypercomputation is the computation of functions or numbers that cannot be com-
puted in the sense of Turing (1936), i.e., cannot be computed with paper and pencil
in a finite number of steps by a human clerk working effectively.

As has often been remarked, in 1936 a computer was not a machine at all,
but a human being, a mathematical assistant (Copeland, 1997a, 2000). The human
computer calculated by rote, in accordance with an effective method supplied by
an overseer, prior to the calculation. The overseer would also supply all requisite
data, in the form of symbols on paper. Many thousands of human computers were
employed in business, government, and research establishments. It was in that
sense that Turing used the term ‘computer’ and its cognates in (1936), saying,
for example, ‘Computing is normally done by writing certain symbols on paper’
(1936, p. 249) and ‘The behaviour of the computer at any moment is determined
by the symbols which he is observing, and his “state of mind”’ (1936, p. 250). The
Turing machine (or as Turing called it, ‘computing machine’) is an idealization of
the human computer:

We may compare a man in the process of computing a real number to a machine
which is only capable of a finite number of conditions . . . The machine is
supplied with a ‘tape’ . . . (1936, p. 231)

A number (respectively, function) is Turing-machine-computable if and only if
there is a Turing machine that can write down each successive digit (value) of the
number (function), starting from a blank tape and producing each digit (value) in a
finite number of steps.

The Church–Turing thesis connects this technical sense of computability with
the sense just explained: all numbers and functions computable in that sense — ‘by
human clerical labour, working to fixed rules, and without understanding’ (Turing,
1945, pp. 38–39) — are computable by the universal Turing machine. This thesis
and its converse together state that the predicates ‘is Turing-machine-computable’
and ‘is computable by a human rote-worker unassisted by machinery’ are equiv-
alent in extension (assuming that the rote-worker is free of limitations on time,
paper, pencils, etc).

Minds and Machines 12: 461–502, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

462 B. JACK COPELAND

A hypercomputer is any information-processing machine, notional or real, that
is able to achieve more than the traditional human clerk working by rote. Hyper-
computers compute functions or numbers, or more generally solve problems or
carry out tasks, that lie beyond the reach of the universal Turing machine of 1936.
(Some working in the field speak of ‘breaking the Turing barrier’, ‘computing bey-
ond the Turing limit’, ‘escaping the Turing tar pit’, and the like.) The additional
computational power of a hypercomputer may arise because the machine pos-
sesses, among its repertoire of fundamental operations, one or more operations that
no human being unaided by machinery can perform. Or the additional power may
arise because certain of the restrictions customarily imposed on the human com-
puter are absent in the case of the hypercomputer — for example, the restrictions
that data take the form of symbols on paper, that all data be supplied in advance of
the computation, and that the rules followed by the computer remain fixed for the
duration of the computation. In one interesting family of hypercomputers, what is
relaxed is the restriction that the human computer produce the result, or each digit
of the result, in some finite number of steps.

The literature now contains a diverse array of notional hypercomputers. Some of
these are noted in Section 1 of this introduction, which briefly surveys key papers
and developments in the history of the field. In Section 2, some of the simplest
models of hypercomputation are described. Section 3 answers some frequently
asked questions about hypercomputation.

The simple notional machines described in Section 2 function as aids to the
imagination and intuition. They serve also to make the point that computability is
a relative notion, not an absolute one. All computation takes place relative to some
set or other of primitive capacities. The richer the capacities that are available, the
greater the extent of the computable. The primitive capacities specified by Turing in
1936 occupy no privileged position. One may ask whether a function is computable
relative to a subset of these capacities, or to a superset.

One set of functions (or numbers) is of special interest: the functions (or num-
bers) that are in principle computable in the real world. The exact membership of
this set is an open question. Speculation that there may be physical processes —
and so, potentially, machine-operations — whose behaviour cannot be simulated
by the universal Turing machine of 1936 stretches back over a number of decades.
Could a machine, or natural system, deserving the name ‘hypercomputer’ really
exist? Indeed, is the mind — or the brain — some form of hypercomputer? These
are two of the central questions addressed in this collection.

1. History of the Field

When Proudfoot and I introduced the term ‘hypercomputation’ in 1999, we were
naming an emerging field which nevertheless has a substantial history (Copeland
and Proudfoot, 1999a, p. 77). The brief historical overview given in this section is
highly selective.

HYPERCOMPUTATION 463

1.1. TURING (1938)

Turing’s abstract ‘oracle machines’ or o-machines seem to be the earliest form of
hypercomputer to appear in the literature. Turing introduced the concept of an o-
machine in his PhD thesis (Princeton, 1938). Subsequently published as Turing
(1939), this is a classic of recursive function theory.

The fundamental processes of the standard Turing machine are: (1) move left
one square; (2) move right one square; (3) identify the symbol in the scanner;
(4) write a symbol on the square of tape in the scanner (first deleting the sym-
bol already inscribed there, if the square is not blank); (5) change internal state.
These fundamental processes are made available by unspecified subdevices of the
machine — ‘black boxes’. (The question of what mechanisms might appropriately
occupy these black boxes is not relevant to the machine’s logical specification.)

An o-machine is a Turing machine augmented with a fundamental process that
produces the values of some non Turing-machine-computable function (for ex-
ample the Turing-machine halting function, explained in Section 1.6 below). The
new fundamental process is carried out by a black box called an ‘oracle’. When
a function g is computable by an o-machine whose oracle produces the values of
function f, then g is sometimes said to be computable relative to f.

How is the o-machine organised? As in the case of the ordinary Turing machine,
the behaviour of the o-machine is governed by a table of instructions (program).
The table provides an exhaustive specification of which fundamental processes
the machine is to perform when in such-and-such internal state with such-and-
such symbol in the scanner. Let p be the new fundamental process. The machine
inscribes the sequence of symbols that is to be input into p on any convenient
block of squares of its tape, using some symbol to mark the beginning and end of
the sequence. p is called into action by means of a special internal state χ . When
an instruction in the program puts the machine into state χ , the marked sequence
is delivered to the subdevice that effects p, which then returns the corresponding
value of the function, 0 or 1 (Turing considered two-valued functions). On Turing’s
way of handling matters, the value is not written on the tape; a pair of states is
employed in order to record values of the function. Thus a call to p ends with a
subdevice placing the machine in one or other of these two states, according to
whether the value of the function is 1 or 0.

Turing introduced oracle machines with the following words (1939, p. 173):

Let us suppose that we are supplied with some unspecified means of solving
number-theoretic problems; a kind of oracle as it were. We shall not go any fur-
ther into the nature of this oracle apart from saying that it cannot be a machine.
With the help of the oracle we could form a new kind of machine (call them
o-machines), having as one of its fundamental processes that of solving a given
number-theoretic problem.

Turing’s statement that an oracle ‘cannot be a machine’ might be taken to indicate
that, in Turing’s view, oracle machines are not really machines at all. On the other

464 B. JACK COPELAND

hand, he did say that oracle machines are ‘a new kind of machine’ and he did
repeatedly refer to o-machines as machines. For example (ibid.):

Given any one of these machines . . .

If the machine is in the internal configuration . . .

These machines may be described by tables of the same kind as those used for
the description of a-machines . . .

(a-machines are what we now call Turing machines (1936, pp. 231–232).) By the
statement that an oracle ‘cannot be a machine’, Turing perhaps meant that an oracle
cannot be a machine of the kind so far considered in his discussion, viz. a machine
that calculates effectively — a Turing machine. His statement is then nothing more
than a reiteration of what he himself had shown in 1936. Or perhaps his view
was simply that o-machines are machines one of whose fundamental processes is
implemented by a component that is not in turn a machine. Not every component
of a machine need be a machine. (One could even take a more extreme view and
say that the atomic components of machines — e.g., squares of paper — are never
machines.)

Modern writers who believe that there can be non-mechanical physical action
might well choose to speak of machines with components that, while physical, are
not themselves machines.

Turing’s description of o-machines is entirely abstract; he introduced them in
order to exhibit an example of a certain type of mathematical problem (the section
in which o-machines are introduced is entitled ‘A type of problem which is not
number-theoretic’). In 1936 he had exhibited a problem which cannot be solved by
effective means, the problem of determining, given any Turing machine, whether
or not it prints infinitely many binary digits. All problems equivalent to this one he
termed ‘number-theoretic’ (noting that he was using the term ‘number-theoretic’
in a ‘rather restricted sense’) (1939, pp. 168–170). The o-machine concept enabled
him to describe a new type of problem, not solvable by a uniform process even
with the help of a number-theoretic oracle. The class of machines whose oracles
solve number-theoretic problems is, he showed, subject to the same diagonal argu-
ment that he used in 1936. The problem of determining, given any such machine,
whether or not it prints infinitely many binary digits is not one that can be solved
by any machine in the class and, therefore, is not number-theoretic (1939, p. 173).

Turing appealed to o-machines when discussing the question of the complete-
ness of the ‘ordinal logics’ described in his thesis (1939, p. 200). Via a suitable
class of oracle machines and the diagonal argument, a logic itself forms the basis
for the construction of a problem with which it cannot deal.

Turing, as he said, did ‘not go any further into the nature’ of an oracle. One way
to conceptualise an oracle — perhaps the simplest — is as a device accessing an in-
finite internal tape upon which there have been inscribed, in order, all the infinitely
many arguments and values of whatever function it is that the oracle generates. This
device can produce any of the function’s values after only a finite search along the
tape. Various other conceptualisations of an oracle are introduced in what follows.

HYPERCOMPUTATION 465

There is considerable diversity among them, some being more physical in flavour
than others.1 To mention only a few examples, an oracle is in principle realisable
by certain classical electrodynamical systems (Section 1.2); the physical process of
equilibriation (Section 1.10); an automaton travelling through relativistic spacetime
(Sections 1.15, 1.23); a quantum mechanical computer (Sections 1.3, 1.19, 3.10);
an inter-neural connection (Section 1.25); and a temporally evolving sequence of
Turing machines, representing for example a learning mind (Sections 1.18.1, 2.7).

The concept of oracular computation can profitably be employed in theorizing
about hardware, about brains, and about minds.

1.2. SCARPELLINI (1960–1963)

As early as 1960, in an article published in German in 1963, Bruno Scarpellini
speculated that non-recursive (i.e., non-Turing-machine-computable) processes
might occur in nature (Scarpellini, 1963). Scarpellini wrote:

[O]ne may ask whether it is possible to construct an analogue-computer which
is in a position to generate functions f(x) for which the predicate

∫
f(x) cos nxdx

> 0 is not decidable [by Turing machine] while the machine itself decides by
direct measurement whether

∫
f(x) cos nxdx is greater than zero or not.

Scarpellini made it clear that he intended talk of ‘constructing’ the machine that
he characterised to be understood at the level of thought-experiment. He said:

Such a machine is naturally only of theoretical interest, since faultless meas-
uring is assumed, which requires the (absolute) validity of classical electro-
dynamics and probably such technical possibilities as the existence of infinitely
thin perfectly conducting wires. All the same, the (theoretical) construction of
such a machine would illustrate the possibility of non-recursive natural pro-
cesses.

Scarpellini’s article is published here in English translation for the first time,
together with some comments by Scarpellini written specially for this collection.
In these comments Scarpellini examines Penrose’s thesis that classical physics is
computable (Penrose, 1989, 1994). Scarpellini argues that, given what appears to
be Penrose’s intended mathematical interpretation of the thesis, then, even if true,
the thesis ‘leaves plenty of room for a variety of nonrecursive phenomena which
may occur in classical physics’.

Scarpellini ends his comments with some speculations about hypercomputation
in the brain. He writes:

[I]t does not seem unreasonable to suggest that the brain may rely on analogue-
processes for certain types of computation and decision-making. Possible can-
didates which may give rise to such processes are the axons of nerve cells. . . .

[I]t is conceivable that the mathematics of a collection of axons may lead to
undecidable propositions like those discussed in my paper.

466 B. JACK COPELAND

1.3. KOMAR (1964)

In 1964 Komar showed that the behaviour of a quantum system having an infin-
ite number of degrees of freedom may be hypercomputational, proving that, in
general, the universal Turing machine cannot determine whether or not two arbit-
rarily chosen states of such a system are macroscopically distinguishable. He wrote
(1964, pp. 543–544):

Given two arbitrary quantum states of a physical system having an infinite
number of degrees of freedom, we know either that they are macroscopically
distinguishable, or that they are not . . . What we have shown is that there is
in general no effective procedure for deciding whether they [are] or not. That
is, there exists no [effective] procedure for determining whether two arbitrarily
given physical states can be superposed to show interference effects character-
istic of quantum systems. . . . [I]t is rather curious or surprising that the issue
of the macroscopic distinguishability of quantum states should be among the
undecidable questions.

