NATIONAL INSTRUMENT 43-101 TECHNICAL REPORT

On the

EASTSIDE PROPERTY, ESMERALDA COUNTY, NEVADA, UNITED STATES OF AMERICA

Located in the Township 4 North, Range 39 East, Esmeralda County, Nevada, USA

> 38° 10' N Latitude 117° 37' W Longitude

Report Prepared for:

Columbus Gold Corp 1090 Hamilton Street, Vancouver, BC, V6B 2R9

> Prepared by: Kristian Whitehead, P.Geo. Consulting Geologist 2763 Panorama Drive, North Vancouver, BC

EFFECTIVE DATE: March 19th, 2015

Table of Contents

1	Summary	1
2	Introduction And Terms Of Reference	4
3	Reliance On Other Experts	7
4	Property Description and Location	8
5	Accessibility, Climate, Physiography, Local Resources and Infrastructure	15
6	History	18
7	Geology	20
8	Deposit Type	26
9	Exploration	29
10	Sample Preparation, Analysis and Security	40
11	Data Verification	41
12	Mineral Processing and Metallurgical Testing	48
13	Mineral Resource Estimates	50
14	Environmental Concerns	50
15	Other Relevant Data and Information	50
16	Additional Requirements on Development and Production Properties	50
17	Interpretation and Conclusions	51
18	Recommendations	52
19	References	53
20	Date and Signature Page	54
21	Certificate of Author	55
22	Appendix A: Claim List	57

Table of Contents (Detailed)

1	Summary 1.1 Exploration Concept and Status of Exploration 1.2 Conclusion and Recommendations 1.2.1 Phase 1, Drill Program 1.2.2 Additional Work	2 2 2
2	Introduction And Terms Of Reference.2.1Purpose of Report.2.2Geographic Terms .2.3Terms of Reference .2.4Units and Measures .	4 4 5
3	Reliance On Other Experts	
4	Property Description and Location	8 9 .11 .11 .12 .12 .14
5	 Accessibility, Climate, Physiography, Local Resources and Infrastructure 5.1 Accessibility 5.2 Climate and Vegetation 5.3 Property Physiography 5.4 Local Resources and Infrastructure 	.15 .15 .16
6	History 6.1 Overview 6.2 Geochemistry 6.3 Geophysics	.18 .18
7	Geology 7.1 Regional Geologic Setting 7.2 Local Geology 7.2.1 Structural Setting 7.3 Property Geology 7.3.1 Property Geologic Units 7.3.2 Property Structure 7.3.3 Mineralization and Alteration	.20 .21 .21 .21 .22 .22
8	Deposit Type	.26 .26 .27 .27 .27
9	Exploration	

9.2	Geochemistry	
9.3		
-	3.1 2011 Drill Program 3.2 2013 Drill Program	
	 3.2 2013 Drill Program	
-	-	
10	Sample Preparation, Analysis and Security	40
11	Data Verification	41
12	Mineral Processing and Metallurgical Testing	48
13	Mineral Resource Estimates	50
13.1	N.I. 43-101 Compliant Estimates	50
14	Environmental Concerns	50
15	Other Relevant Data and Information	50
16	Additional Requirements on Development and Production Properties	50
17	Interpretation and Conclusions	51
18	Recommendations	52
18.1		
18.2	Phase 2 – Definition and Infill Drill Program	52
19	References	53
19.1	Map Data	53
20	Date and Signature Page	54
21	Certificate of Author	55
22	Appendix A: Claim List	57

List of Figures

Figure 1.1 Property Claim Outline and Surrounding Area	1
Figure 4.1 Eastside Property Location - Nevada, USA	
Figure 4.2 Location of Mineralized Zones and Infrastructure	
Figure 4.3 Eastside Property Claim Map	.10
Figure 4.4 Claim Map Showing Area of Interest and Title	.13
Figure 4.5 Details of Permit NVN-88808	.14
Figure 5.1 Eastside Property Access Map	.15
Figure 6.1 McIntosh and Newmont Surface Rock Samples	. 18
Figure 6.2 Map of CSAMT Lines	.19
Figure 7.1 Regional Geological Setting: Walker Lane	.20
Figure 7.2 Eastside Property Geology Map	
Figure 7.3 Map of Faults within Drilling Area	.24
Figure 8.1 Cross Section of an Epithermal Deposit (Sillitoe & Hedenquist, 2003)	
Figure 8.2 Select Gold Deposits Near the Eastside Property	
Figure 9.1 Cross-Section at 4228833N Showing ES-20,ES-21, & ES32	
Figure 9.2 Mineralized Zones with Anomalous Samples and Rhyolite Domes	. 31
Figure 9.3 Location of Drill Holes	.36
List of Tables	
Table 4.1 Net Proceeds Mining Taxes in Nevada	.11
Table 5.1 Monthly Temperatures and Precipitation for Tonopah NV (WRCC, 2015)	. 16
Table 6.1 CSAMT Line Data	
Table 7.1 Eastside Property Geological Units	
Table 9.1 Gold Assay Values in Cordex Surface Rock Samples	
Table 9.2 Elemental Correlations from Surface Sampling	
Table 9.3 2011 Drill Program Hole Locations	. 32
Table 9.4 2011 Drill Program Significant Intercepts	
Table 9.5 2013 Drill Program Hole Locations	
Table 9.6 2013 Drilling Significant Intercepts	. 35
Table 9.7 Lab Preparation Duplicate Details	.37
Table 9.8 Umpire Lab Check Assay Details	. 38
Table 9.9 Field Duplicate Sample Details	. 38
Table 11.1 Location Verification Results	.41
Table 11.2 Standards Results	
Table 11.3 Field Descriptions and Locations of Samples	
Table 11.4 Surface Rock Chip Sample Assay Results	
Table 11.5 Tabulated Comparison of Values of Surface Samples Collected	
Table 11.6 Screen Metallic Assay Sample Descriptions	
Table 11.7 Screen Metallic Assay Sample Results	
Table 11.8 Screen Metallic Assay Results Comparison	
Table 11.9 Reverse Circulation Pulp Reject Samples	
Table 11.10 Tabulated Comparison of Values of RC Pulp Reject Samples	
Table 12.1 Samples Submitted for Metallurgical Test, Intervals in Feet (KCA, 2014)	
Table 18.1 Recommended Phase 1 Exploration Program	. 52
List of Photos	
Photo 5.1 View of Eastside Property looking west	.16
Photo 5.2 View from property of power lines and solar plant	
Photo 7.1 Mineralized silica vein cross-cutting rhyolite flow-banding	. 25
Photo 8.1 Boss Mine pit	.28
Photo 9.1 Drill Rig on the Eastside Property	. 29

1 Summary

Kristian Whitehead, a consulting geologist ("the author") was retained by Columbus Gold Corp. ("the Company") to prepare an independent Technical Report on the Eastside Property ("the Property"). The report summarizes the history of mining and exploration activity on the Eastside Property concessions and suggests a program for on-going exploration.

The Property consists of 574 unpatented lode mining claims in the Monte Cristo Range, Northwest Esmeralda County, Nevada and equals approximately 11,906 acres. The Property concessions are 100% controlled by the Company, subject to underlying lease agreements and royalties under terms specified in (Section 4.4 below).

The Property is located in the Walker Lane deformation belt that runs northwest, parallel to the Nevada-California border. The Walker Lane is host to numerous gold and silver deposits including the Round Mountain Mine (with 10.2M oz Au production from 1977-2006 (Hanson, 2006) and 1.38M oz Au & 1.87M oz Ag Proven and Probable Reserves as of Dec 31, 2014 (Round Mountain, USA, 2014)), Comstock Lodes and numerous other multimillion ounce deposits. These deposits can be of both high-sulfidation and low-sulfidation with the former more common in the south and the latter in the north.

Cautionary statement: Investors are cautioned that the potential quantity indicated above has not been verified by the author and may not be indicative of the Property which is the subject of this report. It has been provided only for illustration purposes.

The Property claim outline is shown below in Figure 1.1 including its proximity to Tonopah, Nevada:

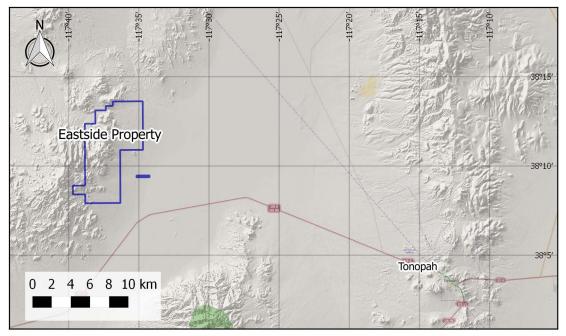


Figure 1.1 Property Claim Outline and Surrounding Area

Mineralization occurs in breccia zones with quartz veins hosted in altered volcanic and subvolcanic rocks with the highest gold values encountered on the Property to date closely associated with breccia zones along the margins of intrusive rhyolite flow-domes. Mineralization is low sulfidation in character with elevated grades of gold ,silver and to a lesser extent mercury. Elevated gold values correlated with depth suggests a vertical zoning of the gold mineralization also characteristic of low-sulfidation epithermal systems.

Gold-bearing fluids are thought to have moved both vertically and laterally along structures. High angle structures appear to localize the highest-grade gold concentrations. In these zones, multiple episodic boiling of hydrothermal fluids produced banded silica veins, quartzadularia veins and breccia zones that concentrated gold of which is observed exposed both on surface and within drill chip samples. Fluids which moved laterally pervasively invaded the adjacent rhyolite and andesite rock units creating a lower grade halo of gold concentrations as fracture filling stockwork veins and zones of silicification.

1.1 Exploration Concept and Status of Exploration

Exploration on the property through the use of geochemical and geophysical methods has been conducted since 1991. Significant gold mineralization was determined by recent surface sampling of outcrops on the property. Exploration to date includes; 2312 surface geochemical samples, a Controlled-source, audio-frequency, magneto, telluric (CSAMT) geophysical survey over the northern section of the property as well as 36 reverse circulation drillholes totalling 7,515m.

1.2 Conclusion and Recommendations

In the qualified person's opinion based on the review and appraisal of the regional, local geological and exploration data provided and researched it is concluded that the Property is of merit and possesses a good potential for additional discovery of gold and silver mineralization. In addition, the Property hosts a power transmission line, available water, suitable locations for mining infrastructure, temperate climate in addition to being located in a currently active mining jurisdiction making it a worthy mineral exploration target which warrants the following phased exploration program(s).

1.2.1 Phase 1, Drill Program

An initial phase work program is proposed which would include additional drilling focused in the area currently most actively explored in the north of the Property. An additional 50 drill holes totaling approximately 12,000 meters of Reverse Circulation (RC) drilling primarily designed to explore for mineralization both up and down dip as well as between previously encountered mineralization in prior drilling is recommended. This work will provide additional details on strike length and width extents of the currently intersected gold and silver mineralized zones, veining and structures. An additional 20 drill holes totaling approximately 5000 meters of RC drilling is proposed in areas of the Property not previously tested which are defined by gold anomalies greater than 30 ppb reported in surface samples within rhyolite, rhyolite tuffs and andesite geological units.

A 10 hole, 2500 meter diamond drill program is recommended to twin 2011 and 2013 drill holes that encountered significant intercepts of gold and silver mineralization. Core drilling will provide additional information for petrographic, metallurgical and structural studies.

An estimated cost of the first phase program is \$2,706,300.

1.2.2 Additional Work

This work includes compilation of all the historical geological, geophysical and geochemical data available for the Property, and generating a digital database to be used to generate 3-D structural and geologic models to assist with future exploration targets.

1. Phase 2, Definition Drill Program

If the above Phase 1 work plan lends positive results a phase 2 program at an estimated cost of \$4,000,000 is warranted. Recommendations for phase 2 include:

Infill and definition drilling of 30,000+ meters.

- Environmental baseline study.
- Comprehensive bulk sample metallurgical test work.
- Resource estimate
- Preliminary economic evaluation.

2 Introduction And Terms Of Reference

2.1 Purpose of Report

This Independent Technical Report was commissioned by Columbus Gold Corporation (Columbus). a company incorporated in British Columbia, Canada and listed on the Toronto Stock Exchange (TSX-V) under the symbol CGT. Which has offices at 1090 Hamilton Street, Vancouver, BC, V6B 2R9.

The Eastside Property is located in the Esmeralda County, State of Nevada, USA. This report has been prepared in compliance with National Instrument 43-101: Standards of Disclosure for Mineral Projects, Form 43-101F1 and Companion Policy 43-101CP.

The sources of information accessed in preparation of this report are given in the references section at the end of this report (Section 19) as well as information and discussions with the Company's personnel, including those at Cordilleran Exploration Company, LLC. (Cordex) which has been conducting the geological work on the Property on behalf of Columbus since 2011.

The author is an independent consulting geologist and visited the Eastside Property for a period of one day, as well as spent one day prior and two days post property visit reviewing data and reports available on the property with Cordex personnel in their Reno, Nevada office. During this visit the author was acting as an independent consultant to the Company to appraise the Property on its potential and provide opinion on future exploration and cost to be conducted on the Property. There has been no further exploration work on this Property subsequent to the qualified person's last site inspection. The scope of the authors' visit included a one day field visit, January 21, 2015 where various works were reviewed which included; sampling approaches, method of sample collection, claim monument and drill collar location verification, review of exposed surface geology, access roads to and within the Property as well as collected 13 surface rock chip samples.

The qualified person as defined in NI 43-101 and author of this report is Kristian L. Whitehead. Kristian L. Whitehead is an independent Consulting Geologist with over 10 years experience working on precious metal mineralization/deposits with over eight years experience specifically on precious metal mineralization/deposits located in North America.

The qualified person (QP) has no prior involvement in or with the Eastside Property and is responsible for all items in this report.

The author has no reason to doubt the reliability of the information provided by the Company. The author reserves the right, but will not be obliged; to revise the report and conclusions if additional information becomes known subsequent to the date of this report.

2.2 Geographic Terms

The following geographic areas and features are briefly described for orientation with respect to the text, tables, and figures.

Tonopah: a small town in the state of Nevada, USA located approximately 40 km (25 miles) east of the Property.

Monte Cristo Mountains: are a mountain range in Nye and Esmeralda Counties, Nevada.

Eastside Property: a property of which consists of 574 unpatented lode mining claims located in the Monte Cristo Range, northwest Esmeralda County, Nevada.

Walker Lane: a deformation belt that runs northwest, parallel to the Nevada-California border. The Walker Lane is host to several gold and silver deposits.

2.3 Terms of Reference

AOI - Area of Interest.

AvCv – Average Coefficient of Variation, calculated as a square root of the average relative variance. Acceptable AvCv for data pairs depends on the deposit type.

BLM – Bureaux of Lands Management, an agency within the United States Department of the Interior that administers more than 247.3 million acres (1,001,000 km2) of public lands in the United States constituting one-eight of the landmass of the country.

BMRR - Bureau of Mining Regulation and Reclamation

Cordex – refers to the Cordilleran Exploration Company, LLC.

CSAMT - Controlled-source, audio-frequency, magneto, telluric.

Epithermal – refers to mineralization formed near the earth's surface and at relatively low temperatures.

GIS - Geographic Information Systems.

GPS - Global Positioning Systems.

Indicated Resources - are economic mineral occurrences that have been sampled (from locations such as outcrops, trenches, pits and drillholes) to a point where an estimate has been made, at a reasonable level of confidence, of their contained metal, grade, tonnage, shape, densities, physical characteristics.

K-Ar - Potassium-Argon.

Low sulfidation epithermal gold deposit – gold mineralization associated with lower percentages of sulfide minerals and silicate alteration minerals such as quartz and adularia.

Measured Resources - are indicated resources that have undergone enough further sampling that a 'competent person' (defined by the norms of the relevant mining code; usually a geologist) has declared them to be an acceptable estimate, at a high degree of confidence, of the grade, tonnage, shape, densities, physical characteristics and mineral content of the mineral occurrence.

M - Million.

Ma - Million years.

NAD – North American Datum.

NDEP - Nevada Division of Environmental Protection.

NOI - Notice of Intent.

Net Smelter Returns (NSR) – means the proceeds actually received, or deemed to have been received from the sale or deemed sale of mineral substances produced from the premises, less the charges or costs of producing such mineral substances.

Probable Ore Reserve - is the part of Indicated resources that can be mined in an economically viable fashion.

Production Royalty - is paid in variable or fixed payments based on sales revenue received by a mining operator in return for mining output.

Proven Ore Reserve - is the part of Measured resources that can be mined in an economically viable fashion. It includes diluting materials and allowances for losses which occur when the material is mined.

Property – refers to the Eastside Property.

RC – Reverse Circulation.

RMA – Reduced Major Axis, a linear regression technique that takes into account errors in two variables, the original samples and their duplicates. An ideal RMA regression result will have both an intercept of zero and a slope of one within the 95th percentile confidence range.

2.4 Units and Measures

- Meters above sea level (masl).
- 1 ounce (oz) [troy] = 31.1034768 grams (g)
- 1 short ton = 0.90718474 metric tonnes
- 1 troy ounce per short ton = 34.2857 grams per metric tonne = 34.2857 ppm
- 1 gram per metric tonne = 0.0292 troy ounces per short ton
- 1 foot (ft) = 0.3048 meters (m)
- 1 mile (mi) = 1.6093 kilometers (km) = 5280 feet
- 1 meter = 39.370 inches (in) = 3.28083 feet
- 1 kilometer = 0.621371 miles = 3280 feet
- 1 acre (ac) = 0.4047 hectares
- 1 square kilometer (sq km) = 247.1 acres = 100 hectares = 0.3861 square miles
- 1 square miles (sq mi) = 640 acres = 258.99 hectares = 2.59 square kilometers
- Degrees Fahrenheit (oF) 32 x 5/9 = Degrees Celsius (oC)

3 Reliance On Other Experts

This report has been prepared by Kristian L. Whitehead. The author has relied on ownership information and information developed by the Company and Cordex personnel. The author has researched and confirmed property title and mineral rights to the Eastside Property through documents provided by Cordex. The author expresses no further opinion as to the ownership status of the property.

This report is based upon personal examination, by the author, of all available reports on the Eastside Property. The author visited the Property on January 21, 2015 to appraise the geological environment and assess the Eastside Property.

- The information, opinions and conclusions contained herein are based on:
- Information available to the author at the time of preparation of this report;
- Assumptions, conditions, and qualifications as set forth in this report; and
- Data, reports, and other information supplied by the Company and other third party sources.
- The authors visit of the Property on January 21, 2015.
- The authors review of all available reports, retained samples and legal documents located at the Cordex office located at 573 East, Second Street, Reno, Nevada, USA.

As of the date of this report, the author is not aware of any material fact or material change with respect to the subject matter of this technical report that is not presented herein, or which the omission to disclose could make this report misleading.

4 Property Description and Location

4.1 Location

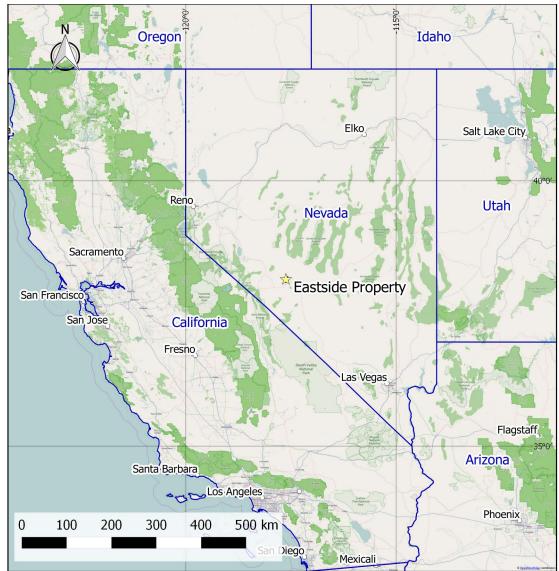


Figure 4.1 Eastside Property Location - Nevada, USA

The Eastside Property is located approximately 40 km (25 miles) west of Tonopah in Esmeralda County, along the eastern front of the Monte Cristo Range in the state of Nevada, USA. The Property can be accessed by traveling west from Tonopah, Nevada for 20 miles on US Highway 95, then turning north on the Gilbert/Crow Springs road (between mile marker 38 and 39) and traveling north for 4.5 miles to the Property claim boundary. The centre of the property is located at approximately 38° 10' N Latitude and 117° 37' W Longitude.

