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Abstract
Purely functional, embedded array programs are a good match for
SIMD hardware, such as GPUs. However, the naive compilation
of such programs quickly leads to both code explosion and an
excessive use of intermediate data structures. The resulting slow-
down is not acceptable on target hardware that is usually chosen to
achieve high performance.

In this paper, we discuss two optimisation techniques, sharing
recovery and array fusion, that tackle code explosion and elimi-
nate superfluous intermediate structures. Both techniques are well
known from other contexts, but they present unique challenges
for an embedded language compiled for execution on a GPU. We
present novel methods for implementing sharing recovery and array
fusion, and demonstrate their effectiveness on a set of benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages

Keywords Arrays; Data parallelism; Embedded language; Dy-
namic compilation; GPGPU; Haskell; Sharing recovery; Array fu-
sion

1. Introduction
Recent work on stream fusion [12], the vector package [23], and
the parallel array library Repa [17, 19, 20] has demonstrated that
(1) the performance of purely functional array code in Haskell
can be competitive with that of imperative programs and that (2)
purely functional array code lends itself to an efficient parallel
implementation on control-parallel multicore CPUs.

So far, the use of purely functional languages for programming
data parallel SIMD hardware such as GPUs (Graphical Processing
Units) has been less successful. Vertigo [13] was an early Haskell
EDSL producing DirectX 9 shader code, though no runtime perfor-
mance figures were reported. Nikola [22] produces code competi-
tive with CUDA, but without supporting generative functions like
replicate where the result size is not statically fixed. Obsidian
[10] is additionally restricted to only processing arrays of a fixed,
implementation dependent size. Additionally, both Nikola and Ob-
sidian can only generate single GPU kernels at a time, so that in
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programs consisting of multiple kernels the intermediate data struc-
tures must be shuffled back and forth across the CPU-GPU bus.

We recently presented Accelerate, an EDSL and skeleton-based
code generator targeting the CUDA GPU development environ-
ment [8]. In the present paper, we present novel methods for op-
timising the code using sharing recovery and array fusion.

Sharing recovery for embedded languages recovers the sharing
of let-bound expressions that would otherwise be lost due to the
embedding. Without sharing recovery, the value of a let-bound
expression is recomputed for every use of the bound variable.
In contrast to prior work [14] that decomposes expression trees
into graphs and fails to be type preserving, our novel algorithm
preserves both the tree structure and typing of a deeply embedded
language. This enables our runtime compiler to be similarly type
preserving and simplifies the backend by operating on a tree-based
intermediate language.

Array fusion eliminates the intermediate values and additional
GPU kernels that would otherwise be needed when successive
bulk operators are applied to an array. Existing methods such as
foldr/build fusion [15] and stream fusion [12] are not applica-
ble to our setting as they produce tail-recursive loops, rather than
the GPU kernels we need for Accelerate. The NDP2GPU system
of [4] does produce fused GPU kernels, but is limited to simple
map/map fusion. We present a fusion method partly inspired by
Repa’s delayed arrays [17] that fuses more general producers and
consumers, while retaining the combinator based program repre-
sentation that is essential for GPU code generation using skeletons.

With these techniques, we provide a high-level programming
model that supports shape-polymorphic maps, generators, reduc-
tions, permutation and stencil-based operations, while maintaining
performance that often approaches hand-written CUDA code.

In summary, we make the following contributions:

• We introduce a novel sharing recovery algorithm for type-safe
ASTs, preserving the tree structure (Section 3).

• We introduce a novel approach to array fusion for embedded
array languages (Section 4).

• We present benchmarks for several applications including
Black-Scholes options pricing, Canny edge detection, and
a fluid flow simulation, including a comparison with hand-
optimised CPU and GPU code (Section 5).

This paper builds on our previous work on a skeleton-based CUDA
code generator for Accelerate [8]. Although we motivate and eval-
uate our novel approaches to sharing recovery and array fusion in
this context, our contribution is not limited to Accelerate. Specifi-
cally, our sharing recovery applies to any embedded language based
on the typed lambda calculus and our array fusion applies to any
dynamic compiler targeting bulk-parallel SIMD hardware.

We discuss related work in detail in Section 6. The source
code for Accelerate including our benchmark code is available
from https://github.com/AccelerateHS/accelerate.

https://github.com/AccelerateHS/accelerate


2. Optimising embedded array code
Accelerate is a domain specific language, consisting of a carefully
selected set of array operators that we can produce efficient GPU
code for. Accelerate is embedded in Haskell, meaning that we write
Accelerate programs using Haskell syntax, but do not compile
arbitrary Haskell programs to GPU machine code. Accelerate is
stratified into array computations, wrapped in a type constructor
Acc, and scalar expressions, represented by terms of type Exp t,
where t is the type of value produced by the expression. This
stratification is necessary due to the hardware architecture of GPUs
and their reliance on SIMD parallelism, as we discussed in our
previous work [8].

