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Abstract—Boolean-based routing methods transform the geo-
metric FPGA routing task into a large but atomic Boolean func-
tion with the property that any assignment of input variables that
satisfies the function specifies a valid routing solution. Previous at-
tempts at FPGA routing using Boolean methods were based on bi-
nary decision diagrams which limited their scopes, because of size
limitations, to only individual FPGA channels. Thus, FPGA layouts
were decomposed into channel-wise slices that are handled sepa-
rately, and those individual channel slices were stitched together
later. In this paper, we present a new search-based satisfiability
(SAT) FPGA detailed routing formulation that handles all chan-
nels in an FPGA simultaneously. The formulation has the virtue
that it considers all nets concurrently allowing higher degrees of
freedom for each net, in contrast to the classical one-net-at-a-time
approaches and is able to prove the unroutability of a given cir-
cuit by demonstrating the absence of a satisfying assignment to the
routing Boolean function. To demonstrate the effectiveness of this
method, we first present comparative experimental results between
integer linear programming (ILP)-based routing, which is an alter-
native concurrent method, and SAT-based routing. We also present
the first comparisons of search-based Boolean SAT routing results
to other conventional routers and offer the first evidence that SAT
methods can actually demonstrate the unroutability of a layout.
Preliminary experimental results suggest that our approach com-
pares very favorably with both the ILP-based approach and con-
ventional FPGA routers.

Index Terms—Boolean satisfiability, field programmable gate
arrays, routing.

I. INTRODUCTION

F IELD PROGRAMMABLE gate arrays (FPGAs) already
have adopted and successfully adapted a variety of ASIC

layout techniques including iterative improvement placers [3]
and maze-style [14] and channel-style [13] routers. However,
the discrete nature of FPGA logic blocks and routing fabrics
differentiate the FPGA layout problem from those of other
design styles. Unlike conventional layout tools, FPGA placers
and routers have less flexibility and must contend with a rigid,
discrete, prefabricated set of interconnection patterns. This
discrete nature of FPGAs thus admits unique layout strategies
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that can strive to leverage the limited palette of geometric
alternatives to prune the space of viable layouts. Search-based
global and detailed routers [2], [4], channel routers [12], and
simultaneous placer/routers [17]–[22] are a few examples of
such attacks that actually exploit the rigid limitations on FPGA
layout geometries. Unfortunately, these geometric limitations
still render the problem of predicting whether a given netlist
can fit on a specific FPGA architecture—in particular, whether
it can route successfully after placement—very difficult. Im-
provements in routability estimators [5], statistical estimators
[8], simultaneous placer/routers [17], and routing tactics that
can heuristically abandon the layout when unroutability appears
inevitable [21] are all viable responses to this critical problem.
Nevertheless, it remains a practical impossibility to answer
exactly this simple question for most FPGA placements: is this
layout routable?

Boolean-based routing is a new approach that addresses this
question. We render the routing constraints as a large but atomic
Boolean function which is satisfiable (has an assignment of
input variables such that the generated function evaluates to
constant “1”) if and only if the layout is routable. In other
words, any satisfying assignment to the variables of the routing
Boolean function represents a legal routing solution. Moreover,
by demonstrating that there is no satisfying assignment for a
generated routing Boolean function, we can prove that no layout
solution exists, which is very rare in other layout approaches.
A particular virtue of this formulation is that much of the
geometric complexity of the interaction among nets is hidden
and rendered implicitly in the Boolean constraint functions so
that all paths for all nets are considered simultaneously. FPGAs
are a natural first target for Boolean-based routing since their
discrete geometric structure maps easily onto various Boolean
formulations. In our previous approach [23], we solved the re-
sulting Boolean problem by creating a binary decision diagram
(BDD [6], [7]) to represent the routing constraint formulas. The
BDD-based approach has a variety of useful properties, e.g., all
possible routing solutions are captured as traversals of the BDD
from its root to the distinguished “1” leaf node, and the layout
is unroutable if the BDD degenerates to the function that is
identically “0.” Unfortunately, BDDs are difficult to construct
for large routing problems. Variable orderings are difficult to
derive, and the BDD graph itself can become unmanageably
large during intermediate computations. To overcome this,
we decomposed our FPGA layouts into channelwise slices,
used BDD-based routing only on each vertical channel and
introduced additional routing constraints on entrance/exit
points for each net in the considered channel.