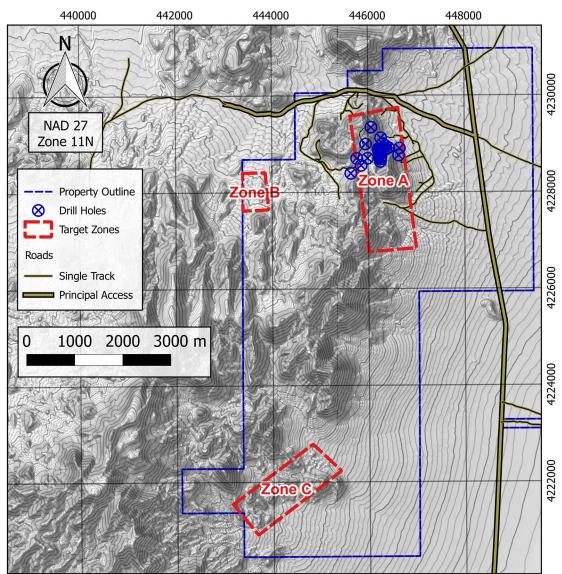


Figure 4.2 Location of Mineralized Zones and Infrastructure

4.2 Mineral Titles

The Property consists of 574 unpatented lode mining claims in the Monte Cristo Range, northwest Esmeralda County, Nevada. The Eastside claim block consists of 35 Eastside claims, 342 ES claims, 194 DP claims and 3 ESW claims. The Eastside claim block lies within the following: Sections 4, 5 and 9, unsurveyed Township 3 North, Range 38½ East and Sections 4-9, partially Surveyed Township 3 North, Range 39 East and Sections 16, 21, 28, 33, Unsurveyed Township 4 North, Range 38½ East and Sections 3-5, 7-10, 15-22, 27-35, Unsurveyed Township 4 North, Range 39 East, M.D.B&M., Esmeralda County, Nevada. Full details of the claims, including BLM Serial Number, can be found in Appendix A: Claim List.

Each claim was located (staked) using a handheld GPS and marked with four, 2x2 corner posts and a 2x2 location monument. The author did not verify all claim posts during the property visit, monuments verified are provided in Table 11.1.

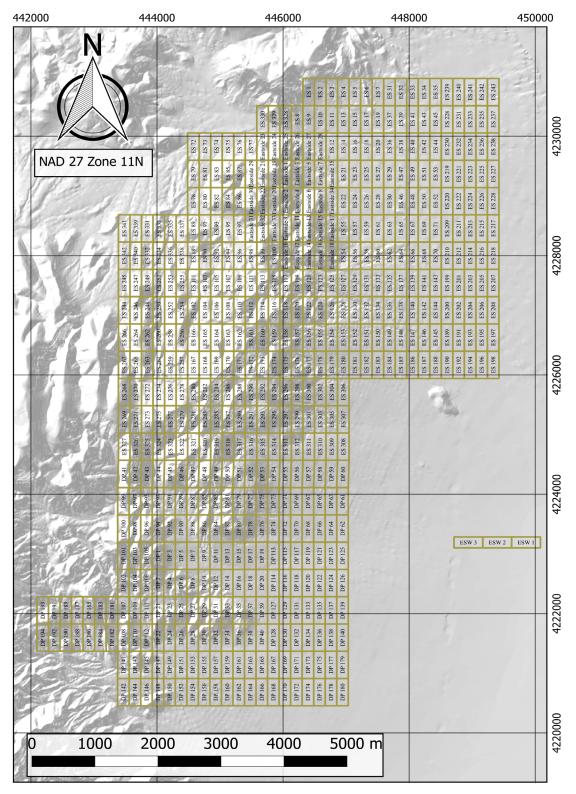


Figure 4.3 Eastside Property Claim Map

4.3 Mineral Rights in Nevada on Federal (U.S.) Land

The Bureau of Land Management (BLM) administers unpatented claims on Federal lands under the Mining Law of 1872. Current fees for the location of claims are \$155 for the Maintenance Fee, \$20 for the Processing Fee, and \$37 for the one-time initial Location Fee (BLM Filings and Fees, 2015). Annual Maintenance Fees for claims, payable by noon on September 1st of each year, are \$155 for the BLM maintenance fee and \$10.50 for the County Intent to Hold fee. Columbus has represented that all of the Property's claims are valid until August 31, 2015, after which the annual Maintenance will be due. The annual fees are \$94,997 per year for the current 574 claims comprising the Property.

Unpatented federal mining claims in Nevada are located in the field with four corner posts and a location monument (both typically 2in x 2in by 4ft wooden posts). Under the Mining Law of 1872 the holder (locator) of mining claims on BLM-administered land has the right to explore, develop and mine minerals on their claims without payment of royalties to the Federal Government. The United States of America maintains ownership over the minerals while they are in the ground, however. The BLM, in their 2016 Budget (BLM 2016 Budget, 2015), announced plans to introduce a royalty of "not less than five percent of gross proceeds" on gold, silver, lead, zinc, copper, uranium, and molybdenum mined on BLMadministered land. This change in leasing is not meant to affect existing claims. There is also a proposal to increase annual Maintenance Fees.

Nevada taxes on mining are calculated against royalties paid to property owners or claim holders and against net proceeds of mining. Royalties paid to property owners or claim holders are taxed at 5% with no deductions. If net proceeds of a mine in the year exceed \$4 million, the tax rate is 5% of the net proceeds. If it is less than \$4 million the tax rate is as outlined in Table 4.1 below.

Net Proceeds as a % of Gross Proceeds	Net Proceeds Rate of Tax %				
Less than 10	2.0				
10 or more but less than 18	2.5				
18 or more but less than 26	3.0				
26 or more but less than 34	3.5				
34 or more but less than 42	4.0				
42 or more but less than 50	4.5				
50 or more	5.0				

Table 4.1 Net Proceeds Mining Taxes in Nevada

A 2014 ballot measure in Nevada asked voters whether or not the current five percent tax cap on mining should be removed from the Nevada Constitution. This ballot was narrowly defeated keeping the previous 5% cap on mining tax in place.

4.4 Property Legal Status

The 574 claims in the property include the 35 Eastside claims with title in the name of McIntosh Exploration Ltd (transferred from Larry and Susan McIntosh (McIntoshes) as of June 16, 2014), and the 342 ES and 194 DP claims with title held by Cordex. Columbus' legal rights to these claims is governed by two agreements, the first is a Mineral Lease Agreement, dated April 3rd, 2009, between Larry and Susan McIntosh and Cordex; and the

second, an Amended and Restated Agreement dated January 1, 2012, between Cordex and Columbus.

4.4.1 Mineral Lease Agreement Between Cordex and McIntoshes

The agreement signed April 3rd, 2009 covered the leasing for the Eastside claims from Larry and Susan McIntosh (the lessor) to Cordex. Originally the property consisted of 4 claims, Eastside 1-4, all of which had title under the name of Larry and Susan McIntosh. It covered the details of the lease of the claims including Cordex's obligations to keep the claims in good standing, an Advance Royalty, and a Production Royalty.

The Advance Royalty, subject to Cordex's right to terminate the agreement, required that the following amounts, in USD, are paid to the Lessor as an advance royalty:

- \$5,000 paid on execution of the Agreement for year 1,
- \$10,000 for year 2 of the agreement,
- \$15,000 for year 3 of the agreement,
- \$20,000 for year 4 of the agreement,
- \$25,000 for year 5 of the agreement, and
- \$50,000 for each year thereafter.

This Advance Royalty required that for years 4 and beyond (paid on the 3rd effective anniversary date onwards, annually) the payments be adjusted for inflation or deflation as set out in the Consumer Price Index published by the U.S. Department of Labor, Bureau of Labor Statistics. All Advance Royalty payments are deductible cumulatively as a credit against the Production Royalty.

The Production Royalty owed to the McIntoshes under the lease agreement is a 2.0% Net Smelter Return. Cordex has an option to permanently reduce the royalty rate to 1.0% at any time during the agreement by paying the Lessor One Million Five Hundred Thousand Dollars (\$1,500,000.00 USD).

The royalty applies to not only the original 4 Eastside 1-4 claims, but also all claims subsequently located by either party within an Area of Interest (AOI). This AOI covers any mining claims fully or partially within a rectangle drawn from intersecting lines drawn parallel to, and one mile from, the original 4 Eastside 1-4 claims. Claims that fall within the AOI at time of writing include the 31 Eastside claims located by the McIntoshes subsequent to the agreement and 124 ES claims located by Cordex. See Figure 4.4 for details.

4.4.2 Agreement Between Columbus and Cordex

The terms of the agreement between Columbus and Cordex are given in a document dated January 1st, 2012 titled "Amended and Restated Cordex Agreement". This agreement defines the title Columbus has over numerous properties in Nevada and services to be provided by Cordex for Columbus.

Under the agreement Cordex is to provide services for Columbus including to: act as an operator for Columbus on existing properties covered by the agreement; carry out exploration and development activities on these properties on behalf of Columbus; design and carry out generative exploration activities in Nevada, and elsewhere in the U.S. where mutually agreed, on behalf of Columbus; act as operator for Columbus on all new properties; and carry out all related tasks of similar nature on new and existing properties for Columbus.

Claims are to be held under Cordex's name on behalf of Columbus until, at the election of Columbus, they are transferred or assigned to them or their designee.

Columbus has agreed to pay Cordex \$200,000 USD per annum (in monthly installments of \$16,667 USD) as a management fee for services under the agreement; to prepare programs and budgets of not less than \$600,000 USD (inclusive of management fee) and to fund these programs; and to maintain financial resources to meet its obligations under the agreement.

The agreement also sets out a royalty on new properties for Cordex: for new claims staked by Cordex the royalty is a 2.0% NSR; for claims or interests acquired from third parties burdened by an NSR, the Cordex royalty is the difference between 4.0% and the existing third party royalties however not to exceed 2.0% nor be less than 1.0%; and for claims or interests burdened by a different kind of royalty payment other than an NSR the parties will mutually agree to a Cordex royalty that is not less than the monetary equivalent of a 1.0% nor more than 2.0% NSR.

As it applies to the Property this means that all claims fully or partially within the AOI, whether title is held by Cordex or McIntoshes, are subject to a 4.0% NSR half of which is due to Cordex and the other half due to the McIntoshes. The claims outside the AOI are subject only to a 2.0% NSR due to Cordex. See Figure 4.4 for a map of claim ownership that shows which claims fall within the AOI.

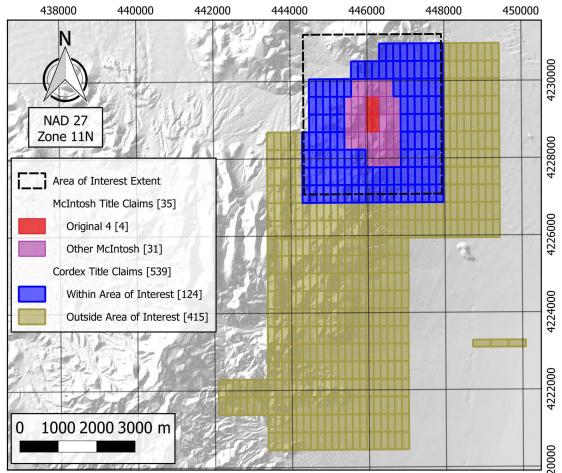


Figure 4.4 Claim Map Showing Area of Interest and Title

4.5 Surface Rights

The surface within the Property is managed by the BLM. There is no private surface or Nevada State land within the Property.

4.6 Permitting

To date, all Property exploration works are permitted and authorized under Notice of Intent (NOI), (NVN-88808) which is approved by both the BLM and NDEP. This current NOI authorizes up to a total of 4.5 acres of surface disturbance within the project area which includes the construction of drill sites, sumps and roads. To date, a total of 4.5 acres of surface area has been disturbed of which 1.1 acres has been reclaimed. The 1.1 acres of reclaimed surface disturbance is currently in the process of review by the BLM and NDEP.

In accordance with 43 Code of Federal Regulations (CFR) 3809 and Nevada Administrative Code (NAC) 519A, Cordex submitted a Plan of Operations NVN-093181/Nevada Reclamation Permit (Plan) in September 2014 (revised January 2015) to the BLM and the Nevada Division of Environmental Protection (NDEP), Bureau of Mining Regulation and Reclamation (BMRR). In the new permit, Cordex proposes to create approximately 35.7 acres of additional surface disturbance for a total Project-related disturbance of 40.2 acres. Project-related activities would include: exploration drilling, construction of roads, drill pads, and sumps, as well as maintenance of pre-1981 roads. The final granting of the Plan of Operations permit is subject to both BLM and NDEP approval.

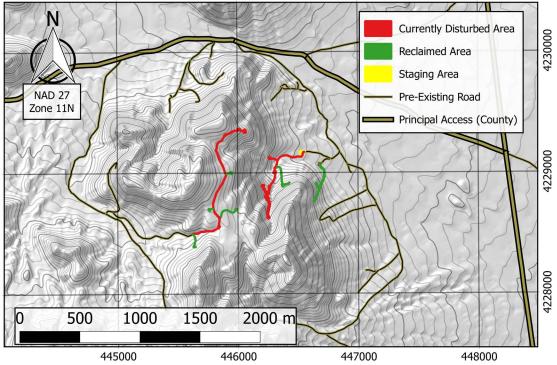


Figure 4.5 Details of Permit NVN-88808

5 Accessibility, Climate, Physiography, Local Resources and Infrastructure

5.1 Accessibility

The Property is accessed off of Highway 95 approximately 32km (20 miles) west of Tonopah, Nevada, by a county-maintained 2WD-accessible dirt road that leads to the Property and exploration roads. Access into the Property by unmaintained roads is available at several points 8-12 km from the highway. The unmaintained roads support dispersed recreational activities on the property such as hunting, rock collecting, and other similar activities.

Cordex has built and actively maintains approximately 3km of roads within the Property for year round exploration access.

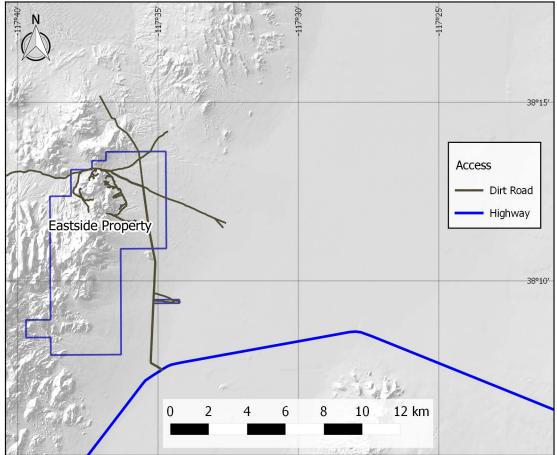


Figure 5.1 Eastside Property Access Map

5.2 Climate and Vegetation

The Property is located near the eastern edge of the Basin and Range physiographic region of the United States of America, specifically within the Great Basin Desert. This region is characterized by mountain chains and flat arid valleys or basins. It is a cold desert that is caused by the rain shadow from the Sierra Nevada mountains to the west. Vegetation is sparse and typical for the region with the predominant flora being shadscale and sagebrush. Summers are hot and dry with occasional thunderstorms; winters are cold with occasional snow but little accumulation. Total precipitation averages less than 13cm per year. As a result the property is accessible year round for exploration purposes except on rare occasions in winter where snow might accumulate or in summer where a flash flood damages access roads.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Avg Max. Temp (C)	6.8	9.4	13.2	17.4	23.1	29.0	33.1	31.8	27.0	20.2	12.1	7.2	19.2
Avg Min. Temp (C)	-7.1	-4.6	-2.2	0.8	5.7	10.6	13.8	12.8	8.7	2.9	-3.2	-7.0	2.6
Avg Total Precip (cm)	1.0	1.2	1.2	0.9	1.4	0.8	1.3	1.3	1.1	1.0	1.0	0.7	12.9
Avg Total SnowFall (cm)	7.6	7.4	5.8	2.8	1.0	0.0	0.0	0.0	0.0	0.3	3.6	4.8	33.0
Avg Snow Depth (cm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Table 5.1 Monthly Temperatures and Precipitation for Tonopah NV (WRCC, 2015)													

5.3 Property Physiography

The Property varies in altitude and terrain with modestly sloping, desert alluvial wash at the lower altitudes from 1500m, and rocky, rugged peaks and ridges up to 2200m. Vegetation is sparse and wildlife is minimal with some introduced sheep known in the area.

The Property contains several favorable locations conducive for potential tailings storage areas, potential waste disposal areas, heap leach pads areas and potential processing plant sites.

Photo 5.1 View of Eastside Property looking west

5.4 Local Resources and Infrastructure

The nearest population centre to the Eastside Property is the town of Tonopah, a censusdesignated-place (CDP) and county seat of Nye County, Nevada. As of the 2010 census it has a population of 2,478 and an area of 16.2 square miles (42 square kilometres).

The town is served by two U.S. highways, Routes 6 and 95, which merge leading west out of Tonopah and are taken to the Property. The immediate area is not served by rail, however there is general aviation facilities at the Tonopah Airport. The closest large commercial airports are McCarran International at Las Vegas and Reno-Tahoe International in Reno.

Tonopah has restaurants, hotels, hardware stores and other amenities expected in a town of its size in addition to what is needed to serve the highway traffic, industry and tourists.

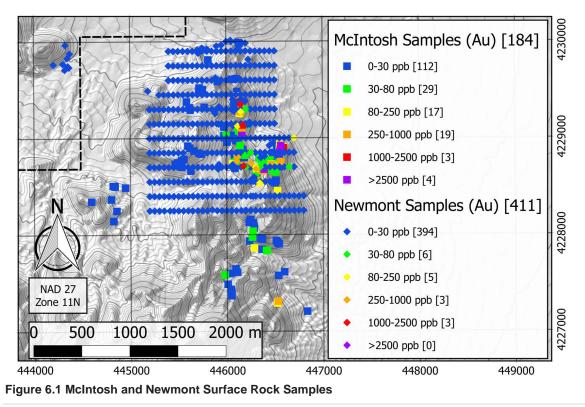
The Property has readily accessible power, a 120 Kilovolt power line passes through the northern portion of the claim block. The Crescent Dune Solar Energy Project, a 110 Megawatt Solar Thermal plant, the largest molten salt power tower in the world is located a few km to the east of the Property. (see Photo 5.2) Additionally, the Property contains a shallow water well, although is not currently permitted for use.

Photo 5.2 View from property of power lines and solar plant

6 History

6.1 Overview

There are few known historic workings on the Property considering it is on the main route between the short lived, but high-grade discovery at Gilbert and the major gold and silver deposits of Goldfield and Tonopah. There is one adit and a few prospect pits scattered across the Property.


In 1991, Canyon Resources Corp. proposed a 900 meter, 6 hole, reverse circulation exploration drill program. Old drill pad sites as well as access roads to the sites remain visible on the eastern margin of the property however no data is available to confirm that drilling was ever conducted and no data for this program was knowingly preserved.

In 1999, Mr. Larry L. McIntosh staked 4 claims, Eastside 1,2,3 & 4 and collected 184 rock chip samples. Subsequently, McIntosh leased his claims to Newmont Mining Corporation who exited their least agreement in 2004 after collecting 411 rock chip samples and 43 stream sediment samples, and performing a 7-line CSAMT survey.

Newmont exited the lease agreement in 2004. On April 3, 2009 the property was leased to Cordilleran Exploration Company LLC (Cordex). Details of work performed by Cordex can be found in section 9, Exploration.

6.2 Geochemistry

The 184 surface rock chip samples collected by McIntosh were assayed by ALS Chemex. All data available for these samples was transferred to Cordex and incorporated into the current Cordex database. Of the 184 samples assayed 39 samples reported gold grades greater than 100 ppb with 7 of the 39 samples reporting greater than 1000 ppb gold.

Newmont collected 411 rock chip samples from 1999-2004, 342 of which were in a grid comprised of 12 lines. In addition, Newmont collected 43 stream sediment samples from streambeds that are fed by the main stream drainages in the northern portion of the Property. Figure 6.1 shows a map of samples collected by McIntosh and Newmont.