1.4. KREISEL (1965–1967)

Kreisel emphasised that it is an open question whether there are natural processes
that are not Turing-machine-computable. Scattered remarks throughout a series of
papers spanning three decades discuss this theme in relation to classical mechan-
ics, classical electrodynamics, and quantum mechanics (see, for example, Kreisel,
1965, 1967, 1971, 1972, 1982, 1987, and especially 1970, 1974). Among his early
statements concerning quantum mechanics are:

[E]xcepting collisions as in the 3-body problem, which introduce discontinu-
ities . . . the theory of partial differential equations shows that the behavior of
discretely described (finite) systems of classical mechanics is recursive. But this
may not be so in the quantum theory . . . (1965, p. 144)
[T]he hypothesis that reasoning is not mechanistic is by no means anti-materialist
or anti-physicalist. There is no evidence that even present day quantum theory
is a mechanistic, i.e. recursive theory in the sense that a recursively described
system has recursive behaviour. (1967, p. 270)

1.5. PUTNAM AND GOLD (1965)

In papers published in the same year, Gold and Putnam independently described
the variant of the Turing machine known variously in the literature as a trial-and-
error machine, a guessing machine, or simply a Putnam–Gold machine (Gold 1965;
Putnam 1965).2 Here is Putnam’s description of the new idea (1965, p. 49):

[W]e modify the notion of a decision procedure by (1) allowing the procedure
to ‘change its mind’ any finite number of times (in terms of Turing Machines:

HYPERCOMPUTATION 467

we visualize the machine as being given an integer (or an n-tuple of integers)
as input. The machine then ‘prints out’ a finite sequence of ‘yesses’ and ‘nos’.
The last ‘yes’ or ‘no’ is always to be the correct answer.); and (2) we give up
the requirement that it be possible to tell (effectively) if the computation has
terminated? I.e., if the machine has most recently printed ‘yes’, then we know
that the integer put in as input must be in the set unless the machine is going
to change its mind; but we have no procedure for telling whether the machine
will change its mind or not. . . . [I]f we always ‘posit’ that the most recently
generated answer is correct, we will make a finite number of mistakes, but we
will eventually get the correct answer. (Note, however, that even if we have
gotten to the correct answer (the end of the finite sequence) we are never sure
that we have the correct answer.)

A Putnam–Gold machine computes a function if and only if, given any argu-
ment of the function, the machine will sooner or later produce the correct value.
The computable functions include functions that are not Turing-machine-computable.
An example is the Turing-machine halting function, defined in the next section.

Putnam–Gold machines are discussed in Sections 1.13 and 2.5 below.

1.6. ABRAMSON (1971)

In 1971, in a paper that has been unjustly neglected, Abramson introduced what
he called the Extended Turing Machine or ETM. An ETM is able to store a real
number on a single square of its tape (by unspecified means). Abramson wrote
(1971, p. 33):

We extend the notion of effective computability to functions on the real num-
bers by adding [to the Turing machine] abilities to store real numbers, to move
them about, to compare two given numbers, and to perform the elementary
arithmetic operations of addition and multiplication.

Since, as Turing proved in 1936, not all real numbers are Turing-machine-
computable, it follows immediately that an ETM is able to carry out computations
that no Turing machine can carry out. To give one simple example, an ETM can
add any pair of real numbers that are given as input. A Turing machine, on the
other hand, may not even be able to represent the numbers in question, let alone
add them.

The famous Turing-machine halting function (Davis 1958, p. 70) may be defined
as follows. H(x,y)=1 if and only if x represents the program of a Turing machine
that eventually halts if set in motion with the number y inscribed on its otherwise
blank tape; H(x,y)=0 otherwise. A machine able to ‘solve the halting problem’ can
inform us, concerning any given Turing machine program x and any finite amount
of data y, whether or not H(x,y)=1.

The halting function for ETMs is defined analogously. Having shown that the
halting problem for ETMs is not solvable by an ETM, Abramson augmented the

468 B. JACK COPELAND

ETM with a greatest-lower-bound (GLB) operation, producing what he called a
level one GLB Automaton (1971, pp. 33–34). He proved that a machine of this
type is able to solve the halting problem for ETMs.

Abramson introduced an infinite hierarchy of GLB Automata by allowing the
GLB operation of machines at the nth level to operate over sets defined by ma-
chines at m–1th level. He proved that the halting problem for the GLB Automata
of any given level is always solvable by a machine higher in the hierarchy (1971,
pp. 35–36).

1.7. BOOLOS AND JEFFREY (1974)

In a discussion of Zeno’s paradox of the race-course, Russell said: ‘If half the
course takes half a minute, and the next quarter takes a quarter of a minute, and so
on, the whole course will take a minute’ (Russell, 1915, pp. 172–173). Later, in a
discussion of a paper by Alice Ambrose (Ambrose, 1935), he wrote:

Miss Ambrose says it is logically impossible to run through the whole expan-
sion of π . I should have said it was medically impossible. . . . The opinion that
the phrase ‘after an infinite number of operations’ is self-contradictory, seems
scarcely correct. Might not a man’s skill increase so fast that he performed each
operation in half the time required for its predecessor? In that case, the whole
infinite series would take only twice as long as the first operation. (1936, pp.
143–144.)

This same temporal patterning and the attendant idea of completing an infinite
number of operations in a finite time was described independently by a number of
writers, including Blake (1926) and Weyl (1927).

Boolos and Jeffrey imagined Zeus working in this manner in order to ‘simulate
every step of an unending computation in 1 second’ (Boolos and Jeffrey, 1974, p.
40). They pointed out that Zeus is therefore able to determine, of any arbitrary
Turing machine, whether or not it halts (ibid.). In the computability literature,
machines operating in accordance with Russell’s formula have become known as
Zeus machines.

Later in this issue, Hamkins supplies a general theory of what computations
can be done by a Turing machine that is able to survey its own infinitely long
computations.

1.8. POUR-EL AND RICHARDS (1979–1981)

In 1979 Pour-El and Richards published their paper ‘A computable ordinary differ-
ential equation which possesses no computable solution’, followed in 1981 by their
now famous ‘The wave equation with computable initial data such that its unique
solution is not computable’ (Pour-El and Richards, 1979, 1981; see also their book
1989).

HYPERCOMPUTATION 469

In the first paper, Pour-El and Richards proved that there exists a ‘computable
. . . function F(x,y) defined on a rectangle R of the plane such that the differential
equation y′(x) = F(x,y) has no computable solution on any neighbourhood within
R′ (1979, p. 61). They explained (1979, p. 63):

Our results are related to some remarks of Kreisel. In [1974], Kreisel concerns
himself with the following question. Can one predict theoretically on the basis
of some current physical theory — e.g. classical mechanics or quantum mech-
anics — the existence of a physical constant which is not a recursive real?
Since physical theories are often expressed in terms of differential equations, it
is natural to ask the following question: Are the solutions of ϕ′ = F(x,ϕ), ϕ(0)
= 0, computable when F is?

Introducing the second paper, Pour-El and Richards referred to the same prob-
lem posed by Kreisel, remarking that their results are similar to those presented
in the first paper but are obtained with respect to ‘an equation which is more
familiar’, the three-dimensional wave equation (1981, p. 216). They proved that
the behaviour of a system with Turing-machine-computable initial conditions and
evolving in accordance with their equation is not Turing-machine-computable. The
function describing the evolution of the system has real-number values that are not
Turing-machine-computable.

In a review of the two papers, Kreisel described the results in almost racy terms
(1982, p. 901):

The authors suggest, albeit briefly and in somewhat different terms, that they
have described an analogue computer that — even theoretically — cannot be
simulated by a Turing machine. Here ‘analogue computer’ refers to any phys-
ical system, possibly with a discrete output, such as bits of computer hardware
realizing whole ‘subroutines’. (Turing’s idealized digital computer becomes
an analogue computer once the physical systems are specified that realize —
tacitly, according to physical theory — his basic operations.)

1.9. KARP AND LIPTON (1980)

In a conference presentation in 1980, Karp and Lipton discussed infinite famil-
ies of digital circuits, for example circuits consisting of boolean logic gates or
McCulloch–Pitts neurons (Karp and Lipton, 1982). Each individual circuit in an
infinite family is finite. A family may be regarded as a representation of a piece of
hardware that grows over time, each stage of growth consisting of the addition of
a finite number of new nodes (e.g., neurons). The behaviour of any given circuit in
a family can be calculated by some Turing machine or other (since each circuit is
finite), but there may be no single Turing machine able to do this for all circuits in
the family. In the case of some families, that is to say, the function computed by
the growing hardware — successive members of the family computing values of
the function for increasingly large inputs — is not Turing-machine-computable.

470 B. JACK COPELAND

1.10. DOYLE (1982)

Written in 1982, Doyle’s classic ‘What is Church’s Thesis? An Outline’ has been
in private circulation. It is published here for the first time. Doyle suggested that the
physical process of equilibriating — for example, a quantum system’s settling into
one of a discrete spectrum of states of equilibrium — is ‘so easily, reproducibly, and
mindlessly accomplished’ that it be granted equal status alongside the operations
usually termed effective. Doyle wrote:

My suspicion is that physics is easily rich enough so that . . . the functions com-
putable in principle given Turing’s operations and equilibriating, include non-
recursive functions. For example, I think that chemistry may be rich enough that
given a diophantine equation . . . we plug values into [a] molecule as boundary
conditions, and solve the equation iff the molecule finds an equilibrium.

1.11. RUBEL (1985–1989)

Rubel emphasised that aspects of brain function are analog in nature and suggested
that the brain be modelled in terms of continuous mathematics, as against the
discrete mathematics of what he called the ‘binary model’. He wrote (1985, pp.
78–79):

It is fashionable nowadays to downgrade analog computers, largely because of
their unreliability and lack of high accuracy . . . But analog computers, besides
their versatility, are extremely fast at what they do . . . In principle, they act
instantaneously and in real time. . . . Analog computers are still unrivalled
when a large number of closely related differential equations must be solved.

Rubel noted that the digital simulation of analog computers can offer ‘some
of the best of both worlds’ (1985, p. 79). In digital simulation, the various ‘black
boxes’ making up the analog computer — integrators, adders, multipliers, etc. —
are ‘replaced by digital counterparts, but from this point, the logic of the computer
is analog’ (ibid.). Rubel noted, however, that digital simulation may not always be
possible, even in principle (Rubel, 1989, p. 1011):

One can easily envisage other kinds of black boxes of an input–output character
that would lead to different kinds of analog computers. . . . Whether digital
simulation is possible for these ‘extended’ analog computers poses a rich and
challenging set of research questions.

1.12. GEROCH AND HARTLE (1986)

Geroch and Hartle examined the nature of prediction in theories describing phys-
ical systems not simulable by Turing machine. They argued that ‘such a theory
should be no more unsettling to physics than has the existence of well-posed prob-

HYPERCOMPUTATION 471

lems unsolvable by any algorithm been to mathematics’, suggesting that such the-
ories ‘may be forced upon us’ in the quantum domain (1986, pp. 534, 549).

[O]ur experience with present-day physical theories [is that in] both classical
and quantum physics . . . the implementation of the theory consists of selecting
some algorithm . . . for solving the equations. But not all theories of physics
need be of this type. We may someday in physics be confronted with a situation
in which . . . the activity of applying the theory is not so different from that
of finding the theory in the first place. Specifically, we may reach a point at
which there exist no algorithms whatever for applying a theory mechanically
to specific circumstances. (1986, p. 534)

Geroch and Hartle drew an analogy between the exercise of deriving predictions
from such a physical theory and the process of calculating approximations to some
real number that is not Turing-machine-computable. One algorithm may deliver
the first n digits of the decimal representation of the real number, another the next
m digits, and so on. Discovering each algorithm is akin to finding the theory. They
said (1986, p. 549):

To predict to within, say, 10%, one manipulates the mathematics of the theory
for a while, arriving eventually at the predicted number. To predict to within
1%, it will be necessary to work much harder, and perhaps to invent a novel
way to carry out certain mathematical steps. To predict to 0.1% would require
still more new ideas. . . . The theory certainly ‘makes definite predictions’,
in the sense that predictions are always in principle available. It is just that
ever increasing degrees of sophistication would be necessary to extract those
predictions. The prediction process would never become routine. Clearly, this
would not be a particularly desirable state of affairs. But it would seem to be
merely an inconvenience — far from a disaster for physics.

1.13. KUGEL (1986)

Kugel suggested that, as a matter of empirical fact, the mind is hypercomputa-
tional, citing evidence from a number of areas of psychology (Kugel, 1986). He
emphasised that this claim by no means entails that the ‘uncomputable parts of
thinking’ cannot be studied scientifically (1986, pp. 137–138). His central idea is
that those parts of the mind that are not computational — in the 1936 sense — may
be modelled as consisting of families of non-halting processors, e.g., ‘non-halting
recognizers’ (1986, p. 149). Once a processor succeeds at its task, it turns itself off.
Otherwise the processor runs on forever. Kugel bases his non-halting processors
on Putnam–Gold machines (see above).

Kugel acknowledged that any ‘finite behavior we observe can be modelled by a
finite automaton’ (1986, p. 148). He commented (ibid.):

[O]ur choice of one kind of model, rather than another, depends not on what
it can account for, but on what it can account for smoothly. The arguments I

472 B. JACK COPELAND

have given suggest (to me at least) that non-computing machines [i.e. hyper-
computers — ed.] might give us a smoother account of our observations than
computing machines.