0278-0070/02$17.00 © 2002 IEEE
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Fig. 1. Assumed FPGA architecture model [15]. (a) Island-style FPGA model. (b) Switching blockF = 3. (c) Connection blockF = 4.

Obviously, a more desirable approach would be to model
the entire FPGA routing problem by a single Boolean func-
tion, but this appears to be impractical for large designs using
BDDs as the solution engine. A BDD-based approach essen-
tially “solves” the function yielding all satisfying assignments.
If we are merely interested in finding a single satisfying assign-
ment we can instead employ an implicit systematic search in
the -dimensional Boolean space of the input variables to lo-
cate such an assignment, or to prove that it does not exist. Such
search-based approaches are commonly referred to as satisfia-
bility (SAT) algorithms.

In this paper, we revisit the Boolean-based routing ideas from
[23] and propose a new FPGA detailed routing formulation
which enables us to not only allow more flexibility for each
net, but also to complete more complex FPGA routing tasks.
In particular, we show the first results from routing entire
FPGAs—all nets embedded simultaneously—using a new
SAT-based routing formulation. An alternative to solving the
routing constraints using Boolean satisfiability is to use integer
linear programming (ILP) techniques, which is another con-
current layout method. Thus, we present extensive comparative
experimental results between ILP-based and SAT-based FPGA
routing to demonstrate the effectiveness of out approach. Then,
we show the first comparisons of SAT-based routing quality to
other published FPGA routers, and, to the best of our knowl-
edge, the first conclusions of unroutability for a placement
given a specified global routing and track counts per channel.

The rest of paper is organized as follows. Section II reviews
the typical island-style FPGA model that we employ and key
terminologies are explained. The constraint types in FPGA de-
tailed routing and how to represent them in Boolean SAT func-
tions as well as ILP forms are illustrated in Section III. The
overall flow of the approach is also provided there. Section IV
presents extensive experimental results showing the compara-
tive performance of SAT-based FPGA detailed routing method
on standard benchmarks. Finally some concluding remarks are
given in Section V.

II. TARGETFPGA ARCHITECTUREMODEL AND TERMINOLOGY

We based our modeling on a standard island-style FPGA
architecture (e.g., Xilinx 4000 type [26]). This is one of the
most commonly used layout models in FPGA applications and
is depicted in Fig. 1. An island-style FPGA is comprised of a
two-dimensional array of configurable logic blocks (CLBs),
connection blocks (C-blocks) and switching blocks (S-blocks).
Each CLB (marked “L” in Fig. 1) contains the combinational
and sequential logic that implements the functionality of a
circuit. C- and S-blocks contain programmable switches and
form the routing resources. C-blocks connect CLB pins to
tracks (wire segments) in the adjoining channels. S-blocks are
surrounded by C-blocks and allow signals to either pass through
or make 90 turns. Personalization of the routing resources is
achieved through proper programming of the routing switches.
Programmable IO cells reside on the boundary of the array.