6.3 Geophysics

During the period of September 14 through 22, 2004, Zonge Geosciences Incorporated conducted a Controlled-source, audio-frequency, magneto, telluric (CSAMT) geophysical survey on behalf of Newmont which was comprised of 7 lines, 1600 meters in length, spaced 300 meters apart, oriented east-west for a total of 11.2 line km's.

	NAD27 UTM	NORTH (m)	NAD27 UT		
Line #	Start	End	Start	End	Length
29900 N	4229900	4229900	445200	446800	1600
29600 N	4229600	4229600	445200	446800	1600
29300 N	4229300	4229300	445200	446800	1600
29000 N	4229000	4229000	445200	446800	1600
28700 N	4228700	4228700	445200	446800	1600
28400 N	4228400	4228400	445200	446800	1600
				Total	11200

Table 6.1 CSAMT Line Data

The survey results were presented as color-shaded pseudo sections plotted at a scale of 1:10000. One-dimensional inversions of Cagniard resistivity and two-dimensional inversions of the far-field data were included. In these plots, low resistivities were shown with warm colors (red, violet) and high resistivities are shown in cool colors (blue, white). The data was presented as a smooth-model inversion which shows gradational changes in resistivity, rather than abrupt changes, irrespective of the actual geologic structure (Zonge Geosciences Inc, 2004).

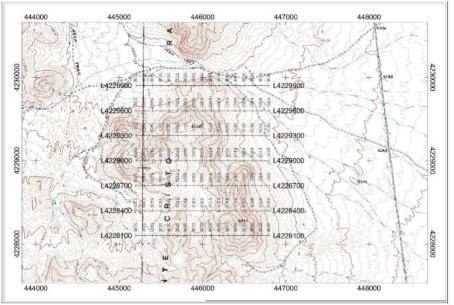


Figure 6.2 Map of CSAMT Lines

7 Geology

7.1 Regional Geologic Setting

The Eastside Property is located in the Walker Lane trough that runs northwest, parallel to the Nevada-California border. It is a lithologic, structural and metallogenic belt that forms the western margin of the Central Basin and Range physiographic province. Dextral deformation in the Walker Lane accounts for approximately 20% of the boundary motion between the Pacific Plate and the North American Plate (Faulds & Henry, 2008). Northwest trending dextral faults are common in the Walker Lane with overprinting and interaction with basin and range normal faults.

Primary lithologic units within the Walker Lane include mid Miocene volcanics that formed when the western margin of the Basin and Range province was a volcanic arc approximately 15 Ma. This belt is bounded to the west by the Sierra Nevada range and to the east by a series of sedimentary allochthons.

The Walker Lane is host to numerous Au-Ag epithermal deposits including the Round Mountain Mine currently operating as a joint-venture between Kinross Gold Corporation and Barrick Gold Corporation (with 10.2M oz Au production from 1977-2006 (Hanson, 2006) and 1.38M oz Au & 1.87M oz Ag Proven and Probable Reserves as of Dec 31, 2014 (Round Mountain, USA, 2014)), Comstock Lodes and numerous other multimillion ounce deposits. These deposits can be of both high-sulfidation and low-sulfidation with the former more common in the south and the latter in the north.

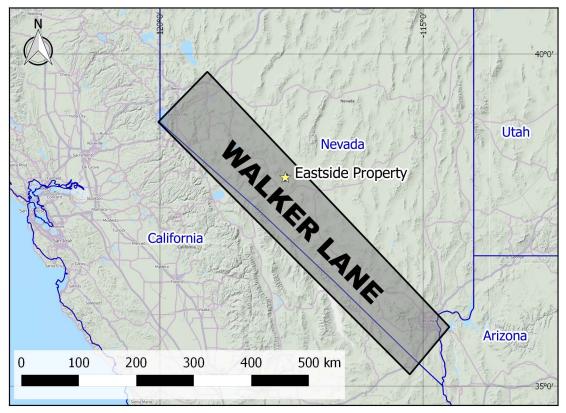


Figure 7.1 Regional Geological Setting: Walker Lane

7.2 Local Geology

The Property is underlain by highly deformed rocks of the Ordovician Palmetto Formation and the Middle Triassic Excelsior Formation. The older Palmetto formation is dominantly interbedded black chert and siliceous slate with minor dark-grey limestone. The Excelsior formation is composed predominantly of highly altered pyroclastics and lavas. These two groups are overlain by a sequence of Oligocene to Miocene aged volcanics composed of rhyolites, andesite lahars, and felsic tuff breccias. The youngest units in the area include Pliocene aged basalts and flows.

7.2.1 Structural Setting

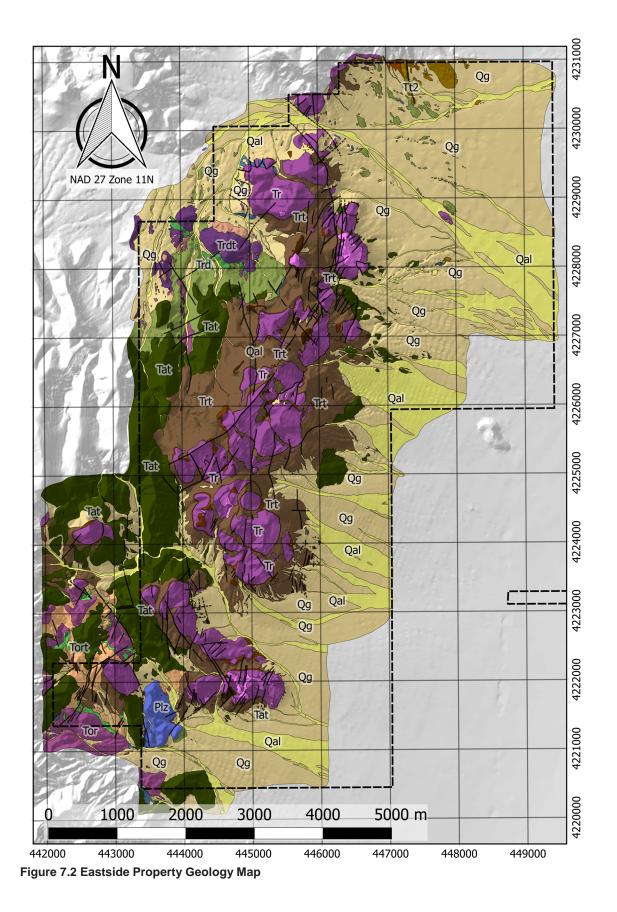
The regional structural setting is predominantly NW to WNW trending strike-slip faults which makes up most of the Walker Lane Structural Province. Older thrust faulting and folding is evident in areas where Paleozoic and Mesozoic units are exposed. N to ENE strike-slip and normal faulting has been mapped on the Property by Cordex geologists.

7.3 Property Geology

Where bedrock is exposed, geology within the Property consists largely of Miocene and younger rocks, specifically the Gilbert andesites, rhyolite tuffs and sedimentary tuff-breccias, as well as flow-banded and devitrified rhyolite flow-domes. In areas where outcrop is concealed it is covered by quaternary, unconsolidated gravel and talus with lesser streambed alluvium. A Paleozoic sedimentary unit is exposed in the southwest corner of the Property. The Ordovician Palmetto Formation and the Middle Triassic Excelsior Formation underlay the Tertiary volcanic rocks at Gilbert and should be present at depth however, are not exposed at Eastside.

Exposed on surface a total of 41 Tertiary rhyolite flow domes ranging in size from approximately 100 meters to greater than 1km in diameter follow a general NE-ENE trend which coincides with prevalent NE-ENE trending fault structures and breccia zones on the property.

Breccia zones containing quartz encrusted vugs, banded silica and silicic stockwork veining are observed along the margins of intrusive rhyolite flow-domes and are closely associated with encountered mineralization to date.


A full list of mapped units can be found in section 7.3.1.

7.3.1 Property Geologic Units

Qal	Alluvium: stream-bed alluvium
Qg	Alluvium: recent, unconsolidated gravel and talus
Tb	Basalt: vesicular basalt flows; late Miocene
Та	Andesite: hornblende-andesite plug, dikes and flows; late Miocene
Tr	Rhyolite: flow-banded and devitrified rhyolite flow-domes. K-Ar date is 7.2 Ma (late Miocene). TOpr - Opalized rhyolite. Tvit - Vitrophyre at margins of rhyolite intrusives.
Trt	Rhyolite: tuff, tuffaceous sedimentary tuff-breccia and conglomerate with rhyolite clasts. Mostly ejecta from the rhyolite domes. Topt - Opalized tuff
Tat	Gilbert Andesite: crystal-rich andesite-to-dacite flows, lahars and tuff-breccias. Two K-Ar -dates indicate an age of 15 Ma (middle Miocene)
Tsu	Sedimentary rocks of Mcleans: platy siltstone, shale and clay-rich, fine-grained sandstone. Contains abundant diatomite. These rocks are Consistent with fresh water lake bed sediments
Tor	Older rhyolite: flow-banded rhyolite breccia. K-Ar dates are 18.6 and 19.2 Ma (middle Miocene) Torvit - vitrophyre at margins of older rhyolite intrusive
Tort	Older rhyolite tuff. sedimentary tuff, tuff breccia and ejecta related to the older rhyolite flow-dome complex
Trd	Porphyritic dacite and coarse-grained porphyritic rhyodacite that intrudes the Blair Junction Andesite (Ta). Appears hydrothermally altered, in part, with small veins of quartz, day and calcite. Age is early Miocene.
Trdt	Porphyritic dacite tuff and tuff-breccia with clasts of porphyritic dacite. Ejecta from the dacite intrusive.
Ts	Blair Junction Andesite: flows, lahar and flow-breccia of andesite-to-dacite. K-Ar dating of the Blair Junction ranges in age from 15.7 to 22.2 Ma (early Miocene).
Тср	Tuff of Castle Peak: bleached, white, biotite-rich, devitrified and weakly-welded tuff. K-Ar date is 22.2 Ma (early Miocene).
Tt1	Tuff of Craw Springs: welded-to non-welded, crystal-poor tuff. K-Ar date is 26.7 Ma (late Oligocene)
Tt2	Tuff of Cedar Mountain: welded, crystal-rich tuff. K-Ar date is 26.7 Ma (late Oligocene).
Plz	Paleozoic: sedimentary rocks - includes the Permian Mina Formation and Devonian to Cambrian siliceous units with minor limestone.

 Table 7.1 Eastside Property Geological Units

The units seen in Table 7.1 are mapped in Figure 7.2 below.

7.3.2 Property Structure

Faulting within the Property is dominantly N and NE-ENE trending dextral strike-slip faulting with minor displacement. Structural interpretation through the use of drill hole data is limited due to type and amount of drilling to date, however structural features observed in drill chip samples coincides with mineralization.

The general north–south alignment of the nested flow-dome complex, along with the coinciding direction of the local flowbanding and quartz veining indicate a strong potential for mineralization along a north-south strike.

Drilling to date has confirmed several of the intrusive domes in the northern portion of the property have a shallow to moderate westerly dip.

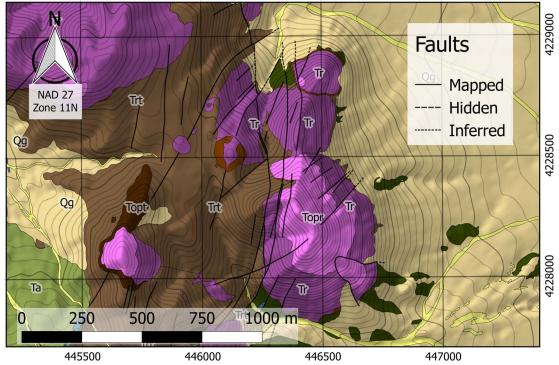


Figure 7.3 Map of Faults within Drilling Area

7.3.3 Mineralization and Alteration

The character of mineralization sought is generally described as gold-silver mineralization, in association with silicification. Mineralization occurs predominantly in breccia zones, banded silica veins and silicic stockwork veining. Through current surface sampling and drilling to date, 3 mineralized zones occur on the Property which range is lengths from 350m to 2600m and widths from 60m to 600m. Mineralization has been encountered in drillholes to a depth of 329m. The continuity of mineralization with the 3 individual zones is not yet fully understood. Host rocks for mineralization are permeable lithologies including rhyolites, andesite lahars and felsic tuff breccias. Mineralized silica veins can be seen to cross-cut andesites and rhyolite flow-banding (see Photo 7.1).

Photo 7.1 Mineralized silica vein cross-cutting rhyolite flow-banding

Alteration observed includes silicic, propylitic and argillic alteration. Additionally, adularia was observed during the Property field visit. Adularia can act as a proximity indicator to higher grade mineralization within low-sulphidation epithermal systems as it can form during episodic boiling of hydrothermal fluids (Sillitoe & Hedenquist, 2003).

Permeable rock units, alteration and structure are the best indicators of where mineralization can be found on the Property. Additionally, the distribution of gold values found at varying elevations with the higher values being discovered at depth suggests a vertical zoning of the gold and silver mineralization.

Gold-bearing fluids are thought to have moved both vertically and laterally along structures. The gold-bearing fluids are interpreted to have argillicly altered porous and favourable volcanic tuff units. Fluids that spread laterally exploited adjacent receptive andesite and rhyolite tuff units creating wider zones of alteration and formed lower grade halos of gold concentrations as fracture filling stockwork veins while high angle structures localized the highest-grade gold concentrations. In these zones, multiple episodic boiling of hydrothermal fluids produced banded silica veins, quartz-adularia veins and breccia zones that concentrated gold of which is observed exposed on surface and in drill chip samples.

8 Deposit Type

8.1 Low-Sulphidation Epithermal Deposit

Generally epithermal Au and Ag deposits of both vein and bulk-tonnage can be divided into high- and low-sulfidation categories. Most low-sulfidation deposits are associated with basalt-rhyolite bimodal volcanic suites and are formed from dilute, dominantly meteoric, fluids (Sillitoe & Hedenquist, 2003). Gangue minerals are typically botryoidal chalcedony, cryptocrystalline quartz, adularia and some calcite.

The mineralization on the Eastside Property demonstrates several characteristics of an epithermal, low-sulfidation, volcanic-hosted precious metal system, including adularia and sericite alteration and the absence of copper mineralization.

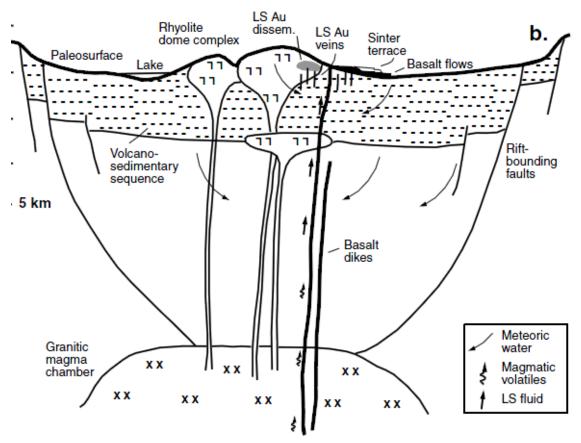


Figure 8.1 Cross Section of an Epithermal Deposit (Sillitoe & Hedenquist, 2003)

8.2 Regional Examples & Adjacent Properties

Cautionary statement: Investors are cautioned that the quantities indicated below in the Regional Examples have not been verified by the QP and may not be indicative of the mineralization on the Property which is the subject of this report. They has been provided only for illustration purposes.

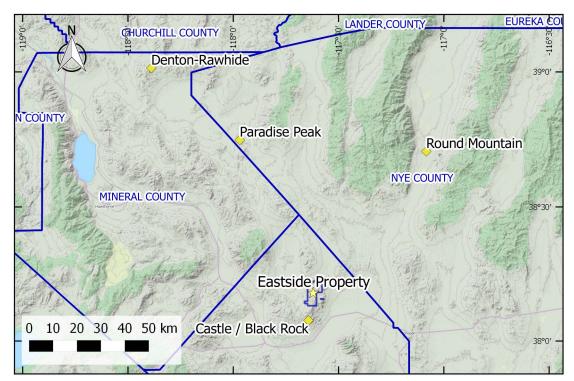


Figure 8.2 Select Gold Deposits Near the Eastside Property

8.2.1 Round Mountain

The Round Mountain gold deposit is a very-large, epithermal, low-sulfidation, volcanichosted, hot-springs type, precious metal deposit. Precious metal mineralization within the Round Mountain deposit occurs as electrum associated with quartz, adularia, pyrite and iron oxides.

Production of gold in the Round Mountain district, found in Nye County, began in 1906 and saw approximately 350,000 ounces of gold produced from then until 1969. Since 1975 the Smoky Valley Common Operation (SVCO) has operated the mine and saw the start of commercial production in 1977. By 2006 the mine, operating as an open-pit, had reached 10.2 million ounces of gold produced (Hanson, 2006). Currently the SVCO operates as a joint-venture between Barrick Gold Corporation and Kinross Gold Corporation with each having a 50% interest. Kinross currently acts as the operator.

For the year ended Dec 31, 2014 the mine saw a gold-equivalent production of 169,839 oz. As of the same date the declared Proven and Probable Reserves of 1.38M oz Au & 1.87M oz Ag (Round Mountain, USA, 2014).

8.2.2 Denton-Rawhide Mine

The Miocene-aged Denton-Rawhide Deposit, located in Mineral County, was mined between 1990 and 2010 and is hosted in rhyolite plugs, flows, tuffs and breccias. Total production during that 20 year period is approximately 1.5M ounces gold and 12.7M ounces silver (Muntean, 2010). In 2010 the mine was acquired by Rawhide Mining LLC who continue to produce gold from heap leach pads.

8.2.3 Paradise Peak Deposit

The Paradise Peak gold-silver-mercury deposit is a high-sulfidation epithermal deposit located in Nye County, Nevada. Production from 1986-1994 totalled 1.6M ounces gold and 24.1M ounces silver (Muntean, 2010). It is hosted in strata-bound bodies of silicified welded ash-flow tuff. The highest precious metal values are found in hydrothermal breccias which cut this tuff.

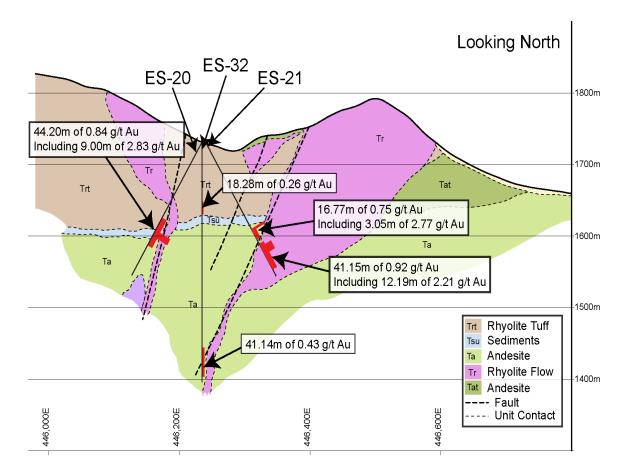
8.2.4 Castle / Black Rock

The Castle / Black Rock project consists of the now closed Boss mine, as well as the Castle, Black Rock and Berg deposits are located along Highway 95 south of the Eastside Property area in Esmeralda county, Nevada. The Boss Mine, which operated from 1987 to 1989, produced approximately 32,000 ounces of gold from 600,000 tons ore (Diner & Strachan, 1994). Additional exploration work in the area discovered both the Berg, Castle and Black Rock zones of mineralization. Historical resources were completed by Seabridge Gold in 2000 produced non-43-101 compliant resources of 3.5M tonnes at 0.471 g/tonne for 53,300 ounces Au for Berg zone and 532k tonnes at 0.467 g/tonne for 8,000 ounces Au for the Black Rock zone (both at 0.25 g/tonne cutoff) (Bikerman & Bikerman, 2009). A 43-101 compliant resource of 14.7M tonnes at 0.454 g/tonne with a 0.25 g/tonne cut-off (Bikerman & Bikerman, 2009).

Photo 8.1 Boss Mine pit

9 Exploration

9.1 Overview


After leasing the property in 2009, the Cordex exploration group collected 530 rock chip samples from available outcropping bedrock within the property which yielded gold values from nil up to 7.95 g/t. During this sampling program a discovery was made of a nearly continuous mineralized zone of over 900m of strike length along a northerly-trending zone of silicified breccia. Most of the samples exceeded 0.15 g/t gold with several areas running from 0.8 to 3.5 g/t. Cordex prepared a detailed geological map (1:4,800, the most recent version of which can be seen in Figure 7.2) and reviewed the CSAMT geophysical survey data obtained from Newmont in preparation for a future planned drill program.