Kugel’s paper in this collection further explores this model of the mind. He
makes the important point that at one level — the hardware level, so to speak
— a Putnam–Gold machine is simply a Turing machine, consisting of tape and
scanner, nothing more. The difference between the two types of machine lies in
the interpretation that is placed on the activities of the hardware. (See also the
discussion of accelerating Turing machines in Section 2.5.)

1.14. KRYLOV (1986)

Building on the work of Bogdanov (1980), Krylov developed the mathematical
framework that he calls Formal Technology (Krylov 1986; see also Krylov 1996,
1997). A technology is an ordered pair <E, O>, where E is a finite set of basic
components and O is a finite set of operations of synthesis. The operations in
O are applicable to members of E and to constructions already obtained by the
application of these operations to members of E. Possible constructions include
mathematical formulae, codes, real or abstract machines, buildings, molecules,
electromagnetic signals, and social groups. Krylov countenances operations such
that the process of construction cannot be simulated by the universal Turing ma-
chine.

1.15. PITOWSKY (1987)

In a conference presentation given in 1987, Pitowsky considered the question ‘Can
a physical machine compute a non-recursive function?’ (Pitowsky, 1990, p. 82).
Referring to the thesis that no non-recursive function is physically computable as
Wolfram’s thesis (after Wolfram, 1985), Pitowsky said (1990, p. 86):

The question of whether Wolfram’s thesis is valid is a problem in the physical
sciences, and the answer is still unknown. Yet there are very strong indications
that Wolfram’s thesis may be invalid.

Generalising the proposal by Weyl mentioned earlier, Pitowsky independently
introduced the idea of a Zeus machine (Section 1.7), under the name ‘Platon-
ist computer’. He said ‘My concern is with physical possibilities: Are Platonist
computers physically possible?’ (1990, p. 81). Pitowsky concluded: ‘as far as com-
putation time is concerned, the existence of Platonist computers is compatible with
general relativity’ (1990, p. 84).

In their contribution to this collection Shagrir and Pitowsky pursue this idea,
describing a physical hypercomputer that is consistent with General Relativity.

HYPERCOMPUTATION 473

1.16. MACLENNAN (1987)

In 1987 MacLennan proposed a new model of computation in which the individual
processing steps are field-transformations. A large aggregate of data is thought of
as forming a continuous scalar or vector field (analogous to an electrical field). The
fundamental processes of the computation operate on entire fields to yield entire
fields.

MacLennan wrote (1987, p. 39):

AI is moving into a new phase characterized by biological rather than psycho-
logical metaphors. Full exploitation of this new paradigm will require a new
class of computers characterized by massive parallelism: parallelism in which
the number of computational units is so large it can be treated as a continuous
quantity. We suggest that this leads to a new model of computation based on
the transformation of continuous scalar and vector fields. We describe a class of
computers, called field computers, that conform to this model, and claim that
they can be implemented in a variety of technologies (e.g., optical, artificial
neural network, molecular).

In describing field computers, ‘continuous mathematics (such as the infinites-
imal calculus) can be applied, which is much more tractable than discrete math-
ematics (e.g., combinatorics)’ (MacLennan, 1987, p. 40). The design of field com-
puters can be carried out independently of the implementation technology (ibid.):

[W]hether the implementation technology is . . . discrete or continuous (or
nearly so, as in molecular computing) . . . the design of the computer can
be described by continuous mathematics. Then, if the intended implementa-
tion technology is discrete, we can select out of the continuum of points a
sufficiently large finite number.

In his contribution to this collection, ‘Transcending Turing Computability’,
MacLennan argues that Turing-machine computation is a poor model for what
he calls ‘natural computation’, computation occurring in nature or inspired by
computation in nature.

1.17. BLUM, SHUB AND SMALE (1989)

Blum, Shub and Smale described abstract machines for performing sequential com-
putations with arbitrary real numbers (Blum et al., 1989; see also Blum et al.,
1998). They described their work as ‘close in spirit’ to Abramson’s (1989, p. 4).
Blum et al. (1989) developed a rich general theory of such computations, including
a proof of the existence of a universal machine.

Part of their motivation was to ‘bring the theory of computation into the domain
of analysis, geometry and topology’ (1989, p. 1). Arguably, the discrete idealisa-
tions of computation prevalent in computer science have served to isolate the theory
of computation from the rest of mathematics. The suggestion is that the concept of

474 B. JACK COPELAND

a machine able to take arbitrary real numbers as input is for some purposes a more
appropriate idealisation of actual computing machinery than discrete models like
the Turing machine.

Smale argued (1988, p. 92–93):

I am quite critical of [the] idea of the computer as a finite instrument. Tur-
ing modelled his theory on logic, which is a very specific and narrow part of
mathematics. This has kept it away from the mainstream of mathematics and
hindered its development. John von Neumann . . . [wrote] ‘We are very far from
possessing a theory of automata which deserves that name’. He said the reason
for this lack was that logic has very little contact with the continuous concept
of a real or complex number, that is, with mathematical analysis. He went on to
say: ‘A detailed, highly mathematical and more specifically analytical, theory
of automata and of information is needed’. Computer scientists still rest their
theories on the discrete idea expressed by Turing machines. Why I object to
that, and why von Neumann expected more, has to do with scientific computing
. . . Numerical analysis, the theoretical side of scientific computation, provides
some basis for solving differential equations using algorithms. Some scientific
people — engineers in scientific computation or theoreticians of numerical
analysis — have very little respect for the Turing machine. The Turing theory
is seen as old-fashioned and limited and remote from the kind of explanation
they need. There is also a move away from the use of calculus in the discrete
mathematics of computer science. What this has caused is an unhappy lack of
unity between two disciplines, computer science and numerical analysis, two
subjects which should be intimately related.

What I want to suggest is a different model for computer theory based on the
idea of using real numbers. It will be an idealization just as the Turing machine
model is an idealization, and it provides a different model to explain the same
phenomena. Different models explain different aspects of the same physical
reality. One should not look for a single model of the computer, but rather look
for models which will help us understand scientific computation on the one
hand and classical computer science on the other.

1.18. PENROSE (1989)

In a well-known book published in 1989, Penrose suggested that ‘non-algorithmic
action’ may ‘have a role within the physical world of very considerable importance’
and that ‘this role is intimately bound up with . . . “mind”’ (1989, p. 557; see also
Penrose, 1994). In a précis of the book, Penrose wrote (1990, p. 653):

I have tried to stress that the mere fact that something may be scientifically
describable in a precise way does not imply that it is computable. It is quite on
the cards that the physical activity underlying our conscious thinking may be
governed by precise but nonalgorithmic physical laws and our conscious think-

HYPERCOMPUTATION 475

ing could indeed be the inward manifestation of some kind of nonalgorithmic
physical activity.

Penrose famously appealed to Gödel incompleteness in the course of his at-
tempt to establish that non-algorithmic action must occur at the quantum level
(1989, p. 538ff; see also 1994). Penrose’s Gödelian argument is highly controver-
sial and hypercomputationalists who believe that the mind is not Turing-machine-
computable may have no truck with the argument (for discussion see Copeland,
1998a; Copeland and Proudfoot, 1999b).

1.18.1. Turing on the Gödelian Argument

Turing himself discussed the argument from ‘the theorem of Gödel and related
results’ (which of course include his own result of 1936) to the conclusion that ‘if
one tries to use machines for such purposes as determining the truth or falsity of
mathematical theorems . . . then any given machine will in some cases be unable
to give an answer at all’ (Turing, 1948, p. 4; see also 1947, 1950, c. 1951). Turing
had an interesting response to the argument. He pointed out that the argument
depends ‘on the condition that the machine must not make mistakes’, which is
‘not a requirement for intelligence’ (ibid.). Turing envisaged a machine able both
to make mistakes and to ‘correct itself’ through the ability to ‘learn by experience’
(c. 1951, p. 459).

Fundamentally, this response involves lifting the restriction, mentioned previ-
ously, that the program must remain fixed during the course of the calculation.
Learning modifies the program (see, e.g., Turing, 1947, pp. 122–123). Each time
that learning brings about a modification to the program, the calculation in effect
passes from one Turing machine to another (each Turing machine having a fixed
program or ‘machine table’). One might put it like this: At every moment the learn-
ing machine — or mind — is equivalent to a Turing machine, but not necessarily
always to the same Turing machine.

In general, there is no effective procedure (i.e., Turing machine) for determining
which Turing machine will be next in this sequence. For example, there is no such
effective procedure in cases where the transition from program to program involves
a genuinely random element. In several places Turing emphasised the advantages
of involving a random element in the learning procedure, which he said ‘would res-
ult in the behaviour of the machine not being by any means completely determined
by the experiences to which it was subjected’ (Turing, c. 1951, p. 461; see also
1948, 1950, 1951).

If, by such means, the learning mind is always able in principle to find new
methods of mathematical proof, then it is able in principle to reach a decision about
the truth-value of any given mathematical formula (cf. Turing, 1947, p. 123).

In the Karp and Lipton model, a single piece of growing hardware can be rep-
resented by means of a family of circuits (Section 1.9). Similarly, a single learning
machine can be represented by a family of Turing machines. If the machine contin-

476 B. JACK COPELAND

ues learning indefinitely, the representing family of Turing machines is infinite. At
each stage in its development, the learning machine is equivalent to some Turing
machine in the family. Nevertheless, the universal Turing machine may be unable
to simulate the behaviour of the learning machine over time.

A connection between this picture of the learning mind and the concept of an
oracle is drawn in Section 2.7.

Piccinini’s contribution to this collection, ‘Alan Turing and the Mathematical
Objection’, gives a detailed exegesis of Turing’s treatment of the Gödelian argu-
ment.

1.19. STANNETT (1990)

In 1990 Stannett described a form of hypercomputer that he called an ‘analogue
X-machine’. He wrote (1990, p. 331):

We describe a novel machine model of computation, and prove that this model
is capable of performing calculations beyond the capability of the standard
Turing machine model. In particular, we demonstrate the ability of our model
to solve the Halting problem for Turing machines. We discuss the issues in-
volved in implementing the model as a physical device, and offer some tentative
suggestions.

Stannett ended his paper with some speculations concerning quantum X-machines
(1990, p. 340):

[W]e envisage the eventual development of a quantum computer which takes
full advantage of available quantum properties. In particular, if one considers
electronic energy level transitions within atoms, it is arguably the case that
natural systems can and do implement such features as infinite nondeterminism,
in which case one would expect quantum computers to exhibit super-Turing
potential.

In his contribution to this collection Stannett continues his discussion of quantum
hypercomputation and other possible forms of physical hypercomputation. Quantum
hypercomputation is also discussed in the contributions by Kieu and Calude. Kieu
offers a quantum algorithm for solving Hilbert’s tenth problem (like the Turing-
machine halting problem, unsolvable by a standard Turing machine).

1.20. STEWART (1991)

Stewart independently described a machine that, by working ever faster, is able to
carry out an infinite number of computational steps in a finite time (Stewart, 1991a,
b). He wrote (1991b, pp. 8–9):

[T]he Rapidly Accelerating Computer (RAC) whose clock accelerates expo-
nentially fast, with pulses at (say) times 1–2−n as n → ∞ . . . can cram an
infinite number of computations into a single second. . . . It can, therefore,

HYPERCOMPUTATION 477

solve the halting problem for Turing machines . . . by running a computation
in accelerating time and throwing a particular switch if and only if the Turing
machine halts. . . . [The RAC] can prove or disprove the Riemann hypothesis
by computing all zeroes of the zeta function. . . . [I]t can run a computation that
will prove all possible theorems in its Industry Standard Second, by pursuing
all logically valid chains of deduction from the axioms of set theory.

Stewart pointed out, contra Penrose’s thesis to the effect that classical physics
is computable (mentioned above), that the RAC ‘appears to be entirely possible
within classical mechanics’ (1991b, p. 9).

A form of accelerating machine that is specifically a Turing machine is con-
sidered in Section 2.5.

1.21. KAMPIS (1991–1995)

Kampis considered the idea of self-modifying programs, particularly in a bio-
molecular context (Kampis, 1991, 1995). He argued that, even in the absence of
random influences, a self-modifying system need not be equivalent to any single,
static Turing machine (see also Section 1.18.1 above). Kampis described an ab-
stract biochemical mechanism to illustrate the point (1995, pp. 104–106).

1.22. PUTNAM (1992)

In the 1960s Putnam defended and popularised the idea that the mind is a Turing
machine (see for example Putnam, 1960). By 1992, he had changed his view (1992,
p. 4):

[M]aterialists are committed to the view that a human being is — at least
metaphorically — a machine. It is understandable that the notion of a Turing
machine might be seen as just a way of making this materialist idea precise.
Understandable, but hardly well thought out. The problem is the following: a
‘machine’ in the sense of a physical system obeying the laws of Newtonian
physics need not be a Turing machine.