We assume that every wire is fully segmented, meaning that
each wire segment spans only one block size. This is not the
limitation of our formulation method. It is always possible to
extend the formulation to consider different lengths of wire seg-
ments within a channel. However, we employed only fully seg-
mented wires within a channel to facilitate the comparison with
other routing results in Section IV. A set of wire segments on the
same row/column in horizontal/vertical channels forms a signal
track. The routing capacity of a given FPGA architecture is con-
veniently expressed by three parameters [5]; the channel width

is the number of tracks in a vertical or horizontal channel; the
C-block flexibility is the number of tracks in adjacent chan-
nels that each CLB logic pin may connect to; and the S-block
flexibility is the number of other tracks that each wire seg-
ment entering an S-block can connect to. In the sequel, we as-
sume that all channels (vertical and horizontal) have the same
number of tracks. In Fig. 1(b), each wire segment entering this
S-block can connect to one track on each of the other three sides;
hence, . In Fig. 1(c), each logic pin can be connected up
to any of the four tracks in the C-block; thus, .
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A net is a set of CLB pins that must be electrically connected;
nets are decomposed into sets of two-pin connections which rep-
resent source/sink pairs. A two-pin connection is further decom-
posed into one or more horizontal and/or vertical net-segments,
each of which is an alternating sequence of C- and S-blocks
within the channel that forms an uninterrupted straight path. The
decomposition of a multipin net into a set of two-pin connec-
tions is necessary to find higher quality of routing solutions as
will be demonstrated in Section III. However, for a better run-
time, it is possible to formulate the routing problem without de-
composition process. In other words, the routing formulation
is flexible enough to consider both two-pin connection-based
nets as well as multipin nets. A detailed route of a net is a
set of wire segments and routing switches, within the restricted
routing area set by the global router. For each net-segment, a
detailed router assigns wire segments and routing switches fol-
lowing the topology specified by the global router such that
no overlap among detailed routes of different nets occurs. Our
focus of SAT routing is a detailed routing task in this scenario,
i.e., given a placement and a global routing, find a legal detailed
routing solution or demonstrate that no such detailed routing ex-
ists.

III. FPGA DETAILED ROUTING FORMULATION

In this section, we first describe a set of constraint types
which explicitly captures the requirements for complete FPGA
detailed routing solutions and then show how to represent those
constraints in conjunctive normal form (CNF) satisfiability
problems and ILP form.

In the simplest form, FPGA detailed routing problems can
be transformed into a net-to-track assignment problem. Each
net segment in the layout is represented by a track variable that
indicates the index of the horizontal or vertical track over which
the net segment might be routed. A routing constraint function is
then defined over these variables. There is only a finite number
of routing resources in an FPGA and each routing resource is
discrete and rigid. Because of these unique features of FPGAs,
it turns out that the following two types of routing constraints
are necessary and sufficient to guarantee a legal FPGA detailed
routing solution.

• Connectivity constraintsto ensure the existence of a con-
ductive path for each two-pin connection through the se-
quence of C- and S-blocks specified by the global router.
These constraints basically model the routing flexibility
available in the C- and S-blocks. It also makes sure that
each two-pin connection is assigned only to valid routing
tracks within the routing channels. One connectivity con-
straint function is constructed per two-pin connection of a
net.

• Exclusivity constraints to guarantee that electrically
distinct nets with overlapping vertical or horizontal spans
in the same channel are assigned to different tracks.
These constraints are essentially instances of channel
routing problems and one exclusivity constraint function
is formed per horizontal/vertical channel.

An example that illustrates the construction of FPGA
routing constraints is shown in Fig. 2 for an FPGA with

. Each net is assumed to have been
assigned a global route (a sequence of C- and S-blocks) by a
global router [Fig. 2(a)]. Track variables are then created for
each net segment to model its possible assignment to specific
tracks in each of the channels specified by its global route. For
instance, in this example two track variables are associated
with net to indicate its track assignment in horizontal
channel 1 and to indicate its track assignment in vertical
channel 1. Each track variable is multivalued with a domain
{ }.

The construction of the connectivity constraint of netis de-
picted in Fig. 2(b). The connectivity constraint for a given net re-
stricts the net’s track variables to those values that ensure a con-
tinuous conductive path between the net’s pins. For example,
net can be assigned to any track in horizontal channel 1 as
well as vertical channel 1 as long as the same track number is
used in both channels. This reflects the connectivity requirement
at C-block(4,1), S-block(1,1), and C-block(1,2) whose flexibil-
ities are and , respectively [see Fig. 2(b)]. In a
similar way, the connectivity constraints of netand can be
formulated.