2.1 Too many kernels
For example, to compute a dot product, we use:

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)

dotp xs ys = let xs’ = use xs
ys’ = use ys

in fold (+) 0 (zipWith (*) xs’ ys’)

The function dotp consumes two one-dimensional arrays (Vector)
of floating-point values and produces a single (Scalar) floating-
point result. From the return type Acc (Scalar Float), we see
that dotp is an embedded Accelerate computation, rather than
vanilla Haskell code.

The functions zipWith and fold are defined in our library
Data.Array.Accelerate, and have massively parallel GPU im-
plementations with the following type signatures:

zipWith :: (Shape sh, Elt a, Elt b, Elt c)
=> (Exp a -> Exp b -> Exp c)
-> Acc (Array sh a)
-> Acc (Array sh b)
-> Acc (Array sh c)

fold :: (Shape ix, Elt a)
=> (Exp a -> Exp a -> Exp a)
-> Exp a
-> Acc (Array (ix:.Int) a)
-> Acc (Array ix a)

The type classes Elt and Shape indicate that a type is admissible
as an array element and array shape, respectively. Array shapes
are denoted by type-level lists formed from Z and (:.) — for
example, Z:.Int:.Int is the shape of a two-dimensional array
(see [8, 17] for details). The type signatures of zipWith and fold
clearly show the stratification into scalar computations using the
Exp type constructor, and array computations wrapped in Acc.

The arguments to dotp are of plain Haskell type Vector Float.
To make these arguments available to the Accelerate computation
they must be embedded with the use function:

use :: Arrays arrays => arrays -> Acc arrays

This function is overloaded so that it can accept entire tuples of
arrays. Operationally, use copies array data from main memory
to GPU memory, in preparation for processing by the GPU.

The above Haskell version of the GPU-accelerated dot product
is certainly more compact than the corresponding CUDA C code.
However, when compiled with the skeleton-based approach we
described in previous work [8], it is also significantly slower. The
CUDA C version executes in about half the time (see Table 2).

The slow-down is due to Accelerate generating one GPU ker-
nel function for zipWith and another one for fold. In contrast, the
CUDA C version only uses a single kernel. The use of two sepa-
rate kernels requires an intermediate array to be constructed, and in

a memory bound benchmark, such as dotp, this doubles the run-
time. To eliminate this intermediate array we need to fuse the ad-
jacent aggregate array computations. Although there is an existing
body of work on array fusion, no existing method adequately deals
with massively parallel GPU kernels. We present a suitable fusion
framework as the first major contribution of this paper.

2.2 Too little sharing
As a second example, consider the pricing of European-style op-
tions using the Black-Scholes formula. The Accelerate program is
in Figure 1. Given a vector of triples of underlying stock price,
strike price, and time to maturity (in years), the Black-Scholes for-
mula computes the price of a call and a put option. The function
callput evaluates the Black-Scholes formula for a single triple,
and blackscholes maps it over a vector of triples, such that all
individual applications of the formula are executed in parallel.

If we compare the performance of the GPU code generated by
Accelerate with that of an equivalent implementation in CUDA
C, the Accelerate version is almost twenty times slower. As
blackscholes includes only one aggregate array computation,
the problem can’t be a lack of fusion. Instead, as we noted previ-
ously [8], it is due to the embedding of Accelerate in Haskell.

The function callput includes a significant amount of sharing:
the helper functions cnd’, and hence also horner, are used twice
—for d1 and d2— and its argument d is used multiple times in
the body. Our embedded implementation of Accelerate reifies the
abstract syntax of the (deeply) embedded language in Haskell.
Consequently, each occurrence of a let-bound variable in the source
program creates a separate unfolding of the bound expression in the
compiled code.

This is a well known problem that has been solved elegantly by
the sharing recovery algorithm of Gill [14], which makes use of
stable names. Unfortunately, Gill’s original approach (1) reifies the
abstract syntax in graph form and (2) it assumes an untyped syntax
representation. In contrast, Accelerate is based on a typed tree
representation using GADTs and type families in conjunction with
type-preserving compilation in most phases. In other words, we use
Haskell’s type checker to statically ensure many core properties
of our Accelerate compiler. The fact that the compiler for the
embedded language is type preserving, means that many bugs in
the Accelerate compiler itself are caught by the Haskell compiler
during development. This in turn reduces the number of Accelerate
compiler bugs that the end-user might be exposed to.

As we require typed trees, where sharing is represented by let
bindings rather than untyped graphs, we cannot directly use Gill’s
approach to sharing recovery. Instead, we have developed a novel
sharing recovery algorithm, which like Gill’s, uses stable names,
but unlike Gill’s, operates on typed abstract syntax. Our algorithm
produces a typed abstract syntax tree, and we are able to recover
exactly those let bindings used in the source program. This is the
second major contribution of this paper.

2.3 Summary
In summary, a straightforward skeleton-based implementation of
an embedded GPU language suffers from two major inefficiencies:
lack of sharing and lack of fusion. Both sharing recovery in em-
bedded languages, and array fusion in functional languages have
received significant prior attention. However, we have found that
none of the existing techniques are adequate for a type-preserving
embedded language compiler targeting massively parallel SIMD
hardware, such as GPUs.