Referring to Pour-El and Richards (1981) and Kreisel (1982), Putnam continued
(1992, p. 5):

[I]t has been proved that there exist possible physical systems whose time evol-
ution is not describable by a recursive function, even when the initial condition
of the system is so describable. (The wave equation of classical physics has
been shown to give rise to examples.) In less technical language, what this
means is that there exist physically possible analogue devices which can ‘com-
pute’ non-recursive functions. Even if such devices cannot actually be prepared
by a physicist (and Georg Kreisel has pointed out that no theorem has been
proved excluding the preparation of such a device), it does not follow that
they do not occur in nature. Moreover, there is no reason at all why the real

478 B. JACK COPELAND

numbers describing the condition at a specified time of a naturally occurring
physical system should be ‘recursive’. So, for more than one reason, a naturally
occurring physical system might well have a trajectory which ‘computed’ a
non-recursive function.

1.23. HOGARTH (1992–1994)

Like Pitowsky and Stewart, Hogarth explored the idea of infinite yet surveyable
computation. His proposal for what he called a ‘non-Turing computer’ was based
on Pitowsky’s observation (in private communication) that ‘there is no reason why
[a] computer user must remain beside the computer’ (Hogarth, 1992, p. 173).
Hogarth considered the physically possible anti-de Sitter spacetime and showed
that in a possible world with this spacetime the Turing-machine halting function is
computable (Hogarth, 1994; see also Earman and Norton, 1993, 1996).

Hogarth’s computing machine consists simply of a universal Turing machine
fitted with a signalling device. The user programs the universal machine to simulate
the particular machine t for which the value of the halting function is required and
then launches the universal machine plus signalling device along a certain space-
time curve. The properties of the spacetime are such that the infinite lifespan of the
computing machine can be surveyed by the user in a finite amount of time. (Hogarth
dubs spacetimes allowing this ‘Pitowsky’.) The signalling device sends a signal to
a predetermined point p on the user’s world-line if and only if the simulation of t
halts. Thus a signal at p tells the user that the value of the halting function is 1 in
this case, and no signal at p that the value is 0.

Hogarth showed that this arrangement can be used to settle Goldbach’s conjec-
ture and to decide the predicate calculus, and that in a more complicated spacetime,
a similar arrangement can be used to decide arithmetic. He concluded that the ‘limit
of computation’ is a ‘thoroughly contingent’ matter (1994, p. 133 and abstract).

1.24. CLELAND (1993)

Cleland in effect discussed the notion of a rote procedure over arbitrary objects
(Cleland, 1993). She laid particular stress on procedures over mundane objects,
calling these ‘mundane procedures’. Examples are recipes, knitting patterns, street
directions, and a set of instructions for lighting a fire. Cleland argued — in the
same vein as Doyle — that mundane procedures stand alongside the procedures
normally classed as effective. She argued for the possibility that ‘by following an
effective mundane procedure . . . a physical system is able to compute a function
which couldn’t be computed by a Turing machine’ (1993, p. 307).

HYPERCOMPUTATION 479

1.25. SIEGELMANN AND SONTAG (1994)

A neural network is recurrent (as opposed to feedforward) if there are feedback
loops among its hidden units. Siegelmann and Sontag described a type of recurrent
neural network consisting of a finite number of neurons with real-valued weights
on their interconnections. In the special case where all the interconnection weights
are rational, each such network is equivalent to a Turing machine (Siegelmann and
Sontag, 1992). However, if the weights are arbitrary real numbers, the networks
can compute functions that are not Turing-machine-computable, and moreover can
do so in polynomial time. It suffices that there be in the interconnection matrix a
single connection whose weight is a non Turing-machine-computable real number
(Siegelmann and Sontag, 1994). (The proof given by Siegelmann and Sontag that
their networks have hypercomputational power builds on the work of Karp and
Lipton mentioned above.)

Siegelmann’s contribution to this collection surveys the field of neural hyper-
computation.

2. Some Simple Models

2.1. COUPLED TURING MACHINES

Coupled Turing machines are described in Copeland (1997b, pp. 694–695) and
Copeland and Sylvan (1999, pp. 51–52); the term ‘coupled Turing machine’ ori-
ginates in the latter paper. See also Wegner (1997), where the term ‘interaction
machine’ is used for essentially the same idea.

Turing machines accept no input while operating. A finite amount of data may
be inscribed on the tape before the computation starts, but thereafter the machine
runs in isolation from its environment. A coupled Turing machine results from
coupling a Turing machine to its environment via an input channel (or any finite
number of input channels). Each channel supplies a stream of symbols to the tape
as the machine operates. (The machine might also possess one or more output
channels, which return symbols to the environment.) Depending on the nature of
the input, the activity of a coupled Turing machine may not be simulable by the
universal Turing machine.

Any coupled Turing machine whose activity ceases after a finite number of steps
can be simulated by the universal Turing machine. This is because the stream of
symbols supplied to the tape by the coupled machine’s input channel (or channels)
is, in this case, finite, and so can be inscribed on the universal machine’s tape
before the simulation commences. Where the coupled Turing machine never halts
— as, for example, in the case of an idealised automatic teller machine or air traffic
controller — simulation by the universal machine may or may not be possible. If
the unending stream of input can itself be generated ‘on the fly’ by the universal
Turing machine — as in the case, for example, of the digits of π (3.14159. . .) —

480 B. JACK COPELAND

then the universal machine is able to simulate the coupled machine. If, however,
the unending stream of input consists of the digits of some real number that is not
Turing-machine-computable, then the coupled machine is hypercomputational.

There are infinitely many real numbers that are not Turing-machine-computable.
This follows straight away from the fact that there are only countably many distinct
Turing machine programs (i.e., there are no more programs than there are integers,
1, 2, 3, . . .) and, therefore, only countably many Turing-machine-computable num-
bers — whereas there are uncountably many real numbers. I call the following
example of a non Turing-machine-computable real number “τ”, for Turing (Cope-
land, 1998b, 2000). τ is defined like this. Assume the Turing machines to be
ordered in some way, so that we may speak of the first Turing machine in the
ordering, the second, and so on (there are various standard ways of accomplishing
such an ordering). Let h1 be a constant associated with the first Turing machine
in the ordering. h1 is 1 if the first machine in the ordering eventually halts when
started with a blank tape; and h1 is 0 if the first machine runs on forever when
started with a blank tape. Similarly for h2, h3, etc. τ is the number: 0·h1h2h3
(So the first few digits of τ might be 0·000000011) Like π , τ is a definite —
irrational — number.3

The proof that with appropriate input a coupled Turing machine is hypercom-
putational is trivial. Let T be a coupled Turing machine with a single input channel
and let the digits of τ form the input; the first digit to appear on the input channel is
h1, the second is h2, and so on. T’s input channel writes to a single square of T’s tape
and each successive symbol in the input stream overwrites its predecessor on this
square. As each input arrives, T performs some minor computation with it — multi-
plies it by 2, say — and writes the result on some designated squares of the tape (in
order to keep the time of operation constant, the next result always overwrites its
predecessor). The succession 2×h1, 2×h2, etc., is not Turing-machine-computable
(if it were, τ would be).

2.2. PARTIALLY RANDOM MACHINES

A partially random machine (the term is from Turing, 1948, p. 9) is a machine
some of whose actions are the outcome of random influences but whose operation
is otherwise determined, e.g., by a program. Some partially random machines are
hypercomputational (Copeland, 2000, pp. 28–31).

One of the simplest examples of a hypercomputational partially random ma-
chine consists of a coupled Turing machine with a single input line carrying an
infinite sequence of binary digits that is random. As Church argued, if a sequence of
digits r1, r2, . . . rn, . . . is random, then there is no function f(n)=rn that is calculable
by the universal Turing machine (Church, 1940, pp. 134–135). Let the coupled
machine be T, as above. T prints out on its tape the sequence of digits 2×r1,
Since this sequence is itself random, the universal Turing machine cannot produce
it.

HYPERCOMPUTATION 481

One might be inclined to think that randomness is not a useful route to hyper-
computation. For what work of practical value could such a machine perform? The
thought is far from correct. Section 1.18.1 has already mentioned Turing’s sug-
gestion concerning the use of a random element in learning. My (2000) discusses
Turing’s views on randomness and freedom of the will, and argues that Turing
viewed the mind as a partially random machine.

One practical application of partially random machines lies in cryptography.
Following the Second World War, Colossus — the first large-scale electronic com-
puter (see Copeland, 2001a, b) — was used in conjunction with a random device,
endearingly code-named the ‘Donald Duck’, for the high-volume production of
one-time pad in the form of punched paper tape. The overall set-up — modified
Colossus plus the Donald Duck — is perspicuously represented as a hypercomputer
whose output is an endless supply of one-time pad. (For more on the concept of
perspicuous representation, see Section 3.17.)

In both cases described in Sections 2.1 and 2.2, T’s input channel is a form
of oracle, although T does not conform exactly to Turing’s description of an o-
machine (the state χ and the two states indicating the ‘pronouncement’ of the
oracle being absent).

2.3. ORACULAR COMPUTATION VIA PERFECT MEASUREMENT

According to some classical physical theories, the world contains continuously-
valued physical magnitudes (for example, the theory of continuous elastic solids
in Euclidean space). The magnitude of some physical quantity might conceivably
be exactly τ units. Suppose that some mechanism A does store exactly τ units of
such a physical quantity, which for the sake of vividness one might call ‘charge’.
Suppose further that a mechanism B can measure the quantity of ‘charge’ stored
in A to any specified number of significant figures. B determines hn by measuring
A’s charge to sufficiently many significant figures and outputting the nth digit of
the result. A and B together form an oracle for the number-theoretic problem:
‘Determine, for any given n, whether or not the nth Turing machine halts’.

This oracle can be combined with a Turing machine to form an o-machine. The
Turing machine inscribes a number n on its tape and when the machine enters state
χ a subdevice passes n to B. B determines hn and a subdevice places the Turing
machine in one or other of two reserved states, according to whether hn is 0 or 1.

Is this arrangement of notional components a machine? In 2000 I argue that
it is so in the sense of ‘machine’ crucial to the historical debate between mech-
anists and anti-mechanists about physiological and psychological mechanism (a
debate involving such figures as Descartes, Hobbes, and de la Mettrie). Bechtel
and Richardson speak aptly of the mechanists’ twin heuristic strategies of decom-
position and localisation (1993, p. 23). The former heuristic seeks to decompose
the activity of the system whose functioning is to be explained into a number of
subordinate activities; the latter attributes these subordinate activities to specific

482 B. JACK COPELAND

components of the system. The core of the claim, as put forward by the historical
mechanists, that such-and-such naturally occurring item — a living body, say — is
a machine is this: the item’s operation can be accounted for in monistic, materialist
terms and in a manner analogous to that in which the operation of an artefact,
such as a clockwork figure or church organ, is explained in terms of the nature and
arrangement of its components. The o-machine just described, like the universal
Turing machine, is a machine in the sense that its behaviour is the product of the
nature and arrangement of its material parts.

The claim that the mind is a machine, in the sense of ‘machine’ used by the
historical mechanists, is evidently consistent with the hypothesis that the mind is a
form of o-machine (see further Copeland, 2000).

Of course, the perfect measuring device B is thoroughly hypothetical. Never-
theless, this model hypercomputer serves to illustrate the point that, in discuss-
ing whether oracular computation can be carried out in the real world, we are
discussing an out-and-out empirical matter.

2.4. ACCUMULATOR MACHINES: COMPUTATION WITH ARBITRARY REALS

Consider a device like A, above, but with two input lines, i1 and i2, and an output
line, o (Copeland, 1997b, pp. 698–670). If two charges are applied to i1 and i2 they
accumulate in the device and their sum is available at the output line o. The device
may conveniently be called an ‘accumulator’. Let the accumulator be embedded
in a programmable control structure. The control has the ability to clear the input
lines of charge, to apply charge to the input lines, and to transfer the charge on the
output line back to an input or to an external device. The following simple program
can be set into the control (‘:=’ is read ‘becomes’):

BEGIN
INPUT TO i1 (A charge is received from some external device and applied

to line i1.)

i2 := i1 The control clears i2 and applies the charge on i1 to i2.)

ADD (i1, i2) (The charges on i1 and i2 enter the accumulator.)
i2 := o (i2 is cleared and the charge on o is applied to i2.)

ADD (i1, i2)

OUTPUT o (The output of the accumulator is delivered to some external
device.)

HALT

When the representation of any real number x is presented as input, the machine
delivers a representation of 3x as output. Since x may not be Turing-machine-
computable, this machine cannot be simulated by the universal Turing machine.

Charge may be negative in value and so quantities of charge can be used to
represent negative numbers. Introducing additional hardware produces a machine
that, given any two real numbers x and y, prints ‘1’ if x = y and prints ‘0’ otherwise.

HYPERCOMPUTATION 483

The machine’s program is below. The additional hardware is a device able to test
whether or not the charge on the output line is null.

BEGIN
INPUT TO i1 (A charge representing x is received from an external

device and placed on line i1.)