In early 2011 Cordex drilled 12 widely spaced reverse circulation holes to test gold anomalous surface samples and mapped structural targets at depth coincident with geophysical zones of high resistivity. A total of 2,147m was drilled between March 11 to April 2. Two drill holes failed to reach their targeted depths due to poor ground conditions. Four of the remaining ten holes encountered gold mineralization within rhyolite and andesitic tuffs, the most significant, drillhole ES-4, which produced a 6.1m intersection at an average grade of 5.7 g/t Au. (See table below)

Photo 9.1 Drill Rig on the Eastside Property

In 2013 a total of 24 reverse circulation drill holes conducted on 20 drill pads totalling 5,367m were drilled by Cordex in two phases. The first phase included drill holes ES-13 through ES-24 with drilling initiated March 11 and completing on September 12. The second phase

of drilling in 2013 was initiated November 1 and completed December 14 with an additional 12 drill holes (ES-25 through ES-36).

Figure 9.1 Cross-Section at 4228833N Showing ES-20, ES-21, & ES32

9.2 Geochemistry

From 2010 to November 2014 Cordex has collected an additional 1,782 samples for a total of 2312 surface rock chip samples within the limits of the Property. Results from these samples have identified 3 individual surface gold anomalous zones delineated by grades greater than 30 ppb Au. Figure 9.2 below displays the 3 zones with lithological and structural trends. A count of surface rock chip samples by gold assay grade ranges can be seen in Table 4.1 below.

Gold Assay	Number of Samples
0-30 ppb	1950
30-80 ppb	146
80-250 ppb	101
250-1000 ppb	73
1000-2500 ppb	26
>2500 ppb	16

 Table 9.1 Gold Assay Values in Cordex Surface Rock Samples

		Au	Ag	As	Cu	Pb	Zn	Sb	Hg	w	Tİ
1	Au	1.00	0.80	0.03	0.00	0.01	0.00	0.02	-	0.00	0.03
1	Ag	0.80	1.00	0.01	0.26	0.03	0.18	0.03	-	0.00	0.14

Table 9.2 Elemental Correlations from Surface Sampling

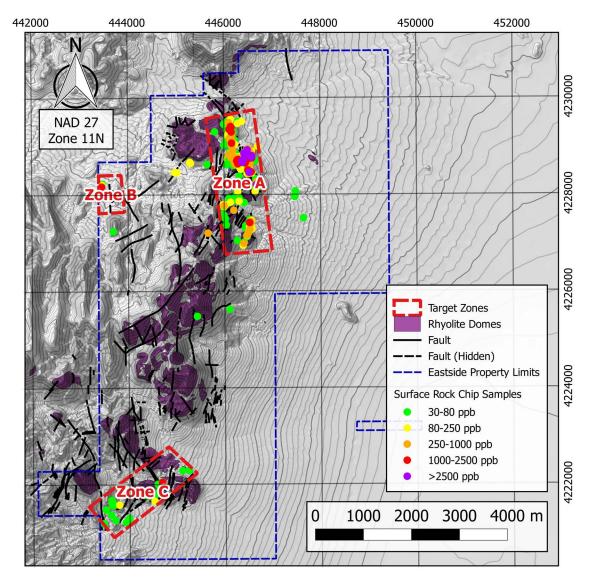


Figure 9.2 Mineralized Zones with Anomalous Samples and Rhyolite Domes

9.3 Drilling

9.3.1 2011 Drill Program

In 2011 a total of 12 Reverse Circulation holes were conducted on 10 drill pads totalling 2,148.17 meters.

Drillhole ID	UTM-X Nad27,Z11	UTM-Y Nad27,Z11	UTM-Z Meters	DIP Degrees	AZIMUTH Degrees	DEPTH Meters
ES-1	446634.07	4228763.68	1698.04	-45	080	196.65
ES-2	446651.30	4228910.40	1681.95	-45	100	184.45
ES-3	446377.36	4228892.92	1731.45	-45	255	184.45
ES-4	446258.11	4228687.41	1754.28	-75	270	184.45
ES-5	445762.15	4228701.42	1845.59	-45	270	214.94
ES-6	445989.56	4228702.44	1825.90	-60	270	184.45
ES-7	445853.10	4228555.17	1829.99	-45	270	70.12
ES-8	445949.64	4228996.74	1836.48	-90	270	205.79
ES-9	446062.65	4229343.85	1827.34	-45	270	47.26
ES-10	446062.65	4229343.85	1827.34	-60	270	239.63
ES-11	445639.00	4228390.00	1834.59	-60	270	184.45
ES-12	446377.36	4228892.92	1731.45	-60	113	251.52
Table 9.3 201	1 Drill Program Ho	ole Locations				

Significant Intercepts Include (true width uncertain):

Drillhole ID	From (Meters)	To (Meters)	Width (Meters)	Au (Grams/Tonne)				
ES-1	No Signific		,	, , , , , , , , , , , , , , , , , , , ,				
ES-2	No Signific	No Significant Values						
ES-3	47.24	48.77	1.53	0.24				
	99.06	103.63	4.57	0.11				
	147.83	150.88	3.05	0.41				
ES-4	6.10	47.24	41.14	0.30				
	50.29	59.44	9.15	0.19				
	73.15	77.72	4.57	0.37				
	86.87	94.49	7.62	0.16				
	106.68	112.78	6.10	0.18				
	117.35	124.97	7.62	0.15				
	152.40	173.74	21.34	1.64				
Including	166.12	172.21	6.09	5.17				
ES-5	153.92	155.45	1.53	0.12				
	161.54	164.59	3.05	0.16				
ES-6	56.39	57.91	1.52	0.13				
	71.63	73.15	1.52	0.15				
	163.07	164.59	1.52	0.22				
ES-7	No Signific	ant Values						

ES-8	35.05	42.67	7.62	0.33
	57.91	64.00	6.09	0.21
	68.58	70.10	1.52	0.12
ES-9	No Signific	ant Values		
ES-10	109.73	111.25	1.52	0.21
ES-11	No Signific	ant Values		
ES-12	27.43	28.96	1.53	0.28
	99.06	100.58	1.52	0.18
	109.73	120.40	10.67	0.17
	124.97	129.54	4.57	0.13
	144.78	147.83	3.05	0.13
	193.55	195.07	1.52	0.25
	214.88	216.41	1.53	0.39
	231.65	234.70	3.05	0.24
	246.89	251.46	4.57	0.21

 Table 9.4 2011 Drill Program Significant Intercepts

9.3.2 2013 Drill Program

In 2013 a total of 24 Reverse Circulation drill holes conducted on 20 drill pads totalling 5,367 meters.

Drillhole ID	UTM-X Nad27,Z11	UTM-Y Nad27,Z11	UTM-Z Meters	DIP Degrees	AZIMUTH Degrees	DEPTH Meters
ES-13	446254.00	4228633.00	1762.00	-75	270	214.94
ES-14	446236.00	4228795.00	1729.00	-70	270	208.84
ES-15	446209.00	4228895.00	1738.00	-75	270	199.70
ES-16	446262.00	4228882.00	1721.00	-75	259	153.96
ES-17	446303.00	4229003.00	1702.00	-70	270	153.96
ES-18	446303.00	4229003.00	1702.00	-50	090	214.94
ES-19	446363.00	4228960.00	1710.00	-45	180	251.52
ES-20	446234.00	4228831.00	1732.00	-60	090	214.94
ES-21	446240.00	4228833.00	1730.00	-60	270	214.94
ES-22	446239.00	4228798.00	1733.00	-45	270	153.96
ES-23	446426.00	4228919.00	1732.00	-60	210	214.94
ES-24	446375.00	4228886.00	1728.00	-60	210	208.84
ES-25	446254.00	4228633.00	1762.00	-45	270	210.31
ES-26	446254.00	4228633.00	1762.00	-70	135	243.84
ES-27	446255.00	4228633.00	1762.00	-70	090	239.27
ES-28	446251.00	4228689.00	1757.00	-80	090	213.36
ES-29	446262.00	4228725.00	1749.55	-90	000	220.98
ES-30	446242.00	4228792.00	1734.00	-90	000	263.65
ES-31	446241.00	4228792.00	1734.00	-60	090	233.17
ES-32	446234.00	4228834.00	1732.00	-90	000	336.80
ES-33	446216.00	4228858.00	1736.45	-60	090	245.36
ES-34	446211.00	4228895.00	1732.79	-70	090	263.65
ES-35	446257.00	4228723.00	1752.00	-70	090	233.17
ES-36	446262.00	4229125.00	1701.39	-60	090	257.56
Table 9.5 201	3 Drill Program	Hole Locations				

Table 9.5 2013 Drill Program Hole Locations

	-	-		
Drillhole ID	From (Meters)	To (Meters)	Width (Meters)	Au (Grams/Tonne)
ES-13	38.10	77.72	39.62	0.46
Including	38.10	44.20	6.10	1.17
Including	70.10	73.15	3.05	1.20
	91.44	126.49	35.05	0.20
	132.59	138.68	6.09	0.51
	144.78	166.11	21.33	0.18
	170.69	193.55	22.86	0.28
ES-14	97.54	150.88	53.34	1.11
Including	106.68	117.35	10.67	2.19
Including	121.92	129.54	7.62	2.98
ES-15	83.82	102.11	18.29	0.15
	111.25	115.82	4.57	0.17
	193.55	196.60	3.05	0.82
ES-16	No Signific	ant Values		
ES-17	No Signific	ant Values		
ES-18	164.59	166.12	1.53	0.35
	179.83	182.88	3.05	0.24
ES-19	169.16	172.21	3.05	1.47
	192.02	193.55	1.53	0.23
	202.69	213.36	10.67	0.17
	217.93	234.70	16.77	1.43
	243.84	245.36	1.52	0.22
ES-20	121.92	166.12	44.20	0.84
Including	141.73	150.73	9.00	2.83
ES-21	9.14	10.67	1.53	0.18
	76.20	79.25	3.05	0.12
	138.68	155.45	16.77	0.75
Including	138.68	141.73	3.05	2.77
	163.07	204.22	41.15	0.92
Including	167.64	179.83	12.19	2.21
ES-22	71.63	76.20	4.57	0.18
	82.30	96.01	13.71	0.26
	100.58	106.68	6.10	0.16
ES-23	105.16	111.25	6.09	0.41
	115.82	117.35	1.53	0.31
	123.44	126.49	3.05	0.22
	131.06	134.11	3.05	0.15

Significant Intercepts Include (true width uncertain):

ES-24	12.19	18.29	6.10	0.14
L0-24	86.87	88.39	1.52	0.52
	124.96	128.02	3.06	0.18
	140.21	141.73	1.52	0.23
		-	-	
	161.54	164.59	3.05	1.59
	196.60	199.64	3.04	0.14
ES-25	30.48	36.58	6.10	0.22
	47.24	62.48	15.24	0.20
	73.15	77.72	4.57	0.15
	124.97	153.92	28.95	0.31
	172.21	181.36	9.15	0.39
ES-26	35.05	96.01	60.96	0.57
	124.97	132.59	7.62	0.16
	140.21	147.83	7.62	0.44
	178.31	181.36	3.05	0.47
	188.98	214.88	25.90	0.39
	227.08	243.84	16.76	0.35
ES-27	18.29	25.91	7.62	0.64
	57.91	118.87	60.96	0.28
	164.59	228.60	64.01	1.43
ES-28	4.57	22.86	18.29	0.23
	35.05	42.67	7.62	0.31
	54.86	70.10	15.24	0.65
ES-29	7.62	48.77	41.15	0.12
ES-30	196.60	199.64	3.04	0.40
	225.55	227.08	1.53	0.71
ES-31	117.35	126.49	9.14	0.37
	161.54	173.74	12.20	2.05
	202.69	224.03	21.34	0.29
ES-32	82.30	100.58	18.28	0.26
	288.04	329.18	41.14	0.43
ES-33	92.96	99.06	6.10	0.41
	111.25	118.87	7.62	0.22
	132.59	204.22	71.63	0.34
ES-34	140.21	144.78	4.57	0.49
	165.59	185.93	20.34	0.51
ES-35	3.04	70.10	67.06	0.19
	108.20	118.87	10.67	0.22
ES-36	192.02	240.79	48.77	0.92

 Table 9.6 2013 Drilling Significant Intercepts

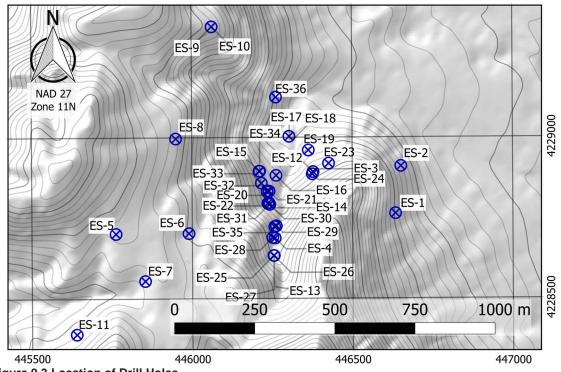


Figure 9.3 Location of Drill Holes

9.3.3 2011 and 2013 Drilling Methods

9.3.3.1 Drilling

All three drilling campaigns in 2011 and 2013 were conducted by independent contractor, Boart Longyear utilizing track mounted RC drill rigs equipped with rotating wet splitters and dry Gilson splitters. Drilling dips ranged from -45 degrees off horizontal to -90 degrees (vertical). Drill holes were completed using 5.25 inch diameter pipe with drill depths ranging from 40.21m to a maximum vertical depth of 336.8m. An average of 80 meters of drilling was accomplished per day.

9.3.3.2 Drill Cutting Sampling

Cordex staff collected two chip sample splits from every 1.5 meters drilled, a smaller split (approximately 2.0 - 2.7kg), "little bag" was sent to the primary laboratory, American Assay Labs and a larger duplicate split (approximately 4.7 - 6.3kg), "rig split" was retained with select samples subsequently submitted for QA/QC assay anaylisis to ALS Minerals, Skyline Labs, Kappes, Cassiday & Associates and American Assay.

For sampling in 2013, drill samples yielding a silver grade greater than or equal to 7 ppm (ICP method) were re-analyzed using retained reject pulp material by fire assay with a gravimetric finish for greater accuracy of assay results.

Drill sampling protocols were conducted using an incomplete modern QA/QC program, however, no significant assay bias is known or suspected from the various sampling campaigns. The procedures used for collecting samples at the drill is deemed representative however a comparative study by comparing twinned core drill samples would prove the best measure of determining sampling accuracy and RC recovery rates if core drilling recoveries are suitably high.

9.3.3.3 Drill Cutting Sampling Quality Controls and Quality Assurance (QA/QC)

A total of 466 QA/QC samples representing 11.1% of the total of 4,185 drill samples were assayed during the 2011 and 2013 drill programs. The tables below summarize the QA/QC assay information for all three recent drill programs.

Included in the QA/QC program were a total of 314 lab preparation duplicates, which comprised 7.5% of the total samples assayed. These samples were routinely performed with each drill sample batch / workorder submitted whereby approximately one lab preparation duplicate sample was made for every 10 drill samples submitted.

Assay Laboratory	Workorder ID	Number of Samples	Sample Type	Analysis Type
American Assay	SP0104854	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104855	3	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104856	10	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104887	4	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104888	8	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104889	5	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104898	8	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104908	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104909	7	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104910	10	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104950	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104951	11	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104952	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104988	13	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0104990	7	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105014	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105015	3	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105016	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105017	4	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105084	4	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105085	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105086	8	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105087	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105088	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105089	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105090	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105127	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105150	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105467	16	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105468	13	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105562	10	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105563	10	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105577	9	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105642	12	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105643	8	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105043	5	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
		9		
American Assay	SP0105661	9	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105728 SP0105729	3	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay		8	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105730 SP0105731	8	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay		8 18	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105732		Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105763	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105764	6	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105765	3	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105766	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105767	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105768	2	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105769	5	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105835	16	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105836	9	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105862	3	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105863	12	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105900	1	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP0105958	4	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)
American Assay	SP104820	4	Lab Preparation Duplicate	Au-FA30, (Grav) / Ag (ICP)

 Table 9.7 Lab Preparation Duplicate Details

Lab preparation duplicate assays in the program correlated strongly to the original assay results. When considering only samples greater than 100 ppb Au, a calculated Average Coefficient of Variation (AvCv) was 7.87, within the best-practice level of 10 for gold systems of this type when re-sampling pulps (Abzalov, 2008). A Reduced Major Axis (RMA) model of the data had neither zero within the 95% confidence interval for the intercept nor one with the 95% confidence interval for the slope. However the slope of 1.03 and intercept of -20 ppb vary only slightly from the ideal and as such are considered to be within acceptable limits.

Additionally, a total of 50 umpire lab check assays were conducted, which comprised 1.2% of total samples assayed which were used for QA/QC purposes. 50 pulps prepared by American Assay Labs were submitted to ALS Minerals for comparative assay analysis.

Assay Laboratory	Workorder ID	Number of Samples	Sample Type	Analysis Type	Date
ALS Minerals	RE14029792	50	Umpire Lab Check	Au-FA30 / Ag-FA-(Grav)	March-06-14
Table 9.8 Umpire Lab C	heck Assay	Details			

The AvCv for the Umpire Lab check assays was 19.64, within the acceptable practice limit of 20 (Abzalov, 2008). Zero was included in the 95% confidence interval for the intercept and one was included in the 95% confidence interval for the slope of the RMA model. Accordingly there is no statistical evidence of bias between the labs.

Lastly, a total of 102 or 2.4% of the total drill samples assayed were field duplicates "rig splits" which were submitted for assaying using similar preparation and assay analysis for comparison of results. Samples included in this comparison study includes preliminary metallurgical samples to Kappes, Cassiday & Associates for metallurgical testing and Skyline Labs for metallic screen analysis. Insufficient data available to provide a meaningful discussion of result.

The field duplicates were selected after the original assays were received by Cordex. The project geologist responsible for the logging of drill samples selected the field duplicate samples. The selection of samples chosen was based of the presence of elevated gold values, anomalous trace element geochemistry and/or significant hydrothermal alteration.

Assay Laboratory	Workorder ID	Number of Samples	Sample Type	Analysis Type	Date
American Assay	SP093073	32	Field Duplicate	Au-FA30, (Grav) / Ag (ICP)	May-19-11
Kappes, Cassiday & Associates	KCA_CDX03_01	14	Field Duplicate	Metallurgical Testing	June-17-14
American Assay	SP0105081	33	Field Duplicate	Au-FA30, (Grav) / Ag-FA-(Grav)	October-04-14
Skyline	THM015	17	Field Duplicate	Au-FAA, FA (Grav), Ag-AA	December-02-14
Skyline	THM016	6	Field Duplicate	Metallic Screen Analysis	December-02-14

 Table 9.9 Field Duplicate Sample Details

Analysis of the field duplicates, after removing 3 outliers, produced acceptable results with the AvCv of the data set being 15.65, below both the best-practice of 20 and acceptable practice level of 30 for field duplicates in gold systems of this type (Abzalov, 2008). The RMA model had zero within the 95% confidence interval for the intercept and one was inside the 95% confidence interval for the slope. There is no evidence to suggest a bias in the sampling methodology.

No certified standards or blanks were utilized in the QA/QC programs. The author recommends inserting control samples (certified standards) into the sample stream as another check on the laboratory results. Blank samples are also recommended to be inserted into the sample stream in intervals where significant gold mineralization is expected (>1 g/t Au). It is further recommended that a complete modern (QA/QC) program be established whereby certified standards, blanks, field duplicates, lab preparation duplicates

and umpire lab check samples are added into the sample stream and comprise no less than 8% of the sample batch.

9.3.3.4 Geological Logging

Logging of chip samples were conducted post sample collected in the field. A small representative sample of each 1.5 meter interval drilled was placed in a chip tray which was subsequently logged by Cordex geologists in the field. The chip trays were ultimately shipped to the Cordex Reno office for permanent storage to be used for subsequent review if required.

Logging details recorded included items such as collar and drill hole information, lithology, alteration, mineralization, veining details as well as silica content. Consistency of coding was maintained through use of a logging template utilizing a list of approved codes. Logging was conducted on paper with assay results for gold and silver later added to the logs once received.

