Integrals, an Introduction to Analytic Number Theory

ILAN VARDI, Stanford University

ILAN VArDI: I got my Ph.D. in Number Theory from M.L.T. in 1982, as a
student of Dorian Goldfeld. I then spent a year at the Institute for Advanced
Study. I was an acting assistant professor at Stanford from 1983 to 1985.
After realizing that not everybody cared about Kloosterman Sums, I learned
how to use a computer and tried out some applied math. I'm now interested
in special functions related to determinants of Laplacians.

1. Introduction. An examination of Gradzhteyn and Ryzhyk’s book of integral
tables reveals a large number of difficult and obscure integral formulas. In my
opinion one of the most remarkable is given on p. 532
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where

is the classical I'-function. The reference given is to Bierens de Haan [2]. Failing to
locate the proof of this formula, I decided to study equation (1) in some depth. It
turns out that this formula requires some fairly involved analysis to prove, and also
serves as a good example of how nontrivial number theory can be embedded in an
integral formula.
The key to equation (1) i1s the Dirichlet L-function
I ; 1 1 1
=1 — 4+ — — — -
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This is a well-known function; for example every calculus student knows the
formula
L) =1— =~ + - il
B 35 a4
Also, by the alternating series test L(s) converges for 0 < s < 1. However, much
more is known and Hurwitz proved that L(s) can be analytically continued to an
entire function in the whole complex plane. He did this by proving the functional
equation
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What we will, in fact, show i1s that

d
f log logtan xdx = —I'(s)L(s) (3)
7/4 ds s=1

Invoking the well-known formulas
r() =
r(1) = —

where v 1s FEuler’s constant,

1 1 1
¥y = lim {(1 + 5 + 3 + .-+ —-) — logn} = .577215664901532860606512 . . .,
n— oo F

equation (3) becomes

/2 m ,
f loglogtan xdx = —y— + L’(1).
Lt 4

So the proof of equation (1) will consist of 2 parts: a) establishing (3) b)
expressing L’(1) in terms of logarithms of I'-functions.

2. Proof of equation (3). We begin with a general Dirichlet series

Fs) = 5 1)

n=1 n

which, if f is of polynomial growth, will converge absolutely in a half-plane
Re(s) > ¢. We now use the technique first developed by Riemann to study the
Riemann {-function

I'(s) = Lme_"r’_l dr = Lme"”‘(nr)s_ld(nr),
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Hence, by absolute convergence, one gets that for Re(s) > ¢

f( ) i f{n)f —uff.i'—l dit

n=1 n=1

=f ( Y f(n)e m*) >~ Ldr.

Now let z = ¢/, this gives
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Now we add the restriction that f(»n) be a periodic function. That is, there is a
positive integer g such that f(n + g) = f(n) for all n (for technical reasons also
assume that f(g) = 0). With these assumptions we have that for |z] < 1

%] oo g—1
2 f(n)z"= 3 3 f(mg+ n)zmatn
n=1 m=0n=1

glf(”)z" P(z. 1)

1 — z9 1 —z9"°

where

P(zf) = % f(n)z"

n=1

We have thus obtained the formula:

1 s—1
1P(z,f)(log;) dz

1— z4 z

F(s)I'(s) = [ 4

This formula was first obtained by Dirichlet (see [3]) to derive his class number
formula of which L(1) = # /4 1s the simplest case. Differentiating equation (4) by

Leibniz’s rule gives
1 s—1
(log > ) dz

%F(s)l—'(s) = j:P(z?f) 1 — -4 loglog(%)—‘

Z

Now if F(s) converges absolutely at s = 1 this will yield
1\ dz
|=. (5)

Z

F’(1) — yF(1) = LIP(Z, f)loglog(

z
To prove equation (1) we let g = 4 and pick f(rn) to be the gquadratic character
(mod 4) that is

if n = 0 (mod4)

1 if n =1 (mod4)
0 ifn=2(mod4)’

—1 if n = 3 (mod4)

Xa(n) =

X 4 1s called the quadratic character (mod 4) because for (n,4) = 1

. 2
xa(n) = { 1 if 3x s.t.x*=n (mod 4)
—1 otherwise,

while x,(n) = 0 if (n, g) > 1.
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So we have

P(z,x) =z — z3

and equation (5) becomes

1
’ - . (z — zﬂloglug;— dz
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1
loglog(—)
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= f loglog u
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= f 7?"’zlr::rg log tan x dx.
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3. Evaluating L’(1). It turns out that it is much easier, first, to evaluate L’(0),
then use the functional equation L(s) — L(1 — s) to obtain the value for L’(1).
To compute L’(0) we follow a method due to André Weil [7]. Let
2 1
$(s,a) = 2 mra)

n=1

O<a=1,

be the Hurwitz {-function. It is easily shown to converge for Re(s) > 1. Using the
integral formula [8]

5\ dr

e—ﬂr!