The exclusivity constraints in this example ensure that nets
and as well as and are assigned to different track

numbers in horizontal channel 1. In general, whenever two
different net segments have overlapping spans in any routing
channel, a single inequality constraint function (for example,

) is enforced. The exclusivity constraint function of
a horizontal/vertical routing channel is the conjunction (logical
“and”) of a set of such inequality constraint functions occurring
in the channel. Fig. 2(c) shows the actual exclusivity constraint
function in horizontal channel 1 for the example FPGA.

The routing constraint Boolean function that models the
routability of all the nets is now simply the conjunction of all
the connectivity and exclusivity requirements. For the current
example, the routability constraint Boolean function of these
three nets is

where is a vector of track variables:
and . Assuming that a circuit has totaltwo-pin con-

nections and each global route of a two-pin connection passes
through channels on average, (i.e., net segments per
two-pin connection), the number of required Boolean variables
of the routability function is approximately
in this formulation.

Another issue worth mentioning in Boolean-based FPGA
routing is pin doglegs. Pin doglegs allow us to route a net using
more than one egressing track per CLB logic pin. Betz [2] and
[28] point out that in commercial FPGAs such as the Xilinx
XC4000-series and Lucent ORCA FPGAs [16], the input logic
pin of a CLB is connected to routing wire segments via a
multiplexer rather than a set of independent pass transistors so
that input pin doglegs are not possible while output pins in a
CLB are allowed to be doglegged (see Fig. 3). Doglegging can
reduce the required number of tracks per channel in an FPGA,
but it was not well researched in the literature thus far. Fig. 4(a)
and (b) illustrates how pin doglegs contribute to the reduction
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Fig. 2. Generation of connectivity and exclusivity constraints. (a) Global routing configuration for nets A, B, and C and corresponding variable declarations. (b)
Possible detailed routes of net A and the corresponding connectivity constraint. (c) Exclusivity constraint.

(a) (b)

Fig. 3. Pin connection routing architecture at CLB. (a) Output pin connection.
(b) Input pin connection.

in the required number of tracks. Net consists of a source
pin in SRC CLB and two sink pins in DST1 and DST2 CLBs.
Dotted lines indicate those tracks that are already used by other
nets in corresponding channels so that netis not allowed
to use them. Fig. 4(a) shows the example where source pin
is not allowed to be doglegged, whereas Fig. 4(b) is the case
where doglegs are allowed. In the example Fig. 4(a), track 2

cannot be used in vertical channel 3 because track 2 in vertical
channel 1 is already used by another net. Note that every net
segment connected must use the same track number due to the
symmetrical S-block architecture assumption. By utilizing the
doglegging at the source pin, the netwas able to be routed
with one less track per channel in the example Fig. 4(b).

In general, for the purpose of taking full advantage of dogleg-
ging at logic pins of CLBs, multipin nets should be decomposed
into multiple two-pin connections, and each two-pin connection
must be assigned a separate set of constraint track variables.
As shown in Fig. 4(b), we first decompose the netinto two
distinct two-pin connections, and , then construct
one connectivity constraint function for each of and
with separate constraint track variables as shown in Fig. 4(c).
This method increases the number of constraint track variables
needed to model a given net—in this example from 3 to 4—but
enables two different two-pin connections from the same net
to utilize the option of using different tracks even in the same
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Fig. 4. Example illustrating how a dogleg reduces the track counts in channels and corresponding routing constraint formulation. (a) When a dogleg isNOT
allowed at source pin. (b) When a dogleg is allowed at source pin. (c) Connectivity constraint functions which handle pin doglegging.

channels. From our experiments, this technique turns out to be
critical for reducing the number of tracks required per channel.