Consistency in geological logging between all 3 drill campaigns was maintained and reviewed by Mr. Pete Chapman (Cordex Geologist).

It is recommended by the author that all paper logs be transcribed into a digital format for future use.

9.3.3.5 Collar Surveys

At the time of writing this report no formal surface collar surveys had been conducted by a professional survey group. Drill collars were recorded by Cordex staff using hand held GPS units. Coordinates are considered accurate to within 5 meters.

It is recommended by the author that an independent survey of the drill collars be performed on all of the 36 drill holes as well as upon the completion of all subsequent drill programs.

9.3.3.6 Down-hole Surveys

No down-hole surveys were preformed on any of the drillholes in 2011 and 2013. Confirmation of surface azimuth at the collar of ES-36 was recorded and verified by the author during the property visit. This confirmation was possible due to drill collar pipe abandoned in the hole.

It is recommended by the author that at least two down-hole surveys per drillhole be performed during all future drill programs.

9.3.3.7 Summary

To date, true thickness and orientation of encountered zones of mineralization are unknown. It is noted that there are in some cases, within particular zones of mineralization, significantly higher grade intervals within wider lower grade intersections.

10 Sample Preparation, Analysis and Security

During the January 21, 2015 property visit, a total of 13 surface rock samples, 20 pulp rejects from 2011 and 2013 reverse circulation drilling as well as 5 chip samples collected from 2011 and 2013 reject reverse circulation drilling were collected by the author and were placed in marked poly ore bags. Two additional standard samples were inserted into the batch for quality control purposes. All 40 samples were collected and under the care and control of the author whom submitted the samples to the ALS Minerals assay and preparation lab located in 4977 Energy Way, Reno, Nevada, 89445 USA.

The samples were divided into two separate workorders. The first workorder, RE15011804 was comprised of the 5 chip samples collected from 2011 and 2013 reverse circulation drilling reject material which was prepared and assayed in the Reno Lab. The second workorder, RE15010997 contained the remaining 35 samples which were prepared in the Reno lab and subsequently shipped to be analyzed by the ALS Minerals branch lab in North Vancouver, Canada. The following assay procedures were conducted on the samples as follows:

Workorder, RE15011804

• 5 Rock Chip Reject samples, (collected from 2011 and 2013 reverse circulation drilling reject material), were run utilizing Prep 31 and Au-SCR21 methods.

Workorder, RE15010997

Surface Rock Chip samples, were run utilizing Prep 31, Au-AA23 and ME-MS 41(51 Elements by Aqua Regia ICP-MS AND ICP AES).

- 20 Pulp rejects (collected from 2011 and 2013 reverse circulation drilling stored pulp rejects), Au-AA23 & Au-GRA21, and ME-MS 41(51 Elements by Aqua Regia ICP-MS AND ICP AES).
- 2 Pulped standards obtained from CDN Resource Laboratories Ltd. of Langley, BC, Canada. Au-AA23 & Au-GRA21, and ME-MS 41(51 Elements by Aqua Regia ICP-MS AND ICP AES).

Rock and pulp samples collected during 2015 property visit were prepared and analyzed by ALS Minerals Analytical Laboratories, accredited laboratories in both Reno, Nevada, USA and North Vancouver, British Columbia, Canada. The laboratories observe their own quality assurance and quality control procedures.

For the present study, the sample preparation, security and analytical procedures used by the laboratories are considered adequate. No officer, director, employee or associate of the Company was involved in sample collection.

11 Data Verification

The author visited the Property on January 21, 2015. Assisted by an associate, Mr. Brandon Macdonald and two Cordex personnel a tour of the Eastside Property was conducted. The geological work was performed in order to verify the existing data which consisted of surface rock chip sampling, road building, reverse circulation drilling, geological mapping and claim post locations.

During the Property visit ample time was available to review the overall geology, as well as verify claim monuments and drill collar locations as well as other key features of the property which were both documented and photographed. The author is satisfied with the results of the data verification and therefore for the purposes of this report the data provided is deemed adequate and accurate.

Location Item	Author Northing NAD 27, Zone 11	Author Easting NAD 27, Zone 11	Author Elevation (Meters)	Cordex Northing NAD 27, Zone 11	Cordex Easting NAD 27, Zone 11	Cordex Elevation (Meters)
Claim Monument 131	4227327	447318	1639	4227318	447320	Not Available
Claim Monument 132	4227309	447318	1638	4227306	447320	Not Available
Claim Post Eastside 5	4229142	446404	1686	4229147	446405	Not Available
Claim Post Eastside 6	4229137	446403	1686	4229135	446405	Not Available
Drillhole ES-19	4228967	446360	1718	4228960	446363	1710
Drillhole ES-33	4228863	446215	1743	4228858	446216	1736
Drillhole ES-34	4228893	446205	1743	4228895	446211	1733
Drillhole ES-36	4229123	446262	1708	4229125	446262	1701
Water Well	4223226	449775	1460	4223223	449774	Not Available

Table 11.1 Location Verification Results

A total of 13 surface, rock chip samples were collected during the present study and are considered to represent the type of rock and mineralization present on the Property. Field descriptions of the samples collected during the January 21, 2015 Property visit is provided in table 13.2.

The author has applied two quality control checks for the samples collected and assayed during the property visit. Two different certified, CDN Resource Laboratories Ltd. certified standards were added to the batch of samples that were submitted to ALS Minerals. In addition, ALS Minerals conducted its own internal quality control and quality assurance procedures.

Assay data was received directly from the lab to the author. Examination of assay results from the two standards as well as ALS Minerals own internal quality controls demonstrated satisfactory accuracy of assaying. These assay results are presented below:

Au_ppm	Au_p pm	Ag_ppm	Ag_p pm	Cu_%	Cu_ %	Pb_%	Pb_ %	Zn_%	Zn_%
		Upper Limit		Upper Limit		Upper Limit		Upper Limit	
Upper Limit (+0.062)	0.68	(+7)	110	(+0.018)	0.49	(+0.06)	1.06	(+0.04)	0.79
Expected Value,						Mean		Mean	
Mean (0.620)	0.62	Mean (103)	103	Mean (0.474)	0.47	(0.98)	0.98	(0.75)	0.75
		Value		Value		Value		Value	
Value Reported	0.00	Reported	101	Reported	0.47	Reported	0.95	Reported	0.76
		Lower Limit		Lower Limit (-		Lower Limit		Lower Limit	
Lower Limit (-0.062)	0.56	(-7)	96	0.018)	0.46	(-0.06)	0.92	(-0.04)	0.71
Pass or Fail	Pass	Pass or Fail	Pass	Pass or Fail	Pass	Pass or Fail	Pass	Pass or Fail	Pass

CDN ME-19 Standard, Sample ID Q383765

CDN ME-1101 Standard, Sample Q383764

Au_ppm	Au_p pm	Ag_ppm	Ag_p pm	Cu_%	Cu_ %	Pb_%	Pb_ %	Zn_%	Zn_%
		Upper Limit		Upper Limit		Upper Limit		Upper Limit	
Upper Limit (+0.056)	0.62	(+4.6)	72.8	(+0.042)	0.71	(+0.024)	0.48	(+0.09)	1.65
Expected Value,						Mean		Mean	
Mean (0.564)	0.56	Mean (68.2)	68.2	Mean (0.663)	0.66	(0.459)	0.46	(1.56)	1.56
		Value		Value		Value		Value	
Value Reported	0.55	Reported	69.3	Reported	0.73	Reported	0.46	Reported	1.64
		Lower Limit		Lower Limit (-		Lower Limit		Lower Limit	
Lower Limit (-0.056)	0.51	(-4.6)	63.6	0.042)	0.62	(-0.024)	0.44	(-0.09)	1.47
Pass or Fail	Pass	Pass or Fail	Pass	Pass or Fail	Fail	Pass or Fail	Pass	Pass or Fail	Pass

Table 11.2 Standards Results

The data verification protocols are consistent with industry standards as >5% of the samples were introduced as standards and or as duplicates. Therefore, for the purposes of this report it is deemed sufficient to detect possible laboratory errors.

Sample	Easting	Northing		_	_	
ID	NAD27,	NAD27,	Elevation	Au	Ag	
	Z11	Z11	Meters	(ppm)	(ppm)	Description
						Silicified Rhyolite Tuff with pervasive hematite and stained
Q383751	446290	4428634	1813	0.587	1.26	on fractures
Q383752	446435	4228655	1826	<0.005	0.03	Pervasively pink hematite stained silicified Rhyolite
Q383753	446437	4228658	1821	0.914	3.84	Very intensely silicified flow banded Rhyolite with quartz veins, 1 % pervasive hematite
						Very intensely silicified Rhyolite breccia, infilled with quartz
Q383754	446409	4228733	1817	0.202	0.15	veins and clots
						Very intensely silicified flow banded Rhyolite with quartz
Q383755	446382	4228668	1827	1.855	3.75	veins, trace % hematite
Q383756	446448	4228867	1764	9.400	85.70	Silicified brecciated and vuggy Rhyolite with 1% hematite
						Very intensely silicified Rhyolite with vuggy quartz veins &
Q383757	446448	4228855	1773	4.850	65.20	clots, 1 % hematite
Q383758	446160	4229069	1750	0.860	2.83	Silicified Rhyolite with intense hematite stained fractures
						Layered quartz vein hosted within Rhyolite Tuff unit. Minor
Q383759	446163	4229017	1737	0.145	0.67	propolitic alteration
						Rhyolite tuff sub angular breccia with 1-2% hematite &
Q383760	446182	4228910	1749	0.131	0.41	manganese fracture coatings
Q383761	446536	4228475	1775	1.250	0.07	Very intensely silicified Rhyolite, 5 % hematite, vuggy quartz
						Very intensely silicified Rhyolite Tuff with quartz veins and
Q383762	446528	4228467	1778	0.981	0.40	clots, 1 % hematite
						Intensely silicified Rhyolite with quartz veins and clots, .5 %
Q383763	446548	4228469	1765	0.438	1.04	hematite

Table 11.3 Field Descriptions and Locations of Samples

The samples were processed by ALS Minerals Laboratories in North Vancouver, an accredited laboratory in Canada, for the following assay analysis:

 Surface, Rock Chip Samples: (Q383751 – Q383763): PKG: Au – AA23 (GOLD BY FIRE ASSAY FUSION) PLUS PKG: ME-MS 41(51 Elements by Aqua Regia ICP-MS AND ICP AES).

ALS Mineral's laboratories have received ISO 9001:2000 registration and ISO 17025 accreditation from the Standards Council of Canada under CAN-P-1579 "Guidelines for Accreditation of Mineral Analysis Testing Laboratories". CAN-P-1579 is the Amplification and Interpretation of CAN-P-4D "General Requirements for the Accreditation of Calibration and Testing Laboratories" (Standards Council of Canada ISO/IEC 17025)

Method	Au- AA23	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41	ME- MS41
Sample ID	Au	Ag	Cu	Pb	Zn	As	Sb
	ppm						
Q383751	0.59	1.26	3.5	3.6	9	58.1	8.17
Q383752	<0.01	0.03	3.5	2.5	2	6.9	3.17
Q383753	0.91	3.84	5.5	1.9	19	44.6	20.30
Q383754	0.20	0.15	4.5	4.5	3	28.7	3.42
Q383755	1.86	3.75	3.6	2.4	3	18.3	4.82
Q383756	9.40	85.70	5.5	2.6	3	148.5	11.10
Q383757	4.85	65.20	9.6	1.7	3	26.4	4.41
Q383758	0.86	2.83	7.5	3.5	2	450.0	14.60
Q383759	0.15	0.67	5.3	1.5	4	471.0	12.80
Q383760	0.13	0.41	9.5	8.5	20	61.2	4.24
Q383761	1.25	0.07	3.7	2.1	2	12.8	1.58
Q383762	0.98	0.40	4.0	2.1	<2	54.9	2.98
Q383763	0.44	1.04	4.4	5.9	4	98.8	4.85

The assay results highlights are provided in the following Table 14.3:

 Table 11.4 Surface Rock Chip Sample Assay Results

A total of 12 of the 13 surface samples collected during the property visit were collected by the author January 21, 2015 in locations where Cordex geologists collected samples yielding anomalous gold grades. Values are gold represented in parts per million (ppm).

	Cordex	Author				
Sample ID	Reported Au (ppm)	Reported Au (ppm)	Sample ID			
206340	1.130	0.587	Q383751			
208503	2.280	<0.005	Q383752			
208503	2.280	0.914	Q383753			
206325	4.170	0.202	Q383754			
206319	8.020	1.855	Q383755			
206282	8.190	9.400	Q383756			
206327	6.620	4.850	Q383757			
206253	2.200	0.860	Q383758			
208548	0.887	0.131	Q383760			
208099	1.670	1.250	Q383761			
208758	1.620	0.981	Q383762			
208097	1.810	0.438	Q383763			

Table 11.5 Tabulated Comparison of Values of Surface Samples Collected

Five screen metallic samples were conducted as duplicates from available, stored 2011 and 2013 reverse circulation drilling reject material. The samples were collected by the author which were stored in the Cordex office in Reno, Nevada. The sample details are presented in the below table.

Drill Hole ID	Cordex Sample ID	Author Sample ID	From (Meters)	To (Meters)	Description
ES-4	ES-4 070-075	Q383785	21.34	22.86	Rhyolite, minor grey quartz veining present
ES-20	ES-20 475-480	Q383786	144.78	146.30	Rhyolitic Tuff, 30% quartz veining, black sulfides in quartz
ES-20	ES-20 485-490	Q383787	147.83	149.35	Rhyolitic Tuff, 15% quartz veining, black sulfides in quartz
ES-20	ES-20 490-495	Q383788	149.35	150.88	Rhyolitic Tuff, 25% quartz veining, black sulfides in quartz
ES-32	ES-32 960-965	Q383789	292.61	294.13	Andesite, disseminated pyrite and fluidized quartz veins

 Table 11.6 Screen Metallic Assay Sample Descriptions

The samples were delivered to ALS Minerals Laboratories in Reno, Nevada , an accredited laboratory in USA, for the following assay analysis:

 Reverse Circulation Chip Reject Samples: (Q383785 – Q383789): PKG: Au – SCR 21 (GOLD BY FIRE ASSAY FUSION).

ALS Mineral's Reno laboratory has received ISO 9001:2000 registration and ISO 17025:2005 accreditation from the Standards Council of Canada under CAN-P-1579 "Guidelines for Accreditation of Mineral Analysis Testing Laboratories". CAN-P-1579 is the Amplification and Interpretation of CAN-P-4D "General Requirements for the Accreditation of Calibration and Testing Laboratories" (Standards Council of Canada ISO/IEC 17025).

The assay results are provided in the following table:

	WEI-21	Au-SCR21	Au- SCR21	Au- SCR21	Au- SCR21	Au- SCR21	Au- SCR21	Au- AA25	Au- AA25D
SAMPLE ID	Recvd Wt.	Au Total (+)(-) Combined	Au (+) Fraction	Au (-) Fraction	Au (+) mg	WT. + Frac Entire	WT Frac Entire	Au	Au
	kg	ppm	ppm	ppm	mg	g	g	ppm	ppm
Q383785	3.68	0.27	0.31	0.27	0.00	6.45	958.70	0.27	0.27
Q383786	3.40	2.99	8.29	2.91	0.12	14.59	942.60	2.94	2.87
Q383787	4.69	3.23	45.10	2.76	0.50	11.13	993.00	2.86	2.66
Q383788	4.95	1.03	2.30	1.01	0.04	17.42	985.20	1.11	0.90
Q383789	3.34	1.17	6.40	1.04	0.16	24.84	980.60	1.09	0.98

 Table 11.7 Screen Metallic Assay Sample Results

The results obtained from three of the five samples demonstrate that coarse gold is present however, does not contribute to a significant increase in overall assay grade values. It is recommended a more sizeable sample batch be conducted to provide statistical measurement the effect coarse gold has on the overall grade of the gold assay values.

The Table below presents results of the Cordex samples where assayed by American Assay Labs, and the Authors' assayed by ALS Minerals.

	Cordex	Author				
Sample ID	Reported Au (ppm)	Reported Au (ppm)	Sample ID			
ES-4 070-075	0.464	0.270	Q383785			
ES-20 475-480	4.140	3.970	Q383786			
ES-20 485-490	2.804	2.770	Q383787			
ES-20 490-495	1.326	1.070	Q383788			
ES-32 960-965	1.280	1.170	Q383789			

 Table 11.8 Screen Metallic Assay Results Comparison

20 reverse circulation pulp reject samples were conducted as duplicates of available, stored 2011 and 2013 reverse circulation drilling reject material. The samples were collected by the author which were stored in the Cordex office in Reno, Nevada. The sample details are presented in the below table.

Drill Hole	Cordex Sample ID	Author Sample ID		To (Meters)	Description
ES-4	ES-4 545-550	Q383766	166.12	167.64	Volcaniclastic, trace light grey to clear quartz veining

ES-4	ES-4 550-555	Q383767	167.64	169.16	Volcaniclastic, 3 - 5% light grey to clear quartz veining
ES-4	ES-4 555-560	Q383768	169.16	170.69	Volcaniclastic, 1 - 3% light grey to clear quartz veining
ES-4	ES-4 560-565	Q383769	170.69	172.21	Volcaniclastic, trace light grey to clear quartz veining
ES-26	ES-26 280-285	Q383790	85.34	86.87	Rhyolite, flow banded, minor flow breccia
ES-26	ES-26 285-290	Q383770	86.87	88.39	Rhyolite, flow banded, minor flow breccia
ES-26	ES-26 295-300	Q383771	89.92	91.44	Rhyolite, flow banded, minor flow breccia
ES-26	ES-26 300-305	Q383772	91.44	92.96	Fine grained, silicic mudstone,tabular
ES-24	ES-24 530-535	Q383773	161.54	163.07	Rhyolite, quartz fragments, 1% magnetite
ES-24	ES-24 535-540	Q383774	163.07	164.59	Rhyolite, quartz fragments, trace magnetite
ES-24	ES-24 540-545	Q383775	164.59	166.12	Rhyolite
ES-24	ES-24 545-550	Q383776	166.12	167.64	Rhyolite, minor flow banding, trace quartz
ES-23	ES-23 340-345	Q383777	103.63	105.16	Rhyolite
ES-23	ES-23 345-350	Q383778	105.16	106.68	Rhyolite
ES-23	ES-23 350-355	Q383779	106.68	108.20	Rhyolite, 1% quartz
ES-23	ES-23 355-360	Q383780	108.20	109.73	Rhyolite, trace quartz
ES-20	ES-20 475-480	Q383781	144.78	146.30	Rhyolite Tuff, 35% quartz veining with black sulfides
ES-20	ES-20 480-485	Q383782	146.30	147.83	Rhyolite Tuff, 30% quartz veining with black sulfides
ES-20	ES-20 485-490	Q383783	147.83	149.35	Rhyolite Tuff, 25% quartz veining with black sulfides
ES-20	ES-20 490-495	Q383784	149.35	150.88	Rhyolite Tuff, 3% quartz veining with black sulfides

 Table 11.9 Reverse Circulation Pulp Reject Samples

The samples were processed by ALS Minerals Laboratories in North Vancouver, an accredited laboratory in Canada, for the following assay analysis:

 Reverse Circulation Pulp Reject Samples: (Q383766 – Q383784 & Q383790): PKG: Au-AA23 & Au-GRA21 (GOLD BY FIRE ASSAY FUSION) PLUS PKG: ME-MS 41(51 Elements by Aqua Regia ICP-MS AND ICP AES).

ALS Mineral's laboratories have received ISO 9001:2000 registration and ISO 17025 accreditation from the Standards Council of Canada under CAN-P-1579 "Guidelines for Accreditation of Mineral Analysis Testing Laboratories". CAN-P-1579 is the Amplification and Interpretation of CAN-P-4D "General Requirements for the Accreditation of Calibration and Testing Laboratories" (Standards Council of Canada ISO/IEC 17025)

The assay results highlights are provided in the following Table 14.3.

The Table below presents results of the Cordex samples assayed by American Assay Labs, and the Authors' assayed by ALS Minerals. Values are gold represented in parts per million (ppm).