INPUT TO i2 (A charge representing − y is received from an exter-
nal device and placed on line i2.)

ADD (i1, i2)

IF o = 0 PRINT ‘1’
IF o 	= 0 PRINT ‘0’
HALT

This machine cannot be simulated by the universal Turing machine even if x and
y are restricted to Turing-machine-computable numbers, since the identity func-
tion over Turing-machine-computable numbers is not Turing-machine-computable
(Aberth, 1968).

2.5. ACCELERATING TURING MACHINES

In my (1998b) I showed how to implement Stewart’s Rapidly Accelerating Com-
puter (see above) in the universal Turing machine, so enabling the universal Turing
machine to solve the Turing-machine halting problem (see also Copeland, 1998c,
2002).

An AUTM, or Accelerating Universal Turing Machine, speeds up in the manner
described by Russell (see above). Since Turing imposed no restrictions on the tem-
poral patterning of a Turing machine’s operations, an AUTM is a Turing machine
within the full meaning of the act. Because, as mentioned previously,

1 + 1

2
+ 1

4
+ 1

8
+ · · · + 1

2

n−1

+ · · ·
is less than 2, the AUTM requires less than two units of running time to do every-
thing that the program on its tape instructs it to do. This is true even in the case
of a program that does not terminate, for example a program that runs on forever
calculating each successive digit of π . Each of the infinite number of operations
that the non-halting program instructs the machine to perform will be completed
before the end of the second unit of running time.

Given any Turing machine program, the AUTM is able to determine, in a finite
amount of time, whether or not the program halts. The program is inscribed on
the tape of the AUTM. The initial square of the AUTM’s tape is reserved for a
display of the outcome of the AUTM’s computation, 0 for ‘does not halt’ or 1
for ‘halts’. The AUTM begins its work by writing 0 on the initial square; it then
proceeds, in the usual manner of the universal machine, to simulate the machine
whose program it has been given. If the program halts then the scanner of the

484 B. JACK COPELAND

AUTM returns to the initial square of the tape and replaces the 0 written there
during the setting-up procedure by 1. If, on the other hand, the program does not
halt, the scanner of the AUTM never returns to the start of the tape. Either way, at
the end of the second unit of operating time the initial square contains the desired
answer. (Without acceleration, this machine is a Putnam–Gold machine.)

Any air of paradox — the computation by Turing machine of a function known
not to be Turing-machine-computable — vanishes when a distinction is made bet-
ween two senses in which a function may be computable by a given machine,
the internal sense and the external sense (Copeland, 1998c, 2002). A function is
computable by a machine in the internal sense just in case the machine can, when
given any argument of the function, produce and then indicate the correspond-
ing value of the function, where what counts as ‘indicating’ can be specified in
terms of features internal to the machine and without reference to the behaviour
of some device or system — e.g., a clock — that is external to the machine.
Various behaviours on the part of a machine can satisfy this condition, for example
the machine’s printing a specified symbol on its tape immediately to the right of
the value once it has produced it. A function is computable by a machine in the
external sense just in case the machine can, given any argument, be displaying the
corresponding value of the function at a designated location some pre-specified
number of time units after the start of the job. For example, it is in the external
sense that a given function may be computable by a logic circuit. The value of the
function is displayed at some designated node some pre-specified number of time
units after the argument is presented at the input nodes; before and after that critical
moment, the activity of the output node may afford no clue as to the desired value.
Even where the logic circuit never stabilises (in the sense of eventually producing
an output signal that remains constant until such time as the input signal alters) the
circuit nevertheless computes values of a function in the external sense if it displays
them at the designated location at the pre-specified times.

No Turing machine can compute the Turing-machine halting function in the
internal sense, but the AUTM does compute this function in the external sense.

2.6. ASYNCHRONOUS NETWORKS OF TURING MACHINES

Asynchronous networks of Turing machines are described in Copeland and Sylvan
(1999, p. 54); we first learned of the idea from Aaron Sloman in correspondence.

The standard textbook proof that any finite assembly of Turing machines can
be simulated by the universal Turing machine involves the idea of the universal
machine interleaving the processing steps that are performed by the individual
machines in the assembly, so forming a single sequence of steps. For example,
if there are only two machines in the assembly, the universal machine might use
odd-numbered squares of its tape to simulate the tape of one machine and even-
numbered squares to simulate the tape of the other. The proof assumes that the
machines in the assembly are operating in synchrony: in the case of asynchronously

HYPERCOMPUTATION 485

operating machines, there may be no effective way of interleaving the steps. Under
certain conditions, a simple network of two non-halting Turing machines writing
binary digits to a common, initially blank, single-ended tape cannot be simulated
by the universal Turing machine.

Let the machines in the network be m1 and m2 and let the additional common
tape be T; m1 and m2 work uni-directionally along T, never writing on a square that
has already been written on, and writing only on squares all of whose predecessors
have already been written on. If m1 and m2 attempt to write simultaneously to the
same square, a refereeing mechanism gives priority to m1.

If m1 and m2 operate in synchrony, the evolving contents of T can be calculated
by the universal machine. Where m1 and m2 operate asynchronously, the same is
true if the timing function associated with each machine, �1 and �2 respectively, is
Turing-machine-computable. The timing function �1 is defined as follows (where
n, k ≥ 1): �1(n) = k if and only if k units of operating time separate the nth

fundamental operation performed by m1 (e.g., write) from the n+1th (e.g., move
left). Similarly for m2’s timing function �2. Where �1 and �2 are both Turing-
machine-computable, the universal machine can calculate the necessary values
of these functions in the course of calculating each digit of the sequence being
inscribed on T.

If, however, the machines are not in synchrony and at least one of the two tim-
ing functions is not Turing-machine-computable, then the machines can inscribe a
number on T that is not Turing-machine-computable. For example, suppose that m1

prints only 1s, m2 prints only 0s, and that the sequence of printings on T consists
of 1 followed by h1 occurences of 0 — i.e., one or no occurrence — followed by 1
followed by h2 occurrences of 0, and so on.

Synchrony is often assumed in biological modelling. Harvey and Bossomaier
(1997) suggest that modellers have been deterred from considering asynchron-
ous models — for example, asynchronous boolean networks — because of their
assumed intractability. Harvey and Bossomaier remark that, in the absence of em-
pirical justification for the ‘assumption of synchrony’, the value of synchronous
models is in doubt for many biological systems (1997, p. 75).

2.7. COMMUNITIES OF MATHEMATICIANS

No single Turing machine can produce (in the internal sense) each answer to the
sequence of questions (asked relative to a given ordering of the Turing machines):
‘Does the 1st Turing machine halt?’, ‘Does the 2nd Turing machine halt?’, and so
on. There is, however, no difficulty in the claim that each question can be answered
(in the internal sense) by one or another Turing machine. As Turing said in a letter
to Newman:

When you say ‘on a machine’ do you have in mind that there is . . . some fixed
machine on which proofs are to be checked, and that the formal outfit is, as
it were about this machine. If you take this attitude . . . there is little more

486 B. JACK COPELAND

to be said: we simply have to get used to the technique of this machine and
resign ourselves to the fact that there are some problems to which we can never
get the answer. . . . However I don’t think you really hold quite this attitude
because you admit that in the case of the Gödel example one can decide that
the formula is true i.e. you admit that there is a fairly definite idea of a true
formula which is quite different from the idea of a provable one. . . . If you
think of various machines I don’t see your difficulty. One imagines different
machines allowing different sets of proofs, and by choosing a suitable machine
one can approximate ‘truth’ by ‘provability’ better than with a less suitable
machine, and can in a sense approximate it as well as you please. The choice
of a proof checking machine involves intuition . . . 4

Let � be an infinite community of mathematicians. The mathematicians learn.
Each mathematician can be represented by a family of Turing machines (Section
1.18.1); at each stage in the mathematician’s development, the mathematician is
equivalent to some Turing machine in the family. The transition from one stage
of development to the next corresponds to the learning of new methods of proof.
As previously mentioned (Section 1.18.1), the transition function between the ma-
chines in a given family need not be Turing-machine-computable; and will not be
so if, for example, the learning process associated with the family involves some
random sequence of digits r1, r2, . . . rn, . . . , so that for some or all values of n,
the transition from the nth to the n+1th machine in the family depends on rn.

Development brings differentiation: different mathematicians in � are equiva-
lent at a given time to different Turing machines capable of different sets of proofs.
(Perhaps there was some differentiation at the initial stage also.) One may consist-
ently suppose that there comes a point in the development of � at which each of
the above questions can be answered by one or another of the mathematicians.

At that point, � forms an oracle for the number-theoretic problem of determin-
ing, given any Turing machine, whether or not the machine eventually halts when
started on a blank tape. If the community is asked ‘Does the nth machine halt?’,
some member of the community will produce the correct answer in a finite number
of steps. This can be achieved by each mathematician enumerating the statements
that it can prove at that stage. Eventually one will produce either ‘Machine n halts’
or its negation.

Arguably such an oracle forms an appropriate idealisation, relative to a given
number-theoretic problem, of an always finite but indefinitely growing community
of learners.

3. The Very Idea of Hypercomputation: Objections and Replies

3.1. Any task that can be made completely precise can be programmed for the uni-
versal Turing machine. In other words, given enough memory and sufficient time,
a standard digital computer can compute any rule-governed input-output function.

HYPERCOMPUTATION 487

That is what Turing and Church showed. Therefore the notion of hypercomputation
is otiose.

I shall assume throughout this section that when the objector speaks about what
can be achieved by the universal Turing machine, attention is restricted to what can
be computed by the machine in the internal sense (Section 2.5).

Turing and Church are sometimes said to have shown that a standard digital
computer can, given enough memory and sufficient time, compute any rule-
governed input-output function (see, for example, Churchland and Churchland,
1990, p. 26; Dreyfus, 1992, p. 72). In fact, they showed the opposite. There is
nothing imprecise about the halting problem. The halting function is certainly rule-
governed.

3.2. Turing showed in 1936 that every mechanical process can be carried out
by the universal Turing machine. Therefore ‘hypercomputers’ are not machines of
any sort — let alone computing machines.

Let’s be clear about what Turing showed (see further Copeland, 1997a). He argued
for the following thesis (1936, p. 249):

the ‘computable’ numbers include all numbers which would naturally be re-
garded as computable.

Turing meant by this statement that the Turing-machine-computable numbers in-
clude all numbers that are calculable effectively — i.e., calculable by the ideal hu-
man clerk, described above, who works with paper and pencil, reliably but without
insight or ingenuity.

In logic, ‘effective’ and ‘mechanical’ are terms of art. Neither carries its every-
day sense, and the two are used interchangeably. Using ‘mechanical’ in its technical
sense, Turing’s thesis can be expressed: the Turing-machine-computable numbers
include all numbers that are calculable mechanically — but this means no more
and no less than that the Turing-machine-computable numbers include all numbers
that are calculable by a human being working in the way described, for this is the
technical meaning of ‘mechanical’.

This thesis carries no implication concerning the extent of what can be calcu-
lated by a machine, for among the machine’s repertoire of fundamental processes
there may be those that a human rote-worker unaided by machinery cannot per-
form.

3.3. Hypercomputation seems to amount to the claim that there might be mech-
anical processes that are not mechanical!

True — so long as ‘mechanical’ means something different at the two occurrences.
At the second occurrence, ‘mechanical’ has its technical sense: ‘not mechanical’
means ‘cannot be done by a human computer’. At the earlier occurrence, ‘mech-

488 B. JACK COPELAND

anical process’ means simply ‘process that can be carried out by a machine’.

3.4. Over the years, a number of alternative analyses have been given of the
notion of a mechanical process. Apart from Turing’s analysis in terms of Turing
machines, and Church’s analyses in terms of lambda-definability and recursive-
ness, there are analyses, e.g., in terms of register machines, Post’s canonical and
normal systems, combinatory definability, Markov algorithms, and Gödel’s notion
of reckonability. The striking thing is that these various analyses all turn out to
be provably equivalent in extension. Because of the prima facie diversity of the
various analyses, their equivalence is strong evidence that whatever can be done by
a machine, mathematically speaking, can be done by the universal Turing machine.

This is nothing more than a confusion (which I have elsewhere termed the ‘equi-
valence fallacy’ (Copeland, 2000, pp. 20, 23–25)). The analyses under discussion
are all analyses of the notion of an effective method. Each seeks to characterise the
processes that are mechanical in the sense that they can be carried out by a human
computer. The equivalence of these analyses is evidence for the truth of Turing’s
thesis that the Turing-machine-computable numbers include all numbers that are
calculable effectively. But the equivalence tells us nothing about the extent of pro-
cesses that are mechanical in the sense that they can be carried out by a machine.
Reflecting on the equivalence will not help us to decide whether, for example, a
device or organ whose behaviour is the product of the nature and arrangement of
its material parts can calculate more than a human computer.