A. Routing Constraint Representation in CNF

In this section, we describe the transformation of these
Boolean routing constraint functions derived above into CNF.
Every routing constraint can be expressed in CNF clauses
through simple Boolean function manipulation. Fig. 5 demon-
strates how to generate CNF Boolean SAT clauses from FPGA
routing constraints. We assume the same routing architectural
parameters used in Fig. 2; , , and .

With a channel width of three tracks, two Boolean variables
are assigned to each track variableand to encode track
numbers 0, 1, and 2 [Fig. 5(a)]. The connectivity constraint has
two different forms depending on the block type: a C-block con-
nectivity constraint enumerates the tracks available for routing
in a given channel, whereas an S-block connectivity constraint
forces the track numbers of incoming and outgoing segments to
be equal for . The CNF representation of each connec-
tivity constraint is illustrated in Fig. 5(b) and (c). The number
of CNF clauses required to express a C-block connectivity con-
straint is dependent on the actual value ofand hard to for-
mulate simply in one equation. For most cases, a C-block con-
nectivity constraint requires fewer than three CNF clauses, each
having at most literals. The S-block connectivity
constraint whose form is an equality between two track vari-
ables, however, can be expressed with exactly 2-lit-

eral CNF clauses. Exclusivity constraints, which are basically
inequalities between track variables, can be represented with
CNF clauses, each having literals [Fig. 5(d)].

If different routing architecture is assumed (i.e., different,
, and values), slightly different Boolean functions for con-

nectivity constraints can be built and plugged in. In other words,
all those practical implementations of FPGA routing architec-
ture can be hidden and handled through simple Boolean func-
tional manipulations. Once we know the routing architectural
parameters of the target FPGA, we can build a template table for
a variety of routing constraint Boolean functionsa priori by op-
timizing and expressing each routing constraint function in CNF
clauses space. Thus, whenever a new routing constraint function
is required, we can just look up the table and obtain the corre-
sponding set of CNF clauses on the fly avoiding tedious Boolean
function manipulation during the formulation process. In this
way, we can more efficiently transform routing constraints into
a Boolean SAT problem instance.

B. ILP Modeling of Routing Constraints

An alternative to solving the routing constraints using
Boolean satisfiability is to use ILP techniques. Expressing the
routing constraints for use by an ILP solver is straightforward
as illustrated by Fig. 6 assuming , , and

. Connectivity and exclusivity constraints are naturally
expressed in the integer domain. Thus, unlike the Boolean
SAT representation, track variables and do not require
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Fig. 5. Routing constraint representation in CNF. (a) Track variable X, Y and
corresponding Boolean variables. (b) Connectivity constraint at C-block in CNF.
(c) Connectivity constraint at S-block in CNF. (d) Exclusivity constraint in CNF.

Fig. 6. Routing constraint representation for use by an ILP solver. (a)
Connectivity constraint at C-block. (b) Connectivity constraint at S-block. (c)
Exclusivity constraint. Note thatc is an arbitrary constant larger thanW � 1.

any encoding scheme. Furthermore, connectivity constraints
can be simply expressed as linear inequalities over these
integer variables [see Fig. 6(a) and (b)]. Exclusivity constraints,
however, are harder to render as inequalities. Specifically,
a binary variable must be introduced for every pair of track
variables and a transformation like that shown in Fig. 6(c)
must be applied. The large number of required binary variables

causes a significant increase in the size of the ILP problem,
which significantly degrades the performance of the search for
a solution (see Section IV). We should note that for our FPGA
detailed routing problem, the goal is simply to find out whether
there exists any routing solution or not. Thus, the objective
function of ILPs can be safely omitted.