	Cordex	Author	
Sample ID	Reported Au (ppm)	Reported Au (ppm)	Sample ID
ES-4 545-550	4.100	5.590	Q383766
ES-4 550-555	12.900	17.850	Q383767
ES-4 555-560	1.572	1.310	Q383768
ES-4 560-565	2.107	2.280	Q383769
ES-26 280-285	1.660	1.545	Q383790
ES-26 285-290	11.300	10.900	Q383770
ES-26 295-300	0.659	0.619	Q383771
ES-26 300-305	0.252	0.312	Q383772
ES-24 530-535	2.930	3.080	Q383773
ES-24 535-540	0.245	0.258	Q383774
ES-24 540-545	0.077	0.069	Q383775
ES-24 545-550	0.017	0.016	Q383776
ES-23 340-345	0.064	0.084	Q383777
ES-23 345-350	1.140	1.170	Q383778
ES-23 350-355	0.104	0.121	Q383779
ES-23 355-360	0.199	0.175	Q383780
ES-20 475-480	4.140	3.970	Q383781
ES-20 480-485	6.722	6.130	Q383782
ES-20 485-490	2.804	2.770	Q383783
ES-20 490-495	1.326	1.070	Q383784

Table 11.10 Tabulated Comparison of Values of RC Pulp Reject Samples

Analysis of the RC pulp reject duplicate samples collected by the Author produced acceptable results after rejecting sample Q383767 as an outlier. The AvCv of the data set was 9.99, well below an acceptable practice level for field duplicates of 30, and also substantially below best-practice AvCV of 20 for gold systems of this type (Abzalov, 2008). The RMA model had an intercept of 0.03 and a slope of 0.99, and both contained the targets of zero and one respectively within the 95% confidence interval.

12 Mineral Processing and Metallurgical Testing

In June, 2014, Kappes, Cassiday & Associates located at 7950 Security Circle, Reno, Nevada conducted a preliminary metallurgical study at the request of Cordex titled "Cordex Project Report of Metallurgical Test Work ".

A total of 14 reverse circulation drill cutting samples collected from the two 2013 exploration drill programs were submitted for metallurgical test work. The samples submitted were representative of the mineralization and host rock encountered in the gold bearing intersections. Both gold and silver assays for the samples submitted were provided by Cordex. Each sample was subsequently assigned a unique sample number, weighed and briefly described by Kappes, Cassiday & Associates. Sample preparation was then conducted to provide material for head analyses and bottle roll leach test work.

KCA Sample No.	Drill Hole	Interval	Au Assay, ppm	Ag Assay, ppm	Received Weight, kilograms
70901	ES-13	125-130	2.275	8.8	3.05
70902	ES-13	230-235	1.042	4.8	5.99
70903	ES-14	360-365	3.686	22.9	2.21
70904	ES-14	465-470	0.601	1.2	5.65
70905	ES-19	740-745	3.795	68	5.00
70906	ES-20	480-485	6.722	61	5.21
70907	ES-21	560-565	1.780	2.1	2.99
70908	ES-25	165-170	0.342	2.4	5.65
70909	ES-26	285-290	11.300	17	2.86
70910	ES-27	70-75	1.299	4.0	5.09
70911	ES-27	550-555	1.440	8	2.76
70912	ES-32	965-970	3.260	99.3	2.89
70913	ES-33	600-605	1.600	14	3.11
70914	ES-36	735-740	0.993	34	2.89

 Table 12.1 Samples Submitted for Metallurgical Test, Intervals in Feet (KCA, 2014)

Table 12.1 Samples Submitted for Metallurgical Test, Intervals in Feet (KCA, 2014), extracted from the report, provides the details for the samples tested. It is noted that the intervals reported in the table are in feet.

Bottle roll leach testing was conducted on both coarse and fine splits from each separate sample. For the purposes of this report only the samples containing material of 80% passing 200 mesh Tyler was presented.

The bottle roll test procedure for the pulverized material of 80% passing 200 mesh Tyler was as follows:

- 1. One 1,000 gram split of pulverized material was placed into a 2.5 liter bottle and slurried with 1,500 milliliters of tap water.
- 2. The slurry was mixed thoroughly and the pH of the slurry checked. The pH of the slurry was adjusted, as required, to 10.5 to 11.0 with hydrated lime.

- 3. Sodium cyanide was added to the slurry to a target amount of 1.0 grams per liter sodium cyanide. The bottle was then placed onto a set of laboratory rolls. Rolling throughout the duration of the test mixed the slurry.
- 4. The slurry was checked at 2, 4, 8, 24, 48, 72 and 96 hours for pH, dissolved oxygen (DO), NaCN, Au, Ag and Cu.
- 5. Additional hydrated lime and sodium cyanide were added after each sample period, if required, to adjust the slurry to the target levels.

The average gold recovery reported from the 14 samples after 96 hours was 94.8%, the average silver recovered was 52.1%.

13 Mineral Resource Estimates

13.1 N.I. 43-101 Compliant Estimates

No N.I. 43-101 compliant resource or reserve estimates have been calculated for the Eastside property.

14 Environmental Concerns

The Property is an early stage exploration area, and the author is not aware of any environmental liabilities.

15 Other Relevant Data and Information

To the best knowledge of the author no other relevant data from this property other than what is included or referred to in this report is known to exist.

16 Additional Requirements on Development and Production Properties

This item does not apply to this 43-101 Technical Report as the property is not a development or production property.

17 Interpretation and Conclusions

Based on the review and appraisal of the regional, local geological and exploration data to date it is concluded that the Eastside Property is a property of merit and possesses a good potential for additional discovery of gold and silver mineralization. The nearby availability of exploration and mining services, power, ample suitable sites for mining infrastructure and being located in a currently active mining jurisdiction makes it a worthy mineral exploration target.

The above-mentioned exploration data provides the basis for a follow-up drill work program including detailed geological mapping and surface chip sampling of untested outcroppings which will assist in providing structural and geological trends for guiding future drill programs.

The author is of the opinion that the present study has met it original objectives and provides the basis for additional financing to support future exploration on the Property.

Gold of higher grade mineralization encountered on the property to date is closely associated with rhyolite breccia zones, banded silica veins and silicic stockwork veining while host rocks for lower grades of gold mineralization are the more permeable lithologies which includes rhyolites, andesite lahars and felsic tuff breccias.

The general north–south alignment of the rhyolite flow-dome complex coinciding with mapped parallel fault structures along with the direction of the local flowbanding and quartz veining indicates potential for high grade gold and silver discovery proximal to the margins of the rhyolite intrusions at depth.

Drilling to date demonstrates that the intrusive domes may have a shallow westerly dip. Distribution of gold values with the higher values at lower elevations suggests a vertical zoning of the gold mineralization. Numerous outcrops of calcite replaced by quartz also indicate the mineralization found at the surface is near the uppermost productive zone of an epithermal system with potential for increasing grade at depth.

It is of the authors opinion that the greatest potential for additional gold and silver discovery lies at depth along the margins of the rhyolite intrusions where the gold and silver bearing veins mineralize the surrounding rhyolite breccia, tuffs and andesite and thus should be the focus of continued exploration programs on the Property.

18 Recommendations

In the qualified person's opinion the character of the Eastside Property is sufficient to merit the following Phased work program. This can be accomplished through a two phase exploration program, where each phase is contingent upon the results of the previous phase.

18.1 Phase 1 – Data Compilation and Drill Program

This work includes compilation of all the historical geological, geophysical and geochemical data available for the Property, and generating a digital database to be used to generate 3-D structural and geologic models.

The fieldwork component of this phase will include RC drilling along strike and both up and down dip of encountered mineralization in addition to drilling other untested prospective areas defined by favorable geology and surface geochemistry on the property.

A diamond drill program is recommended to twin 2011 and 2013 drill holes that encountered higher grade gold and silver mineralization. Core drilling will provide additional information for petrographic, metallurgical and structural studies.

 17,000 meters of reverse circulation drilling, 70 holes, average depth 240 meters
 \$65 per meter
 \$1,105,000.00

Estimated cost of this program is \$2,706,300, details are provided in the following table.

average depth 240 meters		
12,240 assay samples including 8% QAQC samples,	\$22 per assay	\$ 269,300.00
sampled every 1.5 meters		
2,500 meters of diamond drilling, 10 holes, average depth	\$85 per meter	\$ 212,500.00
250 meters		
2,250 assay samples including 8% QAQC samples, sampled	\$22 per assay	\$ 49,500.00
every 1.2 meters		
Drill pad and road construction, approximately 14 km's	\$25,000 per km	\$ 350,000.00
road construction		
Drill pad and road reclamation	\$5,000 per km	\$ 70,000.00
Drill Staff (Expenses and Salaries)		\$ 500,000.00
Vehicle rentals, sample storage, supplies		\$ 50,000.00
Data compilation, digitization and modelling		\$ 50,000.00
Contractor Surveying, drill collar and down-hole		\$ 50,000.00

Table 18.1 Recommended Phase 1 Exploration Program

18.2 Phase 2 – Definition and Infill Drill Program

If the above work plan lends positive results a phase two exploration program is warranted with an estimated cost of \$4,000,000, recommendations include:

- Infill and definition drilling of 30,000+ meters.
- Environmental baseline study.
- Comprehensive bulk sample metallurgical test work and petrographic studies.
- Resource estimate
- Preliminary economic evaluation.

19 References

- Abzalov, M. (2008). Quality Control of Assay Data. *Exploration and Mining Geology, 17*(3-4), 131-144.
- Bikerman, B., & Bikerman, M. (2009). CASTLE BLACK ROCK PROJECT, CASTLE ZONE RESOURCE EVALUATION. Cortez Resources.
- BLM 2016 Budget. (2015). Retrieved from http://www.blm.gov/style/medialib/blm/wo/Communications_Directorate/public_affai rs/news_release_attachments.Par.13179.File.dat/BLM_Budget%20Highlights.pdf
- BLM Filings and Fees. (2015). Retrieved from http://www.blm.gov/ut/st/en/prog/more/mining_law_locatable/filings_and_fees.html
- Diner, Y., & Strachan, D. (1994). GEOLOGY OF THE BOSS MINING AREA, GILBERT DISTRICT, ESMERALDA COUNTY, NEVADA. *Economic Geology, 89*, 1176-1182.
- Faulds, J. E., & Henry, C. D. (2008). Tectonic influences on the spatial and temporal evolution of the Walker Lane. *Arizona Geological Society Digest, 22*, 437-470.
- Hanson, W. (2006). Round Mountain Mine Technical Report. Kinross Gold Corporation.
- KCA. (2014). CORDEX PROJECT REPORT OF METALLURGICAL TEST WORK; Project No. 657 C; File: 8677. Kappes, Cassiday & Associates.
- Muntean, J. (2010). The Nevada Mineral Industry 2010. Nevada Bureau of Mines and Geology Special Publication.
- Round Mountain, USA. (2014). Retrieved from http://kinross.com/operations/operationround-mountain,-usa.aspx
- Sillitoe, R., & Hedenquist, J. (2003). Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits. *Society of Economic Geologists, Special Publication 10*, 315-343.
- Western Regional Climate Center Tonopah. (2015, 1 20). Retrieved from http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?nv8170
- Zonge Geosciences Inc. (2004). CSAMT SURVEY ON THE EASTSIDE PROJECT ESMERALDA COUNTY, NEVADA FOR NEWMONT MINING CORPORATION DATA ACQUISITION REPORT; Zonge Job# 2004.81.

19.1 Map Data

OpenStreetMap data © OpenStreetMap contributors (www.openstreetmap.org/copyright)

Map services and data made available by U.S. Geological Survey, National Geospatial Program.

-

1

0

34243

BRIT

20 Date and Signature Page

The effective date of this technical report, entitled "Technical Report On the Eastside Property, Esmeralda County, Nevada, United States of America" is March 19, 2015.

Dated: March 19, 2015

Signed:

K. L. WHITEHEAD Kristian Whitehead (Signed)

Kristian Whitehead, P.Geo.

ŝ.

21 Certificate of Author

I, Kristian Whitehead, as author of this report entitled "National Instrument 43-101 Technical Report on the Eastside Project, Esmeralda County, Nevada, USA", do hereby certify that:

- 1. I am a consulting geologist of: Infiniti Drilling Incorporated of: 2763 Panorama Drive, North Vancouver, BC, V7G 1V7.
- This certificate applies to the report entitled "National Instrument 43-101 Technical Report on the Eastside Property, Nevada, USA, Located in Township 4 North, Range 39 East, State of Nevada, USA 38° 10' N Latitude and 117° 37' W Longitude, Dated March 15th, 2015.
- 3. I have a B.Sc. Degree in Earth and Ocean Science from University of Victoria, British Columbia in 2004.
- 4. I am registered as a Professional Geologist in British Columbia (License # 34243). I have been practicing my profession continuously since 2004, and have 10 years of experience in mineral exploration for precious metals, base metals, iron and niobium.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101) and certify that by reason of my education, affiliation with a professional organization (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- I am responsible for all sections of the report entitled " This certificate applies to the report entitled "National Instrument 43-101 Technical Report on the Eastside Property, Nevada, USA, Located in Township 4 North, Range 39 East, State of Nevada, USA Latitude: 18 27' – 18 32' Longitude: 98 23' – 98 30' ", Dated February 15th, 2015".
- 7. I am not aware of any information or omission of such information that would make this Technical Report misleading. This Technical Report, the contains available scientific and technical information that is required to be disclosed to make the technical report not misleading. I visited the property for one day on January 21, 2015.
- 8. I have no interest, direct or indirect in the Eastside Property, nor do I have any interest in any other properties of Columbus Gold Corporation, nor do I own directly or indirectly any of the securities of Columbus Gold Corporation.
- 9. I am independent of Columbus Gold Corporation, as that term is defined in Section 1.4 of NI 43-101. For greater clarity, I do not hold, nor do I expect to receive, any securities of any other interest in any corporate entity, private or public, with interests in the Eastside Property which is the subject of this report or in the properties themselves, nor do I have any business relationship with any such entity apart from a professional consulting relationship with the Companies, nor do I to the best of my knowledge hold any securities in any corporate entity within a two (2) kilometer distance of any part of the subject Eastside Property.
- 10. I have read National Instrument 43-101 ("NI43-101"), and the Technical Report has been prepared in compliance with NI43-101, and Form 43-101F1.

Eastside Property

11. I consent to the filing of the Technical Report with any stock exchange or other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible to the public.

Dated: March 19th, 2015

Signed and Sealed

R

Kristian Whitehead (Signed)

Signature of Qualified Person

Kristian Whitehead

Name of Qualified Person

56 | Page

22 Appendix A: Claim List

NAME OF PROPERTY: EASTSIDE

TOTAL: 574 Claims 35 Claims as Eastside 1-35 539 Claims as ES 1-342, ESW 1-3, DP 1-192

ES, ESW & DP Claims:

OWNER/LESSOR: Cordex Exploration Co. 573 E. 2nd Street Reno, NV 89502

DESCRIPTION:

539 unpatented lode mining claims located in Sections 4, 5 and 9, Unsurveyed Township 3 North, Range 38½ East and Sections 4-9, partially Surveyed Township 3 North, Range 39 East and Sections 16, 21, 28, 33, Unsurveyed Township 4 North, Range 38 ½ East and Sections 3-5, 7-10, 15-22, 27-35, Unsurveyed Township 4 North, Range 39 East, M.D.B.&M., Esmeralda County, Nevada, as follows:

Claim Name	BLM Serial	Number	County Docum	ent Numb	er/Book	, Page		
ES 1	NMC#	1046918	Doc#	182611	Book	304	Page	268
ES 2	NMC#	1046919	Doc#	182612	Book	304	Page	269
ES 3	NMC#	1046920	Doc#	182613	Book	304	Page	270
ES 4	NMC#	1046921	Doc#	182614	Book	304	Page	271
ES 5	NMC#	1046922	Doc#	182615	Book	304	Page	272
ES 6	NMC#	1046923	Doc#	182616	Book	304	Page	273
ES 7	NMC#	1046924	Doc#	182617	Book	304	Page	274
ES 8	NMC#	1046925	Doc#	182618	Book	304	Page	275
ES 9	NMC#	1046926	Doc#	182619	Book	304	Page	276
ES 10	NMC#	1046927	Doc#	182620	Book	304	Page	277
ES 11	NMC#	1046928	Doc#	182621	Book	304	Page	278
ES 12	NMC#	1046929	Doc#	182622	Book	304	Page	279
ES 13	NMC#	1046930	Doc#	182623	Book	304	Page	280
ES 14	NMC#	1046931	Doc#	182624	Book	304	Page	281
ES 15	NMC#	1046932	Doc#	182625	Book	304	Page	282
ES 16	NMC#	1046933	Doc#	182626	Book	304	Page	283
ES 17	NMC#	1046934	Doc#	182627	Book	304	Page	284
ES 18	NMC#	1046935	Doc#	182628	Book	304	Page	285
ES 19	NMC#	1046936	Doc#	182629	Book	304	Page	286
ES 20	NMC#	1046937	Doc#	182630	Book	304	Page	287
ES 21	NMC#	1046938	Doc#	182631	Book	304	Page	288
ES 22	NMC#	1046939	Doc#	182632	Book	304	Page	289
ES 23	NMC#	1046940	Doc#	182633	Book	304	Page	290
ES 24	NMC#	1046941	Doc#	182634	Book	304	Page	291
ES 25	NMC#	1046942	Doc#	182635	Book	304	Page	292
ES 26	NMC#	1046943	Doc#	182636	Book	304	Page	293
ES 27	NMC#	1046944	Doc#	182637	Book	304	Page	294
ES 28	NMC#	1046945	Doc#	182638	Book	304	Page	295
ES 29	NMC#	1046946	Doc#	182639	Book	304	Page	296
ES 30	NMC#	1046947	Doc#	182640	Book	304	Page	297
ES 31	NMC#	1095191	Doc#	190069	Book	322	Page	485
ES 32	NMC#	1095192	Doc#	190070	Book	322	Page	486

57 | Page

ES 33	NMC#	1095193	Doc#	190071	Book	322	Daga	487
ES 34	NMC#	1095193	Doc#	190071	Book	322	Page Page	488
ES 35	NMC#	1095194	Doc#	190072	Book	322	Page	489
ES 36	NMC#	1095195	Doc#	190073	Book	322		409
ES 30 ES 37							Page	
	NMC#	1095197	Doc#	190075	Book	322	Page	491
ES 38	NMC#	1095198	Doc#	190076	Book	322	Page	492
ES 39	NMC#	1095199	Doc#	190077	Book	322	Page	493
ES 40	NMC#	1095200	Doc#	190078	Book	322	Page	494
ES 41	NMC#	1095201	Doc#	190079	Book	322	Page	495
ES 42	NMC#	1095202	Doc#	190080	Book	322	Page	496
ES 43	NMC#	1095203	Doc#	190081	Book	322	Page	497
ES 44	NMC#	1095204	Doc#	190082	Book	322	Page	498
ES 45	NMC#	1095205	Doc#	190083	Book	322	Page	499
ES 46	NMC#	1095206	Doc#	190084	Book	322	Page	500
ES 47	NMC#	1095207	Doc#	190085	Book	322	Page	501
ES 48	NMC#	1095208	Doc#	190086	Book	322	Page	502
ES 49	NMC#	1095209	Doc#	190087	Book	322	Page	503
ES 50	NMC#	1095210	Doc#	190088	Book	322	Page	504
ES 51	NMC#	1095211	Doc#	190089	Book	322	Page	505
ES 52	NMC#	1095212	Doc#	190090	Book	322	Page	506
ES 53	NMC#	1095213	Doc#	190091	Book	322	Page	507
ES 54	NMC#	1095214	Doc#	190092	Book	322	Page	508
ES 55	NMC#	1095215	Doc#	190093	Book	322	Page	509
ES 56	NMC#	1095216	Doc#	190094	Book	322	Page	510
ES 57	NMC#	1095217	Doc#	190095	Book	322	Page	511
ES 58	NMC#	1095218	Doc#	190096	Book	322	Page	512
ES 59	NMC#	1095219	Doc#	190097	Book	322	Page	513
ES 60	NMC#	1095220	Doc#	190098	Book	322	Page	514
ES 61	NMC#	1095221	Doc#	190099	Book	322	Page	515
ES 62	NMC#	1095222	Doc#	190100	Book	322	Page	516
ES 63	NMC#	1095223	Doc#	190101	Book	322	Page	517
ES 64	NMC#	1095224	Doc#	190102	Book	322	Page	518
ES 65	NMC#	1095225	Doc#	190103	Book	322	Page	519
ES 66	NMC#	1095226	Doc#	190104	Book	322	Page	520
ES 67	NMC#	1095227	Doc#	190105	Book	322	Page	521
ES 68	NMC#	1095228	Doc#	190106	Book	322	Page	522
ES 69	NMC#	1095229	Doc#	190107	Book	322	Page	523
ES 70	NMC#	1095230	Doc#	190108	Book	322	Page	524
ES 71	NMC#	1095231	Doc#	190109	Book	322	Page	525
ES 72	NMC#	1095232	Doc#	190110	Book	322	Page	526
ES 73	NMC#	1095233	Doc#	190111	Book	322	Page	527
ES 74	NMC#	1095234	Doc#	190112	Book	322	Page	528
ES 75	NMC#	1095235	Doc#	190113	Book	322	Page	529
ES 76	NMC#	1095236	Doc#	190114	Book	322	Page	530
ES 77	NMC#	1095237	Doc#	190115	Book	322	Page	531
ES 78	NMC#	1095238	Doc#	190116	Book	322	Page	532
ES 79	NMC#	1095239	Doc#	190117	Book	322	Page	533
ES 80	NMC#	1095239	Doc#	190118	Book	322	Page	534
ES 81	NMC#	1095240	Doc#	190119	Book	322		535
ES 82	NMC#	1095241	Doc#	190120	Book	322	Page	536
ES 83							Page	536
	NMC#	1095243	Doc#	190121	Book	322	Page	
ES 84	NMC#	1095244	Doc#	190122	Book	322	Page	538
ES 85	NMC#	1095245	Doc#	190123	Book	322	Page	539
ES 86	NMC#	1095246	Doc#	190124	Book	322	Page	540