I(s)¢(a,s) = f; -

one can show that {(a, s) can be analytically continued to the whole complex plane
with only a simple pole at s = 1. The relevance of {(a, s) is due to the formula

L(s) = 4**[;(3, %) - f(s, ?i")]

thus evaluating {’(0, a) will yield the value of L’(0) (for ease of notation we have

ei‘

written {’(s, a) to denote a—§(s, a)). Weil’s observation is the following: note that
s
for s > 1

$(s,a+ 1) =§(s,a) — ;1:,
thus
§(s,a+ 1) =¢(s,a) + a*loga,
and at s = 0
$(0,a+ 1) =¢(0,a) + loga.

Letting

G{a) = ef'{ﬂ,ﬂ],
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we see that G (a) satisfies the functional equation
G(a+ 1) = aG(a).

Further, one has that

2 o0 '1

d
log & = _
da? 08 G (a) ,El (n+a)’

>0, fora=>0,

and that

G(a) is analytic for a > 0.

These however are the exact conditions for the Bohr-Mollerup Theorem for the
uniqueness of the Gamma function [1]. Thus one has that

G(a) = G(1)T(a).

One sees that G(1) = {’(0,1), and on noting that {(s,1) = {(s), where {(s) is the
Riemann {-function, one has

G(1) = £7(0).
It is well known that {’(0) = —(1/2)log2# (e.g., [6], [8]), and so
I'(a)

$(0,a) = log Vo ik

Substituting this in the formula for L(s) one derives
( ; ]
T —
4
- 3
3

By the functional equation and L(1) = #/4 one gets that

L’(0) = log — L{(0)log4.

L(0) !
( - 2 -
And once again by the functional equation

2dI' L 11 4 +1
~ S TILG)| = Slopd +log

1

and thus

1) =y— + —

This concludes the proof of equation (1).
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4. More formulas! There are actually quite a number of identities in Gradzhteyn

and Ryzhyk similar to (1). For example, there are

ogl (1) & 2”[51 27 — logT
oglog| — = — —
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1

,  page 571 (6)

], page 572.  (7)

One sees that in equation (6) 3 plays the “key role” and in equation (7) 6 is the
“magic number.” To explain this one introduces Dirichlet characters (mod q)

x is a Dirichlet character (mod ¢ ) if

Re(s) > 0

x(1) =1
x(n+gq)=x(n) Vn
x(n) =20
x(mn) = x(m)x(n) Vm,n
The corresponding Dirichlet L-function is
L(s,x) = X xi_f} ;

n=1

and can be continued to an entire function if x is not the trivial character

Xo(n) =1

if (n.q) =1

Now the analogous character to x, In equation (6) 1s the quadratic character

(mod 3)

0 if n = 0 (mod 3)
if n =1 (mod 3)
if n =2 (mod3),

Xa(n) = 1
—1

and in equation (7) the corresponding character is the quadratic character (mod 6)

Xe(n). Hence we have the L-functions

L(s,x3)=1— — + —

1
L(s,x¢) =1 — 5+ 55
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The proofs of (6) and (7) are completely analogous to our proof of equation (1).
One can further explain how the numbers 3,4,6 play the key roles in our
formulas. First rewrite equation (1) in the same form as (6) and (7)

11 1 1 a'x '!T]
j(; 0g Og(x)—'—"2 = Eog

Note that the solutions of x? + 1 are 4th roots of unity, / and —#, and one
explains why L (s, x,) is involved by noting that it can be shown from the Quadratic
Reciprocity Theorem that

gQ(,‘}(S) = L(s, x4)$(s),

where {o,,(s) is the Dedekind zeta function of the field Q(i), and the classical
definition (e.g., [5]) of the Dedekind {-function of the number field K is

1
R Ny

A 1deal

Similarly, x* + x + 1 is the irreducible polynomial for the 3rd roots of unity,

—1/2 +

., and, as above, L(s, x5) appears because

§Q(,,f__3)(-g) = L(s,x3)8(s).

Similarly, x?> — x + 1 gives the 6th roots of 1, so, as above, one expects L(s, x¢) to
play the central role.

5. Exercises.

1) Show that

e > logn
fllog(—loglogy) dy=— X — 5 —re
n=1 "
Hint: consider
[=s]
L = —_—
- £ o

2) Find a similar formula for

feglog( —logloglog y) dy.

e
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