C. Boolean-Based FPGA Detailed Routing: Overall Flow

Our attempt at addressing the FPGA detailed routing problem
led to the development ofsatisfiability-baseddetailed router
(SDR). SDR casts an FPGA detailed routing problem as a CNF
satisfiability problem that can be input to a Boolean SAT solver.
The overall flow diagram of SDR is shown in Fig. 7. In the dia-
gram, a rectangle indicates a procedure and an oval denotes an
object generated by the preceding procedure. To allow for pin
doglegging, the input netlist is assumed to resented in terms of
two-pin connections.

1) Global Routing: Given a placement, we invoke any
global router to assign each two-pin connection to a se-
quence of routing regions consisting of C- and S-blocks.
The global router does not choose or fix any specific
detailed routing resources.

2) Net Distribution : This procedure divides each net into
several horizontal and vertical net segments, then sorts
them in each channel. After this procedure, we have a
set of net segments per channel, regardless of the channel
type (horizontal or vertical), and a single track variable
(i.e., a set of encoding Boolean variables) is assigned to
each net segment.

3) Track Count Estimation : If the target FPGA architec-
ture is not provided by the user, we determine a channel
width by applying aleft-edge channel routing algo-
rithm [13]. Assuming each channel is fully segmented,
the left-edge algorithm produces the lower bound
on the number of tracks needed to route a given circuit,
and we set .

4) Constraint Generation: Connectivity and exclusivity
constraint Boolean functions are generated, as described
in Section III, to yield the routing constraint Boolean
function .

5) Constraint Evaluation: The Boolean SAT solver is in-
voked to find a satisfying assignment for
or to prove that is unsatisfiable.

6) Solution Interpretation : In the case that
is satisfiable, the solution from the Boolean SAT solver
is an assignment of binary values (“1” or “0”) to the
Boolean variables which encode track variables. This
information is transformed into an assignment of actual
routing resources (wiring tracks and corresponding
routing switches) to nets which forms the actual FPGA
routing solution. If is not satisfiable, then
no legal detailed routing solution exists with the given
placement and global routing topology.

IV. COMPARATIVE EXPERIMENTS AND ANALYSES

The above SAT-based FPGA detailed routing approach can
be employed in two different experimental scenarios.
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Fig. 7. Overall flow diagram.

Fig. 8. Experimental testbench.

• When a placed and globally routed circuit as well as a
target FPGA architecture are given, this method is able to
determine whether the circuit is routable or not.

• When only a placed and globally routed circuit is given,
it can find the “smallest” FPGA routing architecture, i.e.,
the architecture that has the minimum values of the
and parameters, to render the given circuit routable.

Fig. 8 shows the experimental plan we employed. We assume
that no target FPGA is provided, but set the S-block flexibility
at the minimum value and make the C-block flexibility
equal to the number of available tracks in each channel, i.e., set

. These settings reflect the Xilinx XC4000-series ar-
chitecture model [26]. Following the second scenario, the pri-

mary goal of the experiments was to find the minimum value
of which renders a given circuit routable. This was done by
attempting the routing for increasing valuesof starting from
the lower bound found by the left-edge channel routing
algorithm. The track width is incremented when a Boolean SAT
solver determines that the routability function is
unsatisfiable or when it is aborted after a preset runtime limit
(10 h). The procedure terminates when a Boolean SAT solver
concludes that is satisfiable and returns the cor-
responding track count and detailed net-to-track assignments
of the satisfying solution.

We experimentally tested the effectiveness of the SAT-based
routing formulation on the standard MCNC benchmark circuits
downloadable from [27]. The relevant properties of these
circuits, listed in Table I, include the number of multipin
nets (column “#Nets”), the corresponding number of two-pin
connections that will be routed individually (column “#2pin
Conns”), the average number of sink pins per net (column
“Ave. Sinks/Net”), the average number of channel segments
per 2pin connection (column “Ave. ChanSegs/2pin Conn”),
the size of the target FPGA CLB array (column “CLB Dim.”),
the actual number of CLBs used by a circuit (column “#CLB
used”), and the CLB utilization (column “%CLB util”). The
average number of channel segments per two-pin connection
is important because the number of Boolean variables required
to formulate routing problems is dependent on this factor. The
utilization of CLBs is provided here because it indicates how
densely the circuit is packed on the target FPGA. The bench-
mark circuits range in size from 70 CLBs with 79 multipin nets
for 9symml to 358 CLBs with 404 multipin nets for k2. On
average they have about 500 two-pin connections with an 80%
utilization of available CLBs.