ES 87	NMC#	1095247	Doc#	190125	Book	322	Daga	541
ES 88	NMC#	1095247	Doc#	190125	Book	322	Page	541
ES 89						-	Page	
	NMC#	1095249	Doc#	190127	Book	322	Page	543
ES 90	NMC#	1095250	Doc#	190128	Book	322	Page	544
ES 91	NMC#	1095251	Doc#	190129	Book	322	Page	545
ES 92	NMC#	1095252	Doc#	190130	Book	322	Page	546
ES 93	NMC#	1095253	Doc#	190131	Book	322	Page	547
ES 94	NMC#	1095254	Doc#	190132	Book	322	Page	548
ES 95	NMC#	1095255	Doc#	190133	Book	322	Page	549
ES 96	NMC#	1095256	Doc#	190134	Book	322	Page	550
ES 97	NMC#	1095257	Doc#	190135	Book	322	Page	551
ES 98	NMC#	1095258	Doc#	190136	Book	322	Page	552
ES 99	NMC#	1095259	Doc#	190137	Book	322	Page	553
ES 100	NMC#	1095260	Doc#	190138	Book	322	Page	554
ES 101	NMC#	1095261	Doc#	190139	Book	322	Page	555
ES 102	NMC#	1095262	Doc#	190140	Book	322	Page	556
ES 103	NMC#	1095263	Doc#	190141	Book	322	Page	557
ES 104	NMC#	1095264	Doc#	190142	Book	322	Page	558
ES 105	NMC#	1095265	Doc#	190143	Book	322	Page	559
ES 106	NMC#	1095266	Doc#	190144	Book	322	Page	560
ES 107	NMC#	1095267	Doc#	190145	Book	322	Page	561
ES 108	NMC#	1095268	Doc#	190146	Book	322	Page	562
ES 109	NMC#	1095269	Doc#	190147	Book	322	Page	563
ES 110	NMC#	1095270	Doc#	190148	Book	322	Page	564
ES 111	NMC#	1095271	Doc#	190149	Book	322	Page	565
ES 112	NMC#	1095272	Doc#	190150	Book	322	Page	566
ES 113	NMC#	1095273	Doc#	190151	Book	322	Page	567
ES 114	NMC#	1095274	Doc#	190152	Book	322	Page	568
ES 115	NMC#	1095275	Doc#	190153	Book	322	Page	569
ES 116	NMC#	1095276	Doc#	190154	Book	322	Page	570
ES 117	NMC#	1095277	Doc#	190155	Book	322	Page	571
ES 118	NMC#	1095278	Doc#	190156	Book	322	Page	572
ES 119	NMC#	1095279	Doc#	190157	Book	322	Page	573
ES 120	NMC#	1095280	Doc#	190158	Book	322	Page	574
ES 121	NMC#	1095281	Doc#	190159	Book	322	Page	575
ES 122	NMC#	1095282	Doc#	190160	Book	322	Page	576
ES 123	NMC#	1095283	Doc#	190161	Book	322	Page	577
ES 124	NMC#	1095284	Doc#	190162	Book	322	Page	578
ES 125	NMC#	1095285	Doc#	190163	Book	322	Page	579
ES 126	NMC#	1095286	Doc#	190164	Book	322	Page	580
ES 120	NMC#	1095287	Doc#	190165	Book	322	Page	581
ES 128	NMC#	1095288	Doc#	190166	Book	322	Page	582
ES 129	NMC#	1095289	Doc#	190167	Book	322	Page	583
ES 130	NMC#	1095290	Doc#	190168	Book	322	Page	584
ES 130	NMC#	1095290	Doc#	190169	Book	322	Page	585
ES 132	NMC#	1095291	Doc#	190170	Book	322		586
ES 132 ES 133	NMC#	1095292	Doc#	190170	Book	322	Page	587
ES 133 ES 134	NMC#	1095293	Doc#	190171	Book	322	Page	588
ES 134 ES 135							Page	
	NMC#	1095295	Doc#	190173	Book	322	Page	589
ES 136	NMC#	1095296	Doc#	190174	Book	322	Page	590
ES 137	NMC#	1095297	Doc#	190175	Book	322	Page	591
ES 138	NMC#	1095298	Doc#	190176	Book	322	Page	592
ES 139	NMC#	1095299	Doc#	190177	Book	322	Page	593
ES 140	NMC#	1095300	Doc#	190178	Book	322	Page	594

		1005201	Dee#	100170	Deek	222	Daga	FOF
ES 141 ES 142	NMC#	1095301	Doc#	190179	Book	322	Page	595
	NMC#	1095302	Doc#	190180	Book	322	Page	596
ES 143	NMC#	1095303	Doc#	190181	Book	322	Page	597
ES 144	NMC#	1095304	Doc#	190182	Book	322	Page	598
ES 145	NMC#	1099129	Doc#	190720	Book	324	Page	81
ES 146	NMC#	1099130	Doc#	190721	Book	324	Page	82
ES 147	NMC#	1099131	Doc#	190722	Book	324	Page	83
ES 148	NMC#	1099132	Doc#	190723	Book	324	Page	84
ES 149	NMC#	1099133	Doc#	190724	Book	324	Page	85
ES 150	NMC#	1099134	Doc#	190725	Book	324	Page	86
ES 151	NMC#	1099135	Doc#	190726	Book	324	Page	87
ES 152	NMC#	1099136	Doc#	190727	Book	324	Page	88
ES 153	NMC#	1099137	Doc#	190728	Book	324	Page	89
ES 154	NMC#	1099138	Doc#	190729	Book	324	Page	90
ES 155	NMC#	1099139	Doc#	190730	Book	324	Page	91
ES 156	NMC#	1099140	Doc#	190731	Book	324	Page	92
ES 157	NMC#	1099141	Doc#	190732	Book	324	Page	93
ES 158	NMC#	1099142	Doc#	190733	Book	324	Page	94
ES 159	NMC#	1099143	Doc#	190734	Book	324	Page	95
ES 160	NMC#	1099144	Doc#	190735	Book	324	Page	96
ES 161	NMC#	1099145	Doc#	190736	Book	324	Page	97
ES 162	NMC#	1099146	Doc#	190737	Book	324	Page	98
ES 163	NMC#	1099147	Doc#	190738	Book	324	Page	99
ES 164	NMC#	1099148	Doc#	190739	Book	324	Page	100
ES 165	NMC#	1099149	Doc#	190740	Book	324	Page	101
ES 166	NMC#	1099150	Doc#	190741	Book	324	Page	102
ES 167	NMC#	1099151	Doc#	190742	Book	324	Page	103
ES 168	NMC#	1099152	Doc#	190743	Book	324	Page	104
ES 169	NMC#	1099153	Doc#	190744	Book	324	Page	105
ES 170	NMC#	1099154	Doc#	190745	Book	324	Page	106
ES 171	NMC#	1099155	Doc#	190746	Book	324	Page	107
ES 172	NMC#	1099156	Doc#	190747	Book	324	Page	108
ES 173	NMC#	1099157	Doc#	190748	Book	324	Page	109
ES 174	NMC#	1099158	Doc#	190749	Book	324	Page	110
ES 175	NMC#	1099159	Doc#	190750	Book	324	Page	111
ES 176	NMC#	1099160	Doc#	190751	Book	324	Page	112
ES 177	NMC#	1099161	Doc#	190752	Book	324	Page	113
ES 178	NMC#	1099162	Doc#	190753	Book	324	Page	114
ES 179	NMC#	1099163	Doc#	190754	Book	324	Page	115
ES 180	NMC#	1099164	Doc#	190755	Book	324	Page	116
ES 180	NMC#	1099165	Doc#	190755	Book	324	Page	117
ES 181	NMC#	1099165		190757				118
			Doc#		Book	324	Page	
ES 183	NMC#	1099167	Doc#	190758	Book	324	Page	119
ES 184	NMC#	1099168	Doc#	190759	Book	324	Page	120
ES 185	NMC#	1099169	Doc#	190760	Book	324	Page	121
ES 186	NMC#	1099170	Doc#	190761	Book	324	Page	122
ES 187	NMC#	1099171	Doc#	190762	Book	324	Page	123
ES 188	NMC#	1099172	Doc#	190763	Book	324	Page	124
ES 189	NMC#	1099173	Doc#	190764	Book	324	Page	125
ES 190	NMC#	1099174	Doc#	190765	Book	324	Page	126
ES 191	NMC#	1099175	Doc#	190766	Book	324	Page	127
ES 192	NMC#	1099176	Doc#	190767	Book	324	Page	128
ES 193	NMC#	1099177	Doc#	190768	Book	324	Page	129
ES 194	NMC#	1099178	Doc#	190769	Book	324	Page	130

ES 195	NMC#	1099179	Doc#	190770	Book	324	Page	131
ES 196	NMC#	1099180	Doc#	190771	Book	324	Page	132
ES 197	NMC#	1099181	Doc#	190772	Book	324	Page	133
ES 198	NMC#	1099182	Doc#	190773	Book	324	Page	134
ES 199	NMC#	1099182	Doc#	190773	Book	324		135
ES 200	NMC#	1099183	Doc#	190775	Book	324	Page	136
							Page	
ES 201 (amd)	NMC#	1099185	Doc#	191617	Book	326	Page	88
ES 202	NMC#	1099186	Doc#	190777	Book	324	Page	138
ES 203 (amd)	NMC#	1099187	Doc#	191618	Book	326	Page	90
ES 204	NMC#	1099188	Doc#	190779	Book	324	Page	140
ES 205	NMC#	1099189	Doc#	190780	Book	324	Page	141
ES 206	NMC#	1099190	Doc#	190781	Book	324	Page	142
ES 207	NMC#	1099191	Doc#	190782	Book	324	Page	143
ES 208	NMC#	1099192	Doc#	190783	Book	324	Page	144
ES 209	NMC#	1099193	Doc#	190784	Book	324	Page	145
ES 210	NMC#	1099194	Doc#	190785	Book	324	Page	146
ES 211	NMC#	1099195	Doc#	190786	Book	324	Page	147
ES 212	NMC#	1099196	Doc#	190787	Book	324	Page	148
ES 213	NMC#	1099197	Doc#	190788	Book	324	Page	149
ES 214	NMC#	1099198	Doc#	190789	Book	324	Page	150
ES 215	NMC#	1099199	Doc#	190790	Book	324	Page	151
ES 216	NMC#	1099200	Doc#	190791	Book	324	Page	152
ES 217	NMC#	1099201	Doc#	190792	Book	324	Page	153
ES 218	NMC#	1099202	Doc#	190793	Book	324	Page	154
ES 219	NMC#	1099203	Doc#	190794	Book	324	Page	155
ES 220	NMC#	1099204	Doc#	190795	Book	324	Page	156
ES 221	NMC#	1099205	Doc#	190796	Book	324	Page	157
ES 222	NMC#	1099206	Doc#	190797	Book	324	Page	158
ES 223	NMC#	1099207	Doc#	190798	Book	324	Page	159
ES 224	NMC#	1099208	Doc#	190799	Book	324	Page	160
ES 225	NMC#	1099209	Doc#	190800	Book	324	Page	161
ES 226	NMC#	1099210	Doc#	190801	Book	324	Page	162
ES 227	NMC#	1099211	Doc#	190802	Book	324	Page	163
ES 228	NMC#	1099212	Doc#	190803	Book	324	Page	164
ES 229	NMC#	1099213	Doc#	190804	Book	324	Page	165
ES 230	NMC#	1099214	Doc#	190805	Book	324	Page	166
ES 231	NMC#	1099215	Doc#	190806	Book	324	Page	167
ES 232	NMC#	1099216	Doc#	190807	Book	324	Page	168
ES 233	NMC#	1099217	Doc#	190808	Book	324	Page	169
ES 234	NMC#	1099218	Doc#	190809	Book	324	Page	170
ES 235	NMC#	1099219	Doc#	190810	Book	324	Page	171
ES 236	NMC#	1099220	Doc#	190811	Book	324	Page	172
ES 237	NMC#	1099221	Doc#	190812	Book	324	Page	173
ES 238	NMC#	1099222	Doc#	190813	Book	324	Page	174
ES 239	NMC#	1099223	Doc#	190814	Book	324	Page	175
ES 240	NMC#	1099224	Doc#	190815	Book	324	Page	176
ES 241	NMC#	1099225	Doc#	190816	Book	324	Page	177
ES 242	NMC#	1099225	Doc#	190817	Book	324	Page	178
ES 243	NMC#	1099220	Doc#	190818	Book	324	Page	179
ES 243	NMC#	1100604	Doc#	191066	Book	325		9
							Page	
ES 245	NMC#	1100605	Doc#	191067	Book	325	Page	10
ES 246	NMC#	1100606	Doc#	191068	Book	325	Page	11
ES 247	NMC#	1100607	Doc#	191069	Book	325	Page	12
ES 248	NMC#	1100608	Doc#	191070	Book	325	Page	13

			. .		<u> </u>		-	
ES 249	NMC#	1100609	Doc#	191071	Book	325	Page	14
ES 250	NMC#	1100610	Doc#	191072	Book	325	Page	15
ES 251	NMC#	1100611	Doc#	191073	Book	325	Page	16
ES 252	NMC#	1100612	Doc#	191074	Book	325	Page	17
ES 253	NMC#	1100613	Doc#	191075	Book	325	Page	18
ES 254	NMC#	1100614	Doc#	191076	Book	325	Page	19
ES 255	NMC#	1100615	Doc#	191077	Book	325	Page	20
ES 256	NMC#	1100616	Doc#	191078	Book	325	Page	21
ES 257	NMC#	1100617	Doc#	191079	Book	325	Page	22
ES 258	NMC#	1100618	Doc#	191080	Book	325	Page	23
ES 259	NMC#	1100619	Doc#	191081	Book	325	Page	24
ES 260	NMC#	1100620	Doc#	191082	Book	325	Page	25
ES 261	NMC#	1100621	Doc#	191083	Book	325	Page	26
ES 262	NMC#	1100622	Doc#	191084	Book	325	Page	27
ES 263	NMC#	1100623	Doc#	191085	Book	325	Page	28
ES 264	NMC#	1100624	Doc#	191086	Book	325	Page	29
ES 265	NMC#	1100625	Doc#	191087	Book	325	Page	30
ES 266	NMC#	1100626	Doc#	191088	Book	325	Page	31
ES 267	NMC#	1100627	Doc#	191089	Book	325	Page	32
ES 268	NMC#	1100628	Doc#	191090	Book	325	Page	33
ES 269	NMC#	1100629	Doc#	191091	Book	325	Page	34
ES 270	NMC#	1100630	Doc#	191092	Book	325	Page	35
ES 271	NMC#	1100631	Doc#	191093	Book	325	Page	36
ES 272	NMC#	1100632	Doc#	191094	Book	325	Page	37
ES 273	NMC#	1100633	Doc#	191095	Book	325	Page	38
ES 274	NMC#	1100634	Doc#	191096	Book	325	Page	39
ES 275	NMC#	1100635	Doc#	191097	Book	325	Page	40
ES 276	NMC#	1100636	Doc#	191098	Book	325	Page	41
ES 277	NMC#	1100637	Doc#	191099	Book	325	Page	42
ES 278	NMC#	1100638	Doc#	191100	Book	325	Page	43
ES 279	NMC#	1100639	Doc#	191101	Book	325	Page	44
ES 280	NMC#	1100640	Doc#	191102	Book	325	Page	45
ES 281	NMC#	1100641	Doc#	191103	Book	325	Page	46
ES 282	NMC#	1100642	Doc#	191103	Book	325	Page	47
ES 283	NMC#	1100642	Doc#	191104	Book	325		48
ES 283	NMC#	1100643	Doc#	191105		325	Page	40
ES 285	NMC#				Book	325	Page Page	49 50
		1100645	Doc#	191107	Book		5	
ES 286	NMC#	1100646	Doc#	191108	Book	325	Page	51
ES 287	NMC#	1100647	Doc#	191109	Book	325	Page	52
ES 288	NMC#	1100648	Doc#	191110	Book	325	Page	53
ES 289	NMC#	1100649	Doc#	191111	Book	325	Page	54
ES 290	NMC#	1100650	Doc#	191112	Book	325	Page	55
ES 291	NMC#	1100651	Doc#	191113	Book	325	Page	56
ES 292	NMC#	1100652	Doc#	191114	Book	325	Page	57
ES 293	NMC#	1100653	Doc#	191115	Book	325	Page	58
ES 294	NMC#	1100654	Doc#	191116	Book	325	Page	59
ES 295	NMC#	1100655	Doc#	191117	Book	325	Page	60
ES 296	NMC#	1100656	Doc#	191118	Book	325	Page	61
ES 297	NMC#	1100657	Doc#	191119	Book	325	Page	62
ES 298	NMC#	1100658	Doc#	191120	Book	325	Page	63
ES 299	NMC#	1100659	Doc#	191121	Book	325	Page	64
ES 300	NMC#	1100660	Doc#	191122	Book	325	Page	65
ES 301	NMC#	1100661	Doc#	191123	Book	325	Page	66
ES 302	NMC#	1100662	Doc#	191124	Book	325	Page	67