3.5. ‘Computable’ means ‘effectively calculable’. You have already pointed out
that this is how Turing used the term (3.2), and in so doing he was following normal
usage. Something is computable if a human computer can calculate it. A computing
machine is a machine able to do the work of a human computer. This is how the
words were used in Turing’s day and it merely invites confusion to begin using
them differently. Turing’s thesis can be expressed: Whatever can be done by any
computing machine can be done by the universal Turing machine. Some functions
are absolutely uncomputable — uncomputable by any past, present or future ma-
chine. The halting function is an example. If hypercomputation is the computation
of functions or numbers that cannot be computed with paper and pencil by a human
clerk working effectively, then there is no such thing.

It is seldom productive to fight for a word. Freezing usage as it was in 1936 will not
settle any of the substantive questions — the questions merely have to be rephrased.
Let us say that a function f is generated by a machine m if and only if it is the case
that, for each of the function’s arguments, x, if x is presented to m as input, m
will produce the corresponding value of the function, f(x). Then instead of saying,
for example, that a coupled Turing machine or an accelerating Turing machine
can compute functions that are not computable in Turing’s sense, one can, if one

HYPERCOMPUTATION 489

wishes, say that these machines are able to generate functions not computable in
Turing’s sense. The whole discussion can be rephrased without loss.

3.6. It seems that according to hypercomputationalists, every function is com-
putable (or generatable by some machine). Each number-theoretic function is com-
putable by a machine accessing an infinite tape on which are listed all the ar-
guments of the function and the corresponding values. ETMs (Section 1.6) even
permit an entire real number to be stored on a single square of the machine’s tape.
And there is no reason to stop there — additional fantasy brings additional comput-
able functions. On the new way of speaking, ‘computable function’ means simply
‘function’. Hypercomputationalism comes down to this: the term ‘computable’ is
redundant.

Hypercomputationalists believe that statements concerning computability are ex-
plicitly or implicitly indexed to a set of capacities and resources (see Copeland
and Sylvan, 1999). When classicists say that some functions are absolutely un-
computable, what they mean is that some functions are not computable relative to
the capacities and resources of a standard Turing machine. That particular index
is of paramount interest when the topic is computation by effective procedures. In
the wider study of computability, other indices are of importance. As the objection
indicates, some indexed statements of computability are entirely trivial — for ex-
ample, the statement that each number-theoretic function is computable relative to
itself. This is not generally so, however. Mathematical theorems of the form ‘f is
computable relative to r’ are often hard-won. Questions about which functions are
computable relative to certain physical theories are seldom trivial. The question of
which functions are computable relative to the theories that characterise the real
world is of outstanding interest.

3.7. The physical version of the Church–Turing thesis rules out hypercomputa-
tion.

Let’s be clear about what the Church–Turing thesis is (see further Copeland, 1997a,
2000). Church’s thesis (Church, 1936) is:

every function of positive integers whose values can be calculated by an effect-
ive method is lambda-definable (or recursive).

As stated above (Section 3.2), Turing’s thesis is:
The Turing-machine-computable numbers include all numbers computable by
a human computer.

The name ‘Church–Turing thesis’, now standard, seems to have been introduced
by Kleene (1967, p. 232):

So Turing’s and Church’s theses are equivalent. We shall usually refer to them
both as Church’s thesis, or in connection with that one of its . . . versions which
deals with ‘Turing machines’ as the Church–Turing thesis.

490 B. JACK COPELAND

It has already been explained (Section 3.2) why the Church–Turing thesis does
not rule out hypercomputation. Therefore the ‘physical version’ of the Church–
Turing thesis alluded to in the objection cannot be the Church–Turing thesis prop-
erly so called, but is some other claim. This is misleading, not least because the
Church–Turing thesis properly so called is already a physical claim, in that it places
a limit on what can be done by any machine that can be simulated by a human
computer.

In the literature, various non-equivalent claims are described as being physical
versions of the Church–Turing thesis. This terminology is unfortunate, not only
for the reason just given, but also because it tends to suggest that Church and
Turing themselves either embraced, or were implicitly committed to, these claims.
Examples are:

The behaviour of any discrete physical system evolving according to local
mechanical laws is recursive.

Every finitely realizable physical system can be perfectly simulated by the
universal Turing machine.

One should distinguish clearly between the Church–Turing thesis and the follow-
ing, which I term the maximality thesis (Copeland, 2000, p. 15):

The Turing-machine-computable functions include all functions that can be
generated by any machine that works on finite input in accordance with a finite
program of instructions and produces f(x) from x by finitely many applications
of fundamental processes of the machine.

The maximality thesis admits of a weaker and a stronger interpretation. On the
weaker, the thesis abstracts from the issue of whether or not the machine in question
is countenanced by the actual laws of nature. Any one of a number of the machines
described above suffices to show that the thesis is false under this interpretation.
On the stronger interpretation, the phrase ‘can be generated by machine’ is taken in
the this-worldly sense of ‘can be generated by a machine conforming to the actual
laws of nature’. The universal Turing machine is presumably an example of such
a machine. None of its atomic components, nor their configuration in the machine,
nor the machine’s mode of operation involves a violation of the laws of nature.
The qualification ‘physical version’ will be used to indicate that the thesis is being
interpreted in this second way.

Charitably understood, the objection amounts to this: the physical version of
the maximality thesis rules out hypercomputation. This statement is true, but as an
objection begs the entire question. The physical version of the maximality thesis is
an empirical proposition whose truth value is unknown.

3.8. There is an epistemological problem with the idea of hypercomputation.
Suppose Laplace’s genius says ‘Here is a black box for solving the Turing-machine
halting problem’ (The problem arises no matter which non Turing-machine-comput-
able function is considered.) Type in any integer x and the box will deliver the

HYPERCOMPUTATION 491

corresponding value of the halting function H(x) — or so Laplace’s genius assures
you. Since there is no systematic method for calculating the values of the halting
function, you have no means of checking whether or not the machine is producing
correct answers. Even simulating the Turing machine in question will not in gen-
eral help you, because no matter how long you watch the simulation, you cannot
infer that the machine will not halt from the fact that it has not yet halted.

In principle, the mathematical community is able to check whether or not the
machine has produced correct answers. Since there is no systematic method for
doing so, the mathematicians’ deliberations will sometimes involve ingenuity and
from time to time new methods of proof will have to be devised.

3.9. Nevertheless an epistemological problem remains. There is no empirical
means of distinguishing the hypothesis that the box is a hypercomputer able to
solve the Turing-machine halting problem from the hypothesis that the box is a
Turing machine. Suppose you type one million integers into the box and for each
one you receive as output the corresponding value of the halting function. This is
consistent with the box being a Turing machine. No matter how large the finite
subset of integers that you test, you have no way of telling whether or not the box
is a Turing machine.

Exactly the same difficulty can be posed if Laplace’s genius says ‘Here is a black
box for adding any pair of integers’. No matter how large the finite subset of pairs
of integers that one tests, the run of confirming instances is consistent with the
negation of the hypothesis that the box adds any pair of integers. The objection
does not raise a difficulty peculiar to hypercomputation. The problem that function
is underdetermined by a finite sampling of behaviour is everyone’s problem — if it
is a problem at all.

Engineers, of course, take boxes to bits and examine their inner workings. After
an examination of a certain box’s internal workings, the engineers might say: Given
current physics, our best hypothesis is that this box will add any pair of integers (so
long as you insert more paper tape whenever the red light goes on). It is because
we credit similar prouncements by engineers that we entrust our savings and, in the
case of air travel, even our lives, to computers.

The engineers may say: Given current physics, our best hypothesis is that this
box will output H(x) when given any integer x.

3.10. One suggestion made by hypercomputationalists is that some form of
quantum computer may be able to compute non Turing-machine-computable func-
tions. However, the originator of the universal quantum computer, David Deutsch,
states that this is not so (1985, p. 97):

492 B. JACK COPELAND

[T]he universal quantum computer . . . would have many remarkable properties
not reproducible by any Turing machine. These do not include the computation
of non-recursive functions, but they do include ‘quantum parallelism’.

Thanks to quantum parallelism, a quantum computer requires only polynomial
time in order to complete tasks for which the classical universal Turing machine
requires exponential time. However, every function computable by a quantum com-
puter is also computable, if more slowly, by the universal Turing machine.

A number of different quantum computational architectures have been proposed.
Some are not hypercomputational, some are. In a paper in this collection, Kieu
outlines a hypercomputational quantum computer that is able to solve Hilbert’s
tenth problem.

Despite what Deutsch says, his universal quantum computer is able to compute
non-recursive functions, since an entire non-recursive function can be encoded
into one of the real-valued parameters figuring in the quantum-mechanical de-
scription of the machine (Solovay, personal communication). For example, the
Turing-machine halting function can be coded into the machine by allowing a
parameter to take the value τ (Section 2.1).

3.11. One suggestion made by hypercomputationalists is that some form of
analog computer employing continuous representations may be able to compute
more than the universal Turing machine. But Claude Shannon proved a theorem
long ago to the effect that the action of any analog computer can be approximated
by the universal Turing machine to any required degree of precision.

There is no such theorem. Shannon’s theorem (Shannon, 1941) states that this is
so for a particular type of analog computer, the GPAC, or general-purpose analog
computer. The GPAC is Shannon’s idealisation of a differential analyser. (The first
differential analyser, which was mechanical, was built in 1931 (Bush, 1931, 1936).
In subsequent versions mechanical components were replaced by electromech-
anical, and finally by electronic, devices (Bush and Caldwell, 1945).) A differ-
ential analyser may be conceptualised as a collection of black boxes connected
together in such a way as to allow considerable feedback. Each box performs a
fundamental process, among which are addition, multiplication, and integration.
Programming the machine consists of wiring together boxes in such a way that the
desired sequences of fundamental processes are executed.

There was a crucial lacuna in the proof of Shannon’s theorem. The situation was
improved by Pour-El (1974), whose approach involved a significant modification
to Shannon’s idealised machine. Given this modification, Pour-El showed (1) that
there are Turing-machine-computable functions that cannot be computed by the
GPAC, and (2) that the action of the GPAC can always be approximated by the
universal Turing machine (Pour-El, 1974; Theorems 3 and 7). (Pour-El’s own proof

HYPERCOMPUTATION 493

was also incomplete and was refined by Lipshitz and Rubel (1987, Rubel, 1988,
1989).)

The Shannon–Pour-El theorem does not imply that the action of any analog
computer can be approximated by the universal Turing machine to any required
degree of precision. The GPAC is an idealisation of a museum piece. If new black
boxes are added to perform fundamental processes foreign to the differential ana-
lyser, then by definition the resulting machine is not a GPAC, and so falls outside
the scope of the theorem.

3.12. Physical encodings of real numbers cannot be used in practice to give
hypercomputational power. This is because the human operator will not be able
to distinguish real numbers from arbitrarily close rational numbers. Take the first
accumulator machine described in Section 2.4: a human operator could not dis-
tinguish a physical instantiation of this machine from a physical instantiation of a
Turing machine.

A human operator could not so distinguish by direct inspection of the output from
the accumulator. However, it does not follow that any physical instantiation of the
machine might as well for all practical purposes be replaced by an instantiation
of a Turing machine (any more than it follows from parallel considerations that
the solar system might indistinguishably be replaced by a system in which the
gravitational constant, π , and the masses of the planets are ‘rounded down’). The
accumulator might pass its output to some other device that is capable of doing
work plainly visible to a human being and which it would not have been able to do,
or do so well, had it been connected to an instantiation of a Turing machine. This is
illustrated by the second toy example given in Section 2.4: the output reader takes
the output of the accumulator and prints 1 or 0.

3.13. To claim that an analog or partly analog device — for example, a neural
network with real-valued interconnection weights — is hypercomputational is to
claim that the device is sensitive enough to be able to distinguish real numbers from
arbitrarily close rational numbers. However, the real world contains noise and the
presence of noise means that only a limited amount of precision is available, not
the unlimited precision implied by sensitivity of this order. Maass and Orponen
(1997) have shown that in the presence of noise, neural networks with real-valued
weights lose their hypercomputational power (see also Maass and Sontag, 1997).
The same goes for any analog or partly analog device. Noise will wash out the
precision required for hypercomputational power.

The objection begs empirical questions concerning the nature of the noise that
could occur in real-world neural networks and the effects that the noise could have
on the functioning of the network. These empirical questions are at present open.

494 B. JACK COPELAND

Siegelmann has shown that a neural network subject to stochastic noise remains
hypercomputational (see her paper in this collection).

Even if it were true that, in noisy conditions, a hypercomputational network
would degrade to a finite state automaton, this would not mean that we should
stop thinking of it as having real-valued weights, or stop thinking of the network
as hypercomputational. In Putnam’s terminology (Section 3.17), the network is
not perspicuously representable as a finite state automaton. This is illustrated by
considering what happens as the noise fluctuates over time (Copeland, 1997b, pp.
673–674). As the noise fluctuates, the system shifts its identity from one automaton
to another. It cannot be assumed that the function mapping a measure of the noise to
finite state automata is Turing-machine-computable. The situation resembles that
described by Geroch and Hartle (Section 1.12).