A. Comparative Experiment: Boolean SAT Routing Versus
ILP Routing

As described in Sections III-A and III-B, FPGA detailed
routing problems can be transformed into either Boolean
SAT or ILP instances. In this section, we present comparative
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TABLE I
BENCHMARK CIRCUIT CHARACTERISTICS

TABLE II
COMPARISONBETWEEN BOOLEAN SAT- AND ILP-BASED ROUTING

experimental results for these two approaches. We believe
this to be the first such comparison between two concurrent
routing approaches. Using the placement and global routing
solutions generated by VPR [2], routing constraint functions
based on Boolean SAT and ILP were produced to determine
the minimum number of tracks required to route the circuit.
These routability functions were subsequently evaluated by the
GRASP SAT solver [20] and CPLEX version 6.5.2 [29] which
is the most advanced and popular ILP solver. The experiment
was conducted on a SUN Ultra 5 Sparc running SunOS with
512 M of physical memory.

Table II summarizes the results of this experiment. For each of
the Boolean SAT and ILP routing methods, the table shows the

number of corresponding variables (either Boolean or integer),
the number of constraints (CNF clauses or integer linear con-
straints), the solution search CPU time in seconds and the min-
imum routable channel widths found within the runtime limit
(10 h). The SAT search CPU time records only the best runtime
among multiple runs with different variable ordering heuristics.
These data clearly suggest the superiority of the Boolean SAT
approach over the ILP approach. For just two cases (apex7 and
term1), the ILP method was able to route the benchmark circuits
with the same number of tracks as the Boolean SAT method.
For the rest of the circuits, the ILP approach required at least
two more routing tracks per channel than SDR. Even worse, for
alu2 and vda, the solutions found by the ILP approach are al-
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TABLE III
TRACK NUMBER COMPARISON AMONG DIFFERENT FPGA ROUTING ALGORITHMS. THE NUMBER OF TRACKS FOROTHER ROUTERSTHAN

SAT-BASED APPROACHWERE CITED FROM [2] AND [15] FOR REFERENCE

most twice the number of tracks required by SDR, and for the
benchmark k2 circuit, the ILP method failed to find any routing
solution. From the table, we can also observe that the quality
gap between these two methods grows with circuit size. With re-
spect to runtime, SDR is also generally faster than CPLEX. For
every case, SDR was able to find a better routing solution in less
CPU time. For only two cases, C880 and C1355, it took more
than 1 h for SDR to find a routing solution. However, when we
targeted a routing architecture with one more track per channel
(i.e., for C880 and for C1355), SDR took only
1170 and 10 CPU seconds to find a routing solution, respec-
tively. Overall, we can conclude that the Boolean SAT-based
routing approach is more efficient than the ILP approach for
FPGA detailed routing.

B. Performance Comparison With Conventional Routers

Table III presents the performance comparison between the
Boolean SAT router and other conventional one-net-at-a-time
routers on the same FPGA detailed routing problems. The table
shows the number of tracks required to successfully route each
benchmark circuit using the indicated combination of programs
for placement, global routing, and detailed routing. The most
meaningful comparison in this table is between SDR, SEGA
[15], and VPR [2] because they differ only in how detailed
routing was done. The results of using other placers and routers
are provided here just for reference.