ES 303	NMC#	1100662	Doo#	191125	Pook	225	Dogo	60
		1100663	Doc#		Book	325	Page	68
ES 304	NMC#	1100664	Doc#	191126	Book	325	Page	69
ES 305	NMC#	1100665	Doc#	191127	Book	325	Page	70
ES 306	NMC#	1100666	Doc#	191128	Book	325	Page	71
ES 307	NMC#	1100667	Doc#	191129	Book	325	Page	72
ES 308	NMC#	1100668	Doc#	191130	Book	325	Page	73
ES 309	NMC#	1100669	Doc#	191131	Book	325	Page	74
ES 310	NMC#	1100670	Doc#	191132	Book	325	Page	75
ES 311	NMC#	1100671	Doc#	191133	Book	325	Page	76
ES 312	NMC#	1100672	Doc#	191134	Book	325	Page	77
ES 313	NMC#	1100673	Doc#	191135	Book	325	Page	78
ES 314	NMC#	1100674	Doc#	191136	Book	325	Page	79
ES 315	NMC#	1100675	Doc#	191137	Book	325	Page	80
ES 316	NMC#	1100676	Doc#	191138	Book	325	Page	81
ES 317	NMC#	1100677	Doc#	191139	Book	325	Page	82
ES 318	NMC#	1100678	Doc#	191140	Book	325	Page	83
ES 319	NMC#	1100679	Doc#	191141	Book	325	Page	84
ES 320	NMC#	1100680	Doc#	191142	Book	325	Page	85
ES 321	NMC#	1100681	Doc#	191143	Book	325	Page	86
ES 322	NMC#	1100682	Doc#	191144	Book	325	Page	87
ES 323	NMC#	1100683	Doc#	191145	Book	325	Page	88
ES 324	NMC#	1100684	Doc#	191146	Book	325	Page	89
ES 325	NMC#	1100685	Doc#	191147	Book	325	Page	90
ES 326	NMC#	1100686	Doc#	191148	Book	325	Page	91
ES 327	NMC#	1100687	Doc#	191149	Book	325	Page	92
ES 328	NMC#	1100688	Doc#	191151	Book	325	Page	93
ES 329	NMC#	1100689	Doc#	191152	Book	325	Page	94
ES 330	NMC#	1100690	Doc#	191153	Book	325	Page	95
ES 331	NMC#	1100691	Doc#	191155	Book	325	Page	96
ES 332	NMC#	1100692	Doc#	191156	Book	325	Page	97
ES 333	NMC#	1100693	Doc#	191157	Book	325	Page	98
ES 334	NMC#	1100694	Doc#	191158	Book	325	Page	99
ES 335	NMC#	1100695	Doc#	191159	Book	325	Page	100
ES 336	NMC#	1100696	Doc#	191160	Book	325	Page	101
ES 337	NMC#	1100697	Doc#	191161	Book	325	Page	102
ES 338	NMC#	1100698	Doc#	191162	Book	325	Page	103
ES 339	NMC#	1102415	Doc#	191544	Book	325	Page	552
ES 340	NMC#	1102416	Doc#	191545	Book	325	Page	553
ES 341	NMC#	1102417	Doc#	191546	Book	325	Page	554
ES 342	NMC#	1102418	Doc#	191547	Book	325	Page	555
ESW 1	NMC#	1100601	Doc#	191062	Book	325	Page	6
ESW 2	NMC#	1100602	Doc#	191063	Book	325	Page	7
ESW 3	NMC#	1100602	Doc#	191064	Book	325		8
DP 1	NMC#	1099228	Doc#	190820	Book	323	Page	180
DP 2		1099229				324	Page	181
DP 2 DP 3	NMC#		Doc#	190821	Book Book		Page	
	NMC#	1099230	Doc#	190822		324	Page	182
DP 4	NMC#	1099231	Doc#	190823	Book	324	Page	183
DP 5	NMC#	1099232	Doc#	190824	Book	324	Page	184
DP 6	NMC#	1099233	Doc#	190825	Book	324	Page	185
DP 7	NMC#	1099234	Doc#	190826	Book	324	Page	186
DP 8	NMC#	1099235	Doc#	190827	Book	324	Page	187
DP 9	NMC#	1099236	Doc#	190828	Book	324	Page	188
DP 10	NMC#	1099237	Doc#	190829	Book	324	Page	189
DP 11	NMC#	1099238	Doc#	190830	Book	324	Page	190

DP 12	NMC#	1099239	Doc#	190831	Book	324	Page	191
DP 13	NMC#	1099240	Doc#	190832	Book	324	Page	192
DP 14	NMC#	1099241	Doc#	190833	Book	324	Page	193
DP 15	NMC#	1099242	Doc#	190834	Book	324	Page	194
DP 16	NMC#	1099243	Doc#	190835	Book	324	Page	195
DP 17	NMC#	1099244	Doc#	190836	Book	324	Page	196
DP 18	NMC#	1099245	Doc#	190837	Book	324	Page	197
DP 19	NMC#	1099246	Doc#	190838	Book	324	Page	198
DP 20	NMC#	1099247	Doc#	190839	Book	324	Page	199
DP 21	NMC#	1099248	Doc#	190840	Book	324	Page	200
DP 22	NMC#	1099249	Doc#	190841	Book	324	Page	201
DP 23	NMC#	1099250	Doc#	190842	Book	324	Page	202
DP 24	NMC#	1099251	Doc#	190843	Book	324	Page	203
DP 25	NMC#	1099252	Doc#	190844	Book	324	Page	204
DP 26	NMC#	1099253	Doc#	190845	Book	324	Page	205
DP 27	NMC#	1099254	Doc#	190846	Book	324	Page	206
DP 28	NMC#	1099255	Doc#	190847	Book	324	Page	207
DP 29	NMC#	1099256	Doc#	190848	Book	324	Page	208
DP 30	NMC#	1099257	Doc#	190849	Book	324	Page	209
DP 31	NMC#	1099258	Doc#	190850	Book	324	Page	210
DP 32	NMC#	1099259	Doc#	190851	Book	324	Page	211
DP 33	NMC#	1099260	Doc#	190852	Book	324	Page	212
DP 34	NMC#	1099261	Doc#	190853	Book	324	Page	213
DP 35	NMC#	1099262	Doc#	190854	Book	324	Page	213
DP 36	NMC#	1099263	Doc#	190855	Book	324	Page	215
DP 37	NMC#	1099264	Doc#	190856	Book	324	Page	215
DP 38	NMC#	1099265	Doc#	190857	Book	324	Page	217
DP 39	NMC#	1099266	Doc#	190858	Book	324	Page	218
DP 40	NMC#	1099267	Doc#	190859	Book	324	Page	210
DP 41	NMC#	1101013	Doc#	191205	Book	325	Page	203
DP 42	NMC#	1101013	Doc#	191205	Book	325	Page	203
DP 43	NMC#	1101014	Doc#	191200	Book	325	Page	204
DP 44	NMC#	1101015	Doc#	191207	Book	325	Page	205
DP 45	NMC#	1101010	Doc#	191200	Book	325	Page	200
DP 46	NMC#	1101017	Doc#	191209	Book	325	Page	207
DP 47	NMC#	1101010	Doc#	191210	Book	325	Page	200
DP 48	NMC#	1101019	Doc#	191212	Book	325	Page	203
DP 49	NMC#	1101020	Doc#	191212	Book	325	Page	210
DP 50	NMC#	1101021	Doc#	191213	Book	325	Page	212
DP 50	NMC#	1101022	Doc#	191214	Book	325	Page	212
DP 52	NMC#	1101023	Doc#	191216	Book	325	Page	213
DP 53	NMC#	1101024	Doc#	191217	Book	325	Page	215
DP 54	NMC#	1101025	Doc#	191218	Book	325	Page	216
DP 55	NMC#	1101020	Doc#	191219	Book	325	Page	217
DP 56	NMC#	1101027	Doc#	191220	Book	325	Page	217
DP 50	NMC#	1101028	Doc#	191220	Book	325	-	210
DP 58	NMC#	1101029	Doc#	191221	Book	325	Page Page	219
DP 58	NMC#	1101030	Doc#	191222	Book	325	Page	220
DP 59	NMC#	1101031	Doc#	191223	Book	325	Page	221
DP 61	NMC#	1101032	Doc#	191224	Book	325	Page	222
DP 62	NMC#	1101033	Doc#	191225	Book	325	-	223
DP 63	NMC#	1101034	Doc#	191220	Book	325	Page	224
DP 63 DP 64	NMC#	1101035	Doc#	191227		325	Page	
DP 64 DP 65					Book		Page	226
00 10	NMC#	1101037	Doc#	191229	Book	325	Page	227

DD 00		4404000	D //	404000		005		
DP 66	NMC#	1101038	Doc#	191230	Book	325	Page	228
DP 67	NMC#	1101039	Doc#	191231	Book	325	Page	229
DP 68	NMC#	1101040	Doc#	191232	Book	325	Page	230
DP 69	NMC#	1101041	Doc#	191233	Book	325	Page	231
DP 70	NMC#	1101042	Doc#	191234	Book	325	Page	232
DP 71	NMC#	1101043	Doc#	191235	Book	325	Page	233
DP 72	NMC#	1101044	Doc#	191236	Book	325	Page	234
DP 73	NMC#	1101045	Doc#	191237	Book	325	Page	235
DP 74	NMC#	1101046	Doc#	191238	Book	325	Page	236
DP 75	NMC#	1101047	Doc#	191239	Book	325	Page	237
DP 76	NMC#	1101048	Doc#	191240	Book	325	Page	238
DP 77	NMC#	1101049	Doc#	191241	Book	325	Page	239
DP 78	NMC#	1101050	Doc#	191242	Book	325	Page	240
DP 79	NMC#	1101051	Doc#	191243	Book	325	Page	241
DP 80	NMC#	1101052	Doc#	191244	Book	325	Page	242
DP 81	NMC#	1101053	Doc#	191245	Book	325	Page	243
DP 82	NMC#	1101054	Doc#	191246	Book	325	Page	244
DP 83	NMC#	1101055	Doc#	191247	Book	325	Page	245
DP 84	NMC#	1101056	Doc#	191248	Book	325	Page	246
DP 85	NMC#	1101057	Doc#	191249	Book	325	Page	247
DP 86	NMC#	1101058	Doc#	191250	Book	325	Page	248
DP 87	NMC#	1101059	Doc#	191251	Book	325	Page	249
DP 88	NMC#	1101060	Doc#	191252	Book	325	Page	250
DP 89	NMC#	1101061	Doc#	191253	Book	325	Page	251
DP 90	NMC#	1101062	Doc#	191254	Book	325	Page	252
DP 91	NMC#	1101063	Doc#	191255	Book	325	Page	253
DP 92	NMC#	1101064	Doc#	191256	Book	325	Page	254
DP 93	NMC#	1101065	Doc#	191257	Book	325	Page	255
DP 94	NMC#	1101066	Doc#	191258	Book	325	Page	256
DP 95	NMC#	1101067	Doc#	191259	Book	325	Page	257
DP 96	NMC#	1101068	Doc#	191260	Book	325	Page	258
DP 97	NMC#	1101069	Doc#	191261	Book	325	Page	259
DP 98	NMC#	1101000	Doc#	191262	Book	325	Page	260
DP 99	NMC#	1101070	Doc#	191263	Book	325	Page	261
DP 100	NMC#	1101071	Doc#	191263	Book	325	Page	262
DP 100	NMC#	1101072	Doc#	191265	Book	325		263
DP 101 DP 102	NMC#	1101073	Doc#	191265		325	Page	263
-					Book		Page	
DP 103 DP 104	NMC#	1101075	Doc# Doc#	191267	Book	325	Page	265
	NMC#	1101076		191268	Book	325	Page	266
DP 105	NMC#	1101077	Doc#	191269	Book	325	Page	267
DP 106	NMC#	1101078	Doc#	191270	Book	325	Page	268
DP 107	NMC#	1101079	Doc#	191271	Book	325	Page	269
DP 108	NMC#	1101080	Doc#	191272	Book	325	Page	270
DP 109	NMC#	1101081	Doc#	191273	Book	325	Page	271
DP 110	NMC#	1101082	Doc#	191274	Book	325	Page	272
DP 111	NMC#	1101083	Doc#	191275	Book	325	Page	273
DP 112	NMC#	1101084	Doc#	191276	Book	325	Page	274
DP 113	NMC#	1101085	Doc#	191277	Book	325	Page	275
DP 114	NMC#	1101086	Doc#	191278	Book	325	Page	276
DP 115	NMC#	1101087	Doc#	191279	Book	325	Page	277
DP 116						0.00		070
	NMC#	1101088	Doc#	191280	Book	325	Page	278
DP 117	NMC# NMC#	1101089	Doc#	191281	Book	325	Page Page	279
	NMC#							

DP 120	NMC#	1101092	Doc#	191284	Book	325	Page	282
DP 121	NMC#	1101092	Doc#	191285	Book	325	Page	283
DP 122	NMC#	1101093	Doc#	191286	Book	325	Page	284
DP 123	NMC#	1101095	Doc#	191287	Book	325	Page	285
DP 123	NMC#	1101095	Doc#	191288	Book	325	Page	286
DP 124	NMC#	1101090	Doc#	191289	Book	325	Page	287
DP 125	NMC#					325		288
DP 120 DP 127		1101098	Doc#	191290	Book		Page	
DP 127	NMC#	1101099	Doc#	191291	Book	325	Page	289
DP 120 DP 129	NMC#	1101100	Doc#	191292	Book	325	Page	290
DP 129 DP 130	NMC#	1101101	Doc#	191293	Book	325 325	Page	291
	NMC#	1101102	Doc#	191294	Book		Page	292
DP 131	NMC#	1101103	Doc#	191295	Book	325	Page	293
DP 132	NMC#	1101104	Doc#	191296	Book	325	Page	294
DP 133	NMC#	1101105	Doc#	191297	Book	325	Page	295
DP 134	NMC#	1101106	Doc#	191298	Book	325	Page	296
DP 135	NMC#	1101107	Doc#	191299	Book	325	Page	297
DP 136	NMC#	1101108	Doc#	191300	Book	325	Page	298
DP 137	NMC#	1101109	Doc#	191301	Book	325	Page	299
DP 138	NMC#	1101110	Doc#	191302	Book	325	Page	300
DP 139	NMC#	1101111	Doc#	191303	Book	325	Page	301
DP 140	NMC#	1101112	Doc#	191304	Book	325	Page	302
DP 141	NMC#	1101113	Doc#	191305	Book	325	Page	303
DP 142	NMC#	1101114	Doc#	191306	Book	325	Page	304
DP 143	NMC#	1101115	Doc#	191307	Book	325	Page	305
DP 144	NMC#	1101116	Doc#	191308	Book	325	Page	306
DP 145	NMC#	1101117	Doc#	191309	Book	325	Page	307
DP 146	NMC#	1101118	Doc#	191310	Book	325	Page	308
DP 147	NMC#	1101119	Doc#	191311	Book	325	Page	309
DP 148	NMC#	1101120	Doc#	191312	Book	325	Page	310
DP 149	NMC#	1101121	Doc#	191313	Book	325	Page	311
DP 150	NMC#	1101122	Doc#	191314	Book	325	Page	312
DP 151	NMC#	1101123	Doc#	191315	Book	325	Page	313
DP 152	NMC#	1101124	Doc#	191316	Book	325	Page	314
DP 153	NMC#	1101125	Doc#	191317	Book	325	Page	315
DP 154	NMC#	1101126	Doc#	191318	Book	325	Page	316
DP 155	NMC#	1101127	Doc#	191319	Book	325	Page	317
DP 156	NMC#	1101128	Doc#	191320	Book	325	Page	318
DP 157	NMC#	1101129	Doc#	191321	Book	325	Page	319
DP 158	NMC#	1101130	Doc#	191322	Book	325	Page	320
DP 159	NMC#	1101131	Doc#	191323	Book	325	Page	321
DP 160	NMC#	1101132	Doc#	191324	Book	325	Page	322
DP 161	NMC#	1101133	Doc#	191325	Book	325	Page	323
DP 162	NMC#	1101134	Doc#	191326	Book	325	Page	324
DP 163	NMC#	1101135	Doc#	191327	Book	325	Page	325
DP 164	NMC#	1101136	Doc#	191328	Book	325	Page	326
DP 165	NMC#	1101137	Doc#	191329	Book	325	Page	327
DP 166	NMC#	1101138	Doc#	191330	Book	325	Page	328
DP 167	NMC#	1101139	Doc#	191331	Book	325	Page	329
DP 168	NMC#	1101140	Doc#	191332	Book	325	Page	330
DP 169	NMC#	1101141	Doc#	191333	Book	325	Page	331
DP 170	NMC#	1101142	Doc#	191334	Book	325	Page	332
DP 171	NMC#	1101142	Doc#	191335	Book	325	Page	333
DP 172	NMC#	1101143	Doc#	191336	Book	325	Page	334
DP 172	NMC#	1101144	Doc#	191337	Book	325	Page	335
DETIS		1101143	000#	191001	DOOK	520	raye	555

DP 174	NMC#	1101146	Doc#	191338	Book	325	Page	336
DP 175	NMC#	1101147	Doc#	191339	Book	325	Page	337
DP 176	NMC#	1101148	Doc#	191340	Book	325	Page	338
DP 177	NMC#	1101149	Doc#	191341	Book	325	Page	339
DP 178	NMC#	1101150	Doc#	191342	Book	325	Page	340
DP 179	NMC#	1101151	Doc#	191343	Book	325	Page	341
DP 180	NMC#	1101152	Doc#	191344	Book	325	Page	342
DP 181	NMC#	1101153	Doc#	191345	Book	325	Page	343
DP 182	NMC#	1101154	Doc#	191346	Book	325	Page	344
DP 183	NMC#	1101155	Doc#	191347	Book	325	Page	345
DP 184	NMC#	1101156	Doc#	191348	Book	325	Page	346
DP 185	NMC#	1101157	Doc#	191349	Book	325	Page	347
DP 186	NMC#	1101158	Doc#	191350	Book	325	Page	348
DP 187	NMC#	1101159	Doc#	191351	Book	325	Page	349
DP 188	NMC#	1101160	Doc#	191352	Book	325	Page	350
DP 189	NMC#	1101161	Doc#	191353	Book	325	Page	351
DP 190	NMC#	1101162	Doc#	191354	Book	325	Page	352
DP 191	NMC#	1101163	Doc#	191355	Book	325	Page	353
DP 192	NMC#	1101164	Doc#	191356	Book	325	Page	354
DP 193	NMC#	1101165	Doc#	191357	Book	325	Page	355
DP 194	NMC#	1101166	Doc#	191358	Book	325	Page	356

DESCRIPTION:

35 unpatented lode mining claims located in Sections 8 and 17, Unsurveyed Township 4 North, Range 39 East, M.D.B.&M., Esmeralda County, Nevada, as follows:

Claim Name	BLM Serial Num	ber	County Docum	ent Numl	ner/Book	Page	<u>ــــــــــــــــــــــــــــــــــــ</u>	
Eastside 1	NMC#	849745	Doc#	158239	Book	220	Page	177
Eastside 2	NMC#	849746	Doc#	158240	Book	220	Page	178
Eastside 3	NMC#	849747	Doc#	158241	Book	220	Page	179
Eastside 4	NMC#	849748	Doc#	158242	Book	220	Page	180
Eastside 5	NMC#	1006866	Doc#	173793	Book	276	Page	105
Eastside 6	NMC#	1006867	Doc#	173794	Book	276	Page	106
Eastside 7	NMC#	1006868	Doc#	173795	Book	276	Page	107
Eastside 8	NMC#	1006869	Doc#	173796	Book	276	Page	108
Eastside 9	NMC#	1006870	Doc#	173797	Book	276	Page	109
Eastside 10	NMC#	1006871	Doc#	173798	Book	276	Page	110
Eastside 11	NMC#	1006872	Doc#	173799	Book	276	Page	111
Eastside 12	NMC#	1006873	Doc#	173800	Book	276	Page	112
Eastside 13	NMC#	1006874	Doc#	173801	Book	276	Page	113
Eastside 14	NMC#	1006875	Doc#	173802	Book	276	Page	114
Eastside 15	NMC#	1006876	Doc#	173803	Book	276	Page	115
Eastside 16	NMC#	1006877	Doc#	173804	Book	276	Page	116
Eastside 17	NMC#	1006878	Doc#	173805	Book	276	Page	117
Eastside 18	NMC#	1006879	Doc#	173806	Book	276	Page	118
Eastside 19	NMC#	1006880	Doc#	173807	Book	276	Page	119
Eastside 20	NMC#	1006881	Doc#	173808	Book	276	Page	120
Eastside 21	NMC#	1006882	Doc#	173809	Book	276	Page	121
Eastside 22	NMC#	1006883	Doc#	173810	Book	276	Page	122
Eastside 23	NMC#	1006884	Doc#	173811	Book	276	Page	123
Eastside 24	NMC#	1006885	Doc#	173812	Book	276	Page	124
Eastside 25	NMC#	1006886	Doc#	173813	Book	276	Page	125
Eastside 26	NMC#	1006887	Doc#	173814	Book	276	Page	126
Eastside 27	NMC#	1006888	Doc#	173815	Book	276	Page	127
Eastside 28	NMC#	1006889	Doc#	173816	Book	276	Page	128
Eastside 29	NMC#	1008513	Doc#	174519	Book	278	Page	35
Eastside 30	NMC#	1008514	Doc#	174520	Book	278	Page	36
Eastside 31	NMC#	1008515	Doc#	174521	Book	278	Page	37
Eastside 32	NMC#	1008516	Doc#	174522	Book	278	Page	38
Eastside 33	NMC#	1008517	Doc#	174523	Book	278	Page	39
Eastside 34	NMC#	1008518	Doc#	174524	Book	278	Page	40
Eastside 35	NMC#	1008519	Doc#	174525	Book	278	Page	41