3.14. As Turing said, the behaviour of any discrete state machine — by which he
meant machines that ‘move by sudden jumps or clicks from one quite definite state
to another’ — can be perfectly simulated by the universal Turing machine (Turing,
1950, pp. 439, 441). Therefore no discrete state machine is a hypercomputer.

Turing did say that a ‘digital computer could mimic the behaviour of any discrete
state machine’; and by ‘digital computer’ he meant a machine ‘intended to carry
out any operations which could be done by a human computer’ (1950, pp. 441,
438). However, his statement must be taken in context. The discussion in which
the statement is embedded (1950, pp. 440–441) makes it clear that Turing intended
the statement to apply only in the case of those discrete state machines that have
‘a finite number of possible states’ (i.e., a finite number of possible configurations)
(1950, p. 440). He pointed out that when this condition is satisfied, the behaviour
of the machine can be described exhaustively by a finite table of the sort nowadays
commonly called a ‘lookup’ table (ibid.):

discrete state machines . . . can be described by such tables provided they have
only a finite number of possible states.

It is, Turing said, on the basis of being ‘[g]iven the table corresponding to a discrete
state machine’ that a digital computer is able to mimic the discrete state machine
(1950, p. 441).

Several of the machines described above are examples of discrete state ma-
chines that cannot be mimicked by the universal Turing machine. These include
types of coupled Turing machine, types of partially random machine, types of asyn-
chronous network, and the learning machines described in Section 1.18.1. Except
in the special case where the activity of the machine ceases when the machine
has passed through some finite number of configurations, no lookup tables are
forthcoming for machines of these types.

HYPERCOMPUTATION 495

3.15. Gandy proved that no discrete state machine satisfying four physical pos-
tulates, which called Principles I–IV, can calculate more than the universal Turing
machine (Gandy, 1980).

It is an open empirical question whether discrete state machines contravening
Gandy’s principles are permitted by the physics of the real world. Such systems
are certainly permitted by Newtonian physics. (Gandy remarked: ‘I am sorry that
Principle IV does not apply to machines obeying Newtonian mechanics’ (1980, p.
145).)

Even discrete state machines satisfying Gandy’s principles may be hypercom-
putational if embedded in a universe whose physical laws have uncomputability,
in the Turing sense, built into them. An asynchronous network of Turing machines
provides an example.

It is important to note that Gandy’s argument does not apply to partially ran-
dom discrete state machines and nor to coupled Turing machines. He ruled such
machines out of consideration for the purposes of his proof (1980, pp. 126–127).

Concerning his four principles, Gandy argued: ‘if any of the principles be sig-
nificantly weakened in (almost) any way then every function becomes calculable’
(1980, p. 130). He appeared to consider this a reductio ad absurdum. As Israel
(2002, p. 197) put the point, each of Gandy’s conditions

is necessary to avoid a certain kind of absurdity or vacuity. The form of the
result is as follows: if we allow machines that satisfy any three of the . . .

conditions, but not all four, we can show that for any number-theoretic function
f, there is a machine Mf such that for any given (notation for) n, Mf will output
(a notation for) f(n). That is . . . every number-theoretic function is computable.

As explained above, however, hypercomputationalists need not agree that this ar-
gument is a reductio (Section 3.6). Each number-theoretic function is computable,
relative to some set of capacities and resources.

Gandy’s proof is discussed later in this collection by Shagrir and Pitowsky (see
also Shagrir, 2002). Shagrir and Pitowsky describe a model of hypercomputation
that is consistent both with General Relativity and with Gandy’s assumption (part
of his Principle IV) that the speed of signal propagation is bounded.

Doyle argues in his paper in this collection that Gandy in effect shows that
if ‘slight variations’ to the procedures traditionally considered effective are per-
mitted, then non-recursive functions are effectively computable. The variations
are achieved ‘simply by allowing the “same” physical operations to involve more
information or information paths than usual’.

In unpublished work Gandy argued for the impossibility of using analog ma-
chines to calculate non Turing-machine-computable functions. In this collection
Kieu comments on Gandy’s unpublished argument, arguing that it fails to apply to
his own model of quantum computation.

496 B. JACK COPELAND

3.16. Hypercomputation requires that an infinite amount of information exist
in a finite volume of space. This is not physically possible, since it infringes the
‘Beckenstein bound’ (Lokhorst, 2000). Beckenstein has shown that, given certain
assumptions, any spherical region of space with finite radius and finite energy
contains only a finite amount of information. This is shown by considering the
maximum number of distinguishable quantum states that a system occupying the
sphere could have.

The Beckenstein bound is conjectural. Some models of hypercomputation do in-
fringe it, for example the accumulator machines described in Section 2.4. But not
all do. Examples of those that do not include coupled Turing machines, asynchron-
ous networks of Turing machines, partially random machines, and the learning
machines described in Section 1.18.1.

To show that the Beckenstein bound is consistent with hypercomputation, it
suffices to consider what Penrose calls ‘oracle-machine universes’ (1994, pp. 380,
30–33). An oracle machine universe is a toy universe with discrete time and whose
dynamical evolution is described by some function on the integers that is not
Turing-machine-computable. For example, imagine a universe consisting only of
a finite string of beads. Some beads in the string are spherical, some cubic (there
are no other shapes). The bead at one end of the string is designated ‘live’. The
universe ‘updates’ once each second. Updating consists of the live bead producing
a single offspring bead, which takes its place at the end of the string beside its
parent, becoming the live bead and producing its own offspring at the next update.
Irrespective of the shape of the parent, the offspring may be either spherical or
cubic. The ‘fundamental law of nature’ determining the shape of the offspring of
the nth bead in the string is:

Spherical if hn = 0, cubic if hn = 1.

An always finite, but unbounded, string grows from a single bead. The growing
string is in effect a machine that produces the values of the halting function. At no
point in the evolution of the universe is the Beckenstein bound infringed.

3.17. No finite discrete system can be hypercomputational. Any discrete state
machine whose total number of configurations is finite can be perfectly simulated
by a Turing machine. In the real world, no machine can have an infinite number
of configurations. Artefacts wear out and break down, brains die. Even a machine
that in and of itself could continue running forever would pass through only a finite
number of configurations before the heat death of the universe. Any real-world
discrete state machine is equivalent to a Turing machine.

It is certainly true that if, in its finite lifespan, a machine produces a finite number
of outputs, then following the machine’s demise all the ouputs can be gathered
together in a finite table. The table can be given to a Turing machine. Equipped

HYPERCOMPUTATION 497

with this crib, the Turing machine is able to simulate the machine in question by
regurgitating the outputs listed in the table. However, the important point is that
if the machine is a hypercomputer, there may in fact be no way of arriving at this
table other than by employing the hypercomputer itself to generate the outputs.
This table, produced by the hypercomputer, may be the only effective procedure
for obtaining the machine’s outputs.

In the objection two quite different issues are conflated, that of the in-principle
post-hoc simulability by Turing machine of any discrete state machine situated
in a bounded environment (bounded time, bounded energy, bounded tape, etc.);
and, on the other hand, that of whether the machine in question is perspicuously
represented as being a Turing machine (see further Copeland, 1997b, p. 677; 2000,
pp. 32).

Knowing that a machine is equivalent to a Turing machine if the action of the
machine is arbitrarily terminated after some finite number of configurations leaves
us no wiser as to whether the machine, when abstracted out from its bounded envir-
onment, is a finite state automaton, a universal Turing machine, or a hypercomputer
of some sort. For example, if the issue is whether the human cognitive archi-
tecture, abstracted out from sources of inessential boundedness (such as mortal-
ity), is perspicuously represented as a generator of (one or more) Turing-machine-
uncomputable functions, then the fact that the brain is simulable by Turing machine
when death is assumed tells us nothing either way.

In answering a similar objection, Putnam said (1992, p. 6):

[E]very physical system whose behavior we want to know only up to some
specified level of accuracy and whose ‘lifetime’ is finite can be simulated by [a
Turing machine]! [This] does not prove that such a simulation is in any sense a
perspicuous representation of the behavior of the system.

As Putnam pointed out, the objection in effect considers performance, whereas
what is at issue is competence.

Putnam continued (1992, p. 7):

In sum, it does not seem that there is any principled reason why we must be
perspicuously representable as Turing machines . . . Or any reason why we
must be representable in this way at all — even non-perspicuously — under the
idealization that we live forever and have potentially infinite external memories.

Notes

1One of the first to speak of oracles in physical terms was Davis (1958, p. 11). He said: ‘For how can
we ever exclude the possibility of our being presented, some day (perhaps by some extraterrestrial
visitors), with a (perhaps extremely complex) device or “oracle” that “computes” a noncomputable
function?’ Acknowledging that the possibility cannot be ruled out, Davis said: ‘However, there are
fairly convincing reasons for believing that this will never happen’ (ibid.). The only argument that he
offered is conspicuously weak, consisting of the observation that certain modifications to a Turing
machine — he mentioned machines able to insert squares into their own tape, machines able to move

498 B. JACK COPELAND

left or right more than a single square in a single operation, and machines that operate on two- (or
higher) dimensional tape — result in a machine no more powerful than a Turing machine (1958, pp.
11–12, 64).
2The term ‘Putnam–Gold’ is appropriate since Putnam’s paper was received by the JSL in 1963,
Gold’s in 1964.
3Pace the intuitionists. Turing assumes a classical framework.
4The undated letter is in the Modern Archive Centre, King’s College Library, Cambridge. It was
written in about 1940.

References

Aberth, O. (1968), ‘Analysis in the Computable Number Field’, Journal of the Association of
Computing Machinery 15, pp. 275–299.

Abramson, F.G. (1971), ‘Effective Computation over the Real Numbers’, Twelfth Annual Symposium
on Switching and Automata Theory, Northridge, CA: Institute of Electrical and Electronics
Engineers.

Ambrose, A. (1935), ‘Finitism in Mathematics (I and II)’, Mind 35, pp. 186–203 and 317–340.
Bechtel, W. and Richardson, R.C. (1993), Discovering Complexity: Decomposition and Localization

as Strategies in Scientific Research, Princeton: Princeton University Press.
Blake, R.M. (1926), ‘The Paradox of Temporal Process’, Journal of Philosophy 23, pp. 645–654.
Blum, L., Shub, M. and Smale, S. (1989), ‘On a Theory of Computation and Complexity Over the

Real Numbers: NP-Completeness, Recursive Functions and Universal Machines’, Bulletin of the
American Mathematical Society, New Series, 21, pp. 1–46.

Blum, L., Cucker, F., Shub, M. and Smale, S. (1998), Complexity and Real Computation, New York:
Springer.

Bogdanov, A.A. (1980), Essays in Tektology: The General Science of Organisation, trans. G. Gorelik,
Seaside, CA: Intersystems.

Boolos, G.S. and Jeffrey, R.C. (1974), Computability and Logic, Cambridge: Cambridge University
Press.

Bush, V. (1931), ‘The Differential Analyser: A New Machine for Solving Differential Equations’,
Journal of the Franklin Institute 212, pp. 447–488.

Bush, V. (1936), ‘Instrumental Analysis’, Bulletin of the American Mathematical Society 42, pp.
649–669.

Bush, V. and Caldwell, S.H. (1945), ‘A New Type of Differential Analyser’, Journal of the Franklin
Institute 240, pp. 255–326.

Cleland, C.E. (1993), ‘Is the Church–Turing Thesis True?’, Minds and Machines 3, pp. 283–312.
Church, A. (1936), ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of

Mathematics 58, pp. 345–363.
Church, A. (1940), ‘On the Concept of a Random Sequence’, American Mathematical Society

Bulletin 46, pp. 130–135.
Churchland, P.M. and Churchland, P.S. (1990), ‘Could a Machine Think?’, Scientific American 262,

pp. 26–31.
Copeland, B.J. (1997a), ‘The Church–Turing Thesis’, in E. Zalta, ed., Stanford Encyclopedia of

Philosophy, <http://plato.stanford.edu>.
Copeland, B.J. (1997b), ‘The Broad Conception of Computation’, American Behavioral Scientist 40,

pp. 690–716.
Copeland, B.J. (1998a), ‘Turing’s O-machines, Penrose, Searle, and the Brain’, Analysis 58, pp.

128–138.
Copeland, B.J. (1998b), ‘Super Turing-Machines’, Complexity 4, pp. 30–32.

HYPERCOMPUTATION 499

Copeland, B.J. (1998c), ‘Even Turing Machines Can Compute Uncomputable Functions’, in C.
Calude, J. Casti and M. Dinneen, eds., Unconventional Models of Computation, London:
Springer.

Copeland, B.J. (2000), ‘Narrow Versus Wide Mechanism’, Journal of Philosophy 96, pp. 5–32.
Copeland, B.J. (2001a), ‘Colossus and the Dawning of the Computer Age’, in R. Erskine and M.