These results clearly show that SDR produces better results
than SEGA, achieving routability with fewer tracks. When com-
pared to VPR, however, SDR is slightly worse, on average re-
quiring 1.25 more tracks per channel. More interestingly, the
SAT approach indicated the unroutability of the four bench-
mark circuits highlighted in the table (9symml, alu2, apex7,
too_large) for channel width that VPR was able to route success-
fully (i.e., , respectively). This discrepancy was
traced that VPR is able to change the current global routing con-
figuration when it cannot find a detailed routing solution easily.

Fig. 9. too_largeSAT solving time versus channel width.

In spite of this limitation, the performance of SDR seems to be
very satisfactory as an FPGA detailed router.

Finally, Fig. 9 displays search time of the SAT solver as a
function of channel width for benchmark too-large. The cir-
cuit was proven to be unroutable with six or fewer tracks per
channel and routable with seven or more tracks per channel.
The figure clearly shows that the search time is longest at the
marginal channel width which sits at the boundary be-
tween routability and unroutability. The search time decreases
when the problem becomes either underconstrained (larger)
or overconstrained (smaller ). This behavior is consistent with
the intuition that as the number of tracks increases, the number
of possible solutions and the likelihood of finding one increases.
Conversely, with fewer and fewer tracks available for routing,
the likelihood of quickly discovering that the constraints cannot
be satisfied increases and unroutability can be proved easily.
The range of channel widths that makes the generated routing
problems difficult to prove routable or unroutable seems to be
narrow, usually within two tracks per channel based on the ex-
perimental results. In other words, even though the SAT ap-
proach may fail to find a routing solution with tracks per
channel in a certain routing problem, increasing channel width
to or tracks seems to generate easy SAT instances
whose solutions can be found quickly. This observation leads
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to an interesting possibility for using the SAT approach as an
estimator of the difficulty of detailed routing problems. For in-
stance, if a certain problem cannot be solved within a certain ex-
ecution time, the problem is considered “difficult,” suggesting
the need of more routing resources (tracks) or an alternative
placement/global routing.

Overall, we regard these as very satisfactory initial results
for our preliminary implementation. Specifically, the search-
based Boolean SAT approach seems more capable of handling
complete FPGA routing tasks than the ILP-based routing at-
tack. Also, the ability to determine unroutability—or, at least,
near-unroutability, in the sense that we can find the track counts
where SAT-based routing is able to demonstrate concretely the
absence of any satisfying assignment—could open a new av-
enue of research. For example, it has long been known that
“well behaved” placements have the property that a large frac-
tion of their nets can be embedded with simple pattern routes;
indeed, this is the basis for many board and IC routing strategies
which begin with fast, simple pattern routes, and then move on
to maze-routing only for clean-up, e.g., see [11] for an early dis-
cussion of the idea. With SAT-based routing, we can determine
exactly if a layout is routable with only a limited set of patterns.
The open question is whether we can infer practical routability
from this. It would be extremely valuable if this sort of analysis
is able to predict the onset of “difficulty” in routing, the point at
which many routes must deviate from simple patterns to embed.

V. CONCLUSION

In this paper, we described a new strategy for SAT-based
FPGA detailed routing. We showed that the routing constraints
can be expressed in two different forms: CNF which is suitable
for use with generic SAT solvers and a integer linear constraints
which can be input to ILP solvers. Experimental evaluation of
these two approaches showed that the Boolean SAT has an edge
over the ILP method in speed, solution quality, and modeling
flexibility. In addition, by moving from BDD-based techniques
to search-based techniques, we have been able to solve much
larger SAT instances, which has allowed us for the first time
to formulate the entire routing problem, embedding all nets si-
multaneously, as a single SAT instance. Preliminary results are
encouraging; we have been able to completely route a variety of
FPGA benchmarks and also demonstrate unroutability for some
cases. As we noted earlier, the technique at its core is a variant
of pattern routing, so that our routing and proofs of unroutability
are always with respect to some finite (albeit very large) set of
pattern constraints for the nets. We think that search-based SAT
is a viable vehicle for further work on SAT-based FPGA layout.
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