Smith, eds., Action This Day, London: Bantam Books.
Copeland, B.J. (2001b), ‘Modern History of Computing’, in E. Zalta (ed.), Stanford Encyclopedia of

Philosophy, <http://plato.stanford.edu>.
Copeland, B.J. (2002), ‘Accelerating Turing Machines’, Minds and Machines 12, pp. 281–301.
Copeland, B.J. and Proudfoot, D. (1999a), ‘Alan Turing’s Forgotten Ideas in Computer Science’,

Scientific American 280, pp. 76–81.
Copeland, B.J. and Proudfoot, D. (1999b), ‘The Legacy of Alan Turing’, Mind 108, pp. 187–195.
Copeland, B.J. and Sylvan, R. (1999), ‘Beyond the Universal Turing Machine’, Australasian Journal

of Philosophy 77, pp. 46–66.
Davis, M. (1958), Computability and Unsolvability, New York: McGraw-Hill.
Deutsch, D. (1985), ‘Quantum Theory, the Church–Turing Principle and the Universal Quantum

Computer’, Proceedings of the Royal Society, Series A, 400, pp. 97–117.
Dreyfus, H.L. (1992), What Computers Still Can’t Do: A Critique of Artificial Reason, Cambridge,

MA: MIT Press.
Earman, J. and Norton, J.D. (1993), ‘Forever is a Day: Supertasks in Pitowsky and Malament-

Hogarth Spacetimes’, Philosophy of Science 60, pp. 22–42.
Earman, J. and Norton, J.D. (1996), ‘Infinite Pains: The Trouble with Supertasks’, in A. Morton and

S.P. Stich, eds., Benacerraf and his Critics, Oxford: Blackwell.
Gandy, R. (1980), ‘Church’s Thesis and Principles for Mechanisms’, in J. Barwise, H.J. Keisler and

K. Kunen, eds., The Kleene Symposium, Amsterdam: North-Holland.
Geroch, R. and Hartle, J.B. (1986), ‘Computability and Physical Theories’, Foundations of Physics

16, pp. 533–550.
Gold, E.M. (1965), ‘Limiting Recursion’, Journal of Symbolic Logic 30, pp. 28–48.
Harvey, I. and Bossomaier, T. (1997), ‘Time Out of Joint: Attractors in Asynchronous Random

Boolean Networks’, in P. Husbands and I. Harvey, eds., Fourth European Conference on Artificial
Life, Cambridge, MA: MIT Press.

Hogarth, M.L. (1992), ‘Does General Relativity Allow an Observer to View an Eternity in a Finite
Time?’, Foundations of Physics Letters 5, pp. 173–181.

Hogarth, M.L. (1994), ‘Non-Turing Computers and Non-Turing Computability’, PSA 1994 1, pp.
126–138.

Israel, D. (2002), ‘Reflections on Gödel’s and Gandy’s Reflections on Turing’s Thesis’, Minds and
Machines 12, pp. 181–201.

Kampis, G. (1991), Self-Modifying Systems in Biology and Cognitive Science: A New Framework for
Dynamics, Information and Complexity, Oxford: Pergamon.

Kampis, G. (1995), ‘Computability, Self-Reference, and Self-Amendment’, Communications and
Cognition-Artificial Intelligence 12, pp. 91–110.

Karp, R.M. and Lipton, R.J. (1982), ‘Turing Machines that Take Advice’, in E. Engeler et al., eds.,
Logic and Algorithmic, Genève: L’Enseignement Mathématique.

Kleene, S.C. (1967), Mathematical Logic, New York: Wiley.
Komar, A. (1964), ‘Undecidability of Macroscopically Distinguishable States in Quantum Field

Theory’, Physical Review, second series, 133B, pp. 542–544.
Kreisel, G. (1965) ‘Mathematical Logic’, in T.L. Saaty, ed., Lectures on Modern Mathematics, Vol.

3, New York: John Wiley.
Kreisel, G. (1967), ‘Mathematical Logic: What Has it Done For the Philosophy of Mathematics?’,

in R. Schoenman, ed., Bertrand Russell: Philosopher of the Century, London: George Allen and
Unwin.

500 B. JACK COPELAND

Kreisel, G. (1970), ‘Hilbert’s Programme and the Search for Automatic Proof Procedures’, in M.
Laudet et al., eds., Symposium on Automatic Demonstration, Lecture Notes in Mathematics, Vol.
125, Berlin: Springer.

Kreisel, G. (1971), ‘Some Reasons for Generalising Recursion Theory’, in R.O. Gandy and C.M.E.
Yates, eds., Logic Colloquium ’69, Amsterdam: North-Holland.

Kreisel, G. (1972), ‘Which Number Theoretic Problems Can Be Solved in Recursive Progressions
on π1

1-Paths Through 0?’, Journal of Symbolic Logic 37, pp. 311–334.
Kreisel, G. (1974), ‘A Notion of Mechanistic Theory’, Synthese 29, pp. 11–26.
Kreisel, G. (1982), Review of Pour-El and Richards, Journal of Symbolic Logic 47, pp. 900–902.
Kreisel, G. (1987), ‘Church’s Thesis and the Ideal of Formal Rigour’, Notre Dame Journal of Formal

Logic 28, pp. 499–519.
Krylov, S.M. (1986), ‘Formal Technology and Universal Systems’, Cybernetics, Part 1: No. 4, pp.

85–89, Part 2: No. 5, pp. 28–31.
Krylov, S.M. (1996), ‘Formal Technology and Cognitive Processes’, International Journal of

General Systems 24, pp. 233–243.
Krylov, S.M. (1997), Formal Technology in Philosophy, Engineering, Bio-evolution and Sociology,

Samara State Technical University.
Kugel, P. (1986) ‘Thinking May Be More Than Computing’, Cognition 22, pp. 137–198.
Lipshitz, L. and Rubel, L.A. (1987), ‘A Differentially Algebraic Replacement Theorem, and Analog

Computability’, Proceedings of the American Mathematical Society 99, pp. 367–372.
Lokhorst, G.J. (2000), ‘Why I am Not a Super-Turing Machine’, Hypercomputation Workshop,

University College, London, 24 May 2000.
Maass, W. and Orponen, P. (1997), ‘On the Effect of Analog Noise in Discrete-Time Analog

Computations’, NeuroColt Technical Report Series, NC-TR-97-042.
Maass, W. and Sontag, E.D. (1997), ‘Analog Neural Nets with Gaussian or Other Common Noise

Distributions Cannot Recognise Arbitrary Regular Languages’, NeuroColt Technical Report
Series, NC-TR-97-043.

MacLennan, B.J. (1987), ‘Technology-Independent Design of Neurocomputers: The Universal Field
Computer’, IEEE First International Conference on Neural Networks, Vol. 3, San Diego, CA:
Institute of Electrical and Electronics Engineers.

Penrose, R. (1989), The Emperor’s New Mind Concerning Computers, Minds, and the Laws of
Physics, Oxford: Oxford University Press.

Penrose, R. (1990), Précis of The Emperor’s New Mind: Concerning Computers, Minds, and the
Laws of Physics, Behavioural and Brain Sciences 13, pp. 643–655 and 692–705.

Penrose, R. (1994), Shadows of the Mind: A Search for the Missing Science of Consciousness,
Oxford: Oxford University Press.

Pitowsky, I. (1990), ‘The Physical Church Thesis and Physical Computational Complexity’, Iyyun
39, pp. 81–99.

Pour-El, M.B. (1974), ‘Abstract Computability and its Relation to the General Purpose Analog
Computer’, Transactions of the American Mathematical Society 199, pp. 1–28.

Pour-El, M.B. and Richards, J.I. (1979), ‘A Computable Ordinary Differential Equation Which
Possesses No Computable Solution’, Annals of Mathematical Logic 17, pp. 61–90.

Pour-El, M.B. and Richards, J.I. (1981), ‘The Wave Equation with Computable Initial Data such that
its Unique Solution is not Computable’, Advances in Mathematics 39, pp. 215–239.

Pour-El, M.B. and Richards, J.I. (1989), Computability in Analysis and Physics, Berlin: Springer.
Putnam, H. (1960), ‘Minds and Machines’, in S. Hook, ed., Dimensions of Mind, New York: New

York University Press.
Putnam, H. (1965), ‘Trial and Error Predicates and the Solution of a Problem of Mostowski’, Journal

of Symbolic Logic 30, pp. 49–57.
Putnam, H. (1992), Renewing Philosophy, Cambridge, MA: Harvard University Press.

HYPERCOMPUTATION 501

Rubel, L.A. (1985), ‘The Brain as an Analog Computer’, Journal of Theoretical Neurobiology 4, pp.
73–81.

Rubel, L.A. (1988), ‘Some Mathematical Limitations of the General-Purpose Analog Computer’,
Advances in Applied Mathematics 9, pp. 22–34.

Rubel, L.A. (1989), ‘Digital Simulation of Analog Computation and Church’s Thesis’, Journal of
Symbolic Logic 54, pp. 1011–1017.

Russell, B.A.W. (1915), Our Knowledge of the External World as a Field for Scientific Method in
Philosophy, Chicago: Open Court.

Russell, B.A.W. (1936), ‘The Limits of Empiricism’, Proceedings of the Aristotelian Society 36, pp.
131–150.

Scarpellini, B. (1963), ‘Zwei Unentscheitbare Probleme der Analysis’, Zeitschrift für mathematische
Logik und Grundlagen der Mathematik 9, pp. 265–289.

Shagrir, O. (2002), ‘Effective Computation by Humans and Machines’, Minds and Machines 12, pp.
221–240.

Shannon, C.E. (1941), ‘Mathematical Theory of the Differential Analyser’, Journal of Mathematics
and Physics of the Massachusetts Institute of Technology 20, pp. 337–354.

Siegelmann, H.T. and Sontag, E.D. (1992), ‘On the Computational Power of Neural Nets’, Pro-
ceedings of the 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh, pp.
440–449.

Siegelmann, H.T. and Sontag, E.D. (1994), ‘Analog Computation via Neural Networks’, Theoretical
Computer Science 131, pp. 331–360.

Smale, S. (1988), ‘The Newtonian Contribution to Our Understanding of the Computer’, Queen’s
Quarterly 95, pp. 90–95.

Stannett, M. (1990), ‘X-Machines and the Halting Problem: Building a Super-Turing Machine’,
Formal Aspects of Computing 2, pp. 331–341.

Stewart, I. (1991a), ‘Deciding the Undecidable’, Nature 352, pp. 664–665.
Stewart, I. (1991b), ‘The Dynamics of Impossible Devices’, Nonlinear Science Today 1, pp. 8–9.
Turing, A.M. (1936–1937), ‘On Computable Numbers, with an Application to the Entscheidungs-

problem’, Proceedings of the London Mathematical Society, Series 2, 42, pp. 230–265.
Turing, A.M. (1938), ‘Systems of Logic Based on Ordinals’. Dissertation presented to the faculty

of Princeton University in candidacy for the degree of Doctor of Philosophy. Published in
Proceedings of the London Mathematical Society 45 (1939), pp. 161–228.

Turing, A.M. (1945), ‘Proposal for Development in the Mathematics Division of an Automatic
Computing Engine (ACE)’, in B.E. Carpenter and R.W. Doran, eds., A.M. Turing’s ACE
Report of 1946 and Other Papers, Cambridge, MA: MIT Press. A digital facsimile of the
original document may be viewed in The Turing Archive for the History of Computing
<http://www.AlanTuring.net/proposed_ electronic_calculator>.

Turing, A.M. (1947), ‘Lecture to the London Mathematical Society on 20 February 1947’, in
B.E. Carpenter and R.W. Doran, eds., A.M. Turing’s ACE Report of 1946 and Other Papers,
Cambridge, MA: MIT Press.

Turing, A.M. (1948), ‘Intelligent Machinery’, in B. Meltzer and D. Michie, eds., Machine
Intelligence 5, Edinburgh: Edinburgh University Press. A digital facsimile of the ori-
ginal document may be viewed in The Turing Archive for the History of Computing
<http://www.AlanTuring.net/intellige nt_machinery>.

Turing, A.M. (1950), ‘Computing Machinery and Intelligence’, Mind 59, pp. 433–460.
Turing, A.M. (1951), ‘Can Digital Computers Think?’, in B.J. Copeland, ed., ‘A Lecture and Two

Radio Broadcasts on Machine Intelligence by Alan Turing’, in K. Furukawa, D. Michie and S.
Muggleton, eds., Machine Intelligence 15, Oxford: Oxford University Press.

Turing, A.M. (c. 1951), ‘Intelligent Machinery, A Heretical Theory’, in B.J. Copeland, ed., ‘A Lec-
ture and Two Radio Broadcasts on Machine Intelligence by Alan Turing’, in K. Furukawa, D.
Michie and S. Muggleton, eds., Machine Intelligence 15, Oxford: Oxford University Press.

502 B. JACK COPELAND

Wegner, P. (1997), ‘Why Interaction is More Powerful than Algorithms’, Communications of the
ACM 40, pp. 80–91.

Weyl, H. (1927), Philosophie der Mathematik und Naturwissenschaft, Munich: R. Oldenbourg.
Wolfram, S. (1985), ‘Undecidability and Intractability in Theoretical Physics’, Physical Review

Letters 54, pp. 735–738.