3. Sharing recovery
Gill [14] proposed to use stable names [27] to recover the sharing
of source terms in a deeply embedded language. The stable names



blackscholes :: Vector (Float, Float, Float)
-> Acc (Vector (Float, Float))

blackscholes = map callput . use
where
callput x =
let (price, strike, years) = unlift x

r = constant riskfree
v = constant volatility
v_sqrtT = v * sqrt years
d1 = (log (price / strike) +

(r + 0.5 * v * v) * years) / v_sqrtT
d2 = d1 - v_sqrtT
cnd d = let c = cnd’ d in d >* 0 ? (1.0 - c, c)
cndD1 = cnd d1
cndD2 = cnd d2
x_expRT = strike * exp (-r * years)

in
lift ( price * cndD1 - x_expRT * cndD2

, x_expRT * (1.0 - cndD2) - price * (1.0 - cndD1))

riskfree, volatility :: Float
riskfree = 0.02
volatility = 0.30

horner :: Num a => [a] -> a -> a
horner coeff x = x * foldr1 madd coeff
where

madd a b = a + x*b

cnd’ :: Floating a => a -> a
cnd’ d =
let poly = horner coeff

coeff = [0.31938153, -0.356563782,
1.781477937, -1.821255978,
1.330274429]

rsqrt2pi = 0.39894228040143267793994605993438
k = 1.0 / (1.0 + 0.2316419 * abs d)

in
rsqrt2pi * exp (-0.5*d*d) * poly k

Figure 1. Black-Scholes option pricing in Accelerate

of two Haskell terms are equal only when the terms are represented
by the same heap structure in memory. Likewise, when the abstract
syntax trees (ASTs) of two terms of an embedded language have
the same stable name, we know that they represent the same value.
In this case we should combine them into one shared AST node. As
the stable name of an expression is an intensional property, it can
only be determined in Haskell’s IO monad.

Accelerate’s runtime compiler preserves source types through-
out most of the compilation process [8]. In particular, it converts
the source representation based on higher-order abstract syntax
(HOAS) to a type-safe internal representation based on de Bruijn
indices. Although developed independently, this conversion is like
the unembedding of Atkey et al. [1]. Unembedding and sharing re-
covery necessarily need to go hand in hand for the following rea-
sons. Sharing recovery must be performed on the source represen-
tation; otherwise, sharing will already have been lost. Nevertheless,
we cannot perform sharing recovery on higher-order syntax as we
need to traverse below the lambda abstractions used in the higher-
order syntax representation. Hence, both need to go hand in hand.

As shown by Atkey et al. [1], the conversion of HOAS in
Haskell can be implemented in a type-preserving manner with the
exception of one untyped, but dynamically checked environment
look up, using Haskell’s Typeable. To preserve maximum type
safety, we do not want any further operations that are not type pre-
serving when adding sharing recovery. Hence, we cannot use Gill’s
algorithm. The variant of Gill’s algorithm used in Syntactic [2]
does not apply either: it (1) also generates a graph and (2) discards
static type information in the process. In contrast, our novel algo-
rithm performs simultaneous sharing recovery and conversion from
HOAS to a typed de Bruijn representation, where the result of the
conversion is a tree (not a graph) with sharing represented by let
bindings. Moreover, it is a type-preserving conversion whose only
dynamically checked operation is the same environment lookup
deemed unavoidable by Atkey et al. [1].

In the following, we describe our algorithm using plain typed
lambda terms. This avoids much of the clutter that we would incur
by basing the discussion on the full Accelerate language. In addi-
tion to its implementation in Accelerate, a working Haskell imple-
mentation of our algorithm for the plain lambda calculus can be
found at https://github.com/mchakravarty/hoas-conv.

3.1 Our approach to sharing recovery
Before we formalise our sharing recovery algorithm in the follow-
ing subsections, we shall illustrate the main idea. Consider the fol-
lowing source term:

let inc = (+) 1
in let nine = let three = inc 2

in
(*) three three

in
(-) (inc nine) nine

This term’s abstract syntax DAG is the leftmost diagram in Fig-
ure 2. It uses @ nodes to represent applications; as in this grammar:

T → C T τ where
| x C τ :: T τ

| λx . T x τ :: T τ

| T1 @ T2 λx τ1 .T τ2 :: T τ1→τ2

C → 〈constants〉 T τ1→τ2
1 @ T τ1

2 :: T τ2

The left definition does not track types, whereas the right one does.
We implement typed ASTs in Haskell with GADTs and work with
typed representations henceforth. Typed HOAS conversion with
sharing recover proceeds in three stages:

1. Prune shared subterms: A depth first traversal over the AST an-
notates each node with its unique stable name, where we build
an occurrence map of how many times we’ve already visited
each node. If we encounter a previously visited node, it repre-
sents a shared subterm, and we replace it by a placeholder con-
taining its stable name. The second diagram in Figure 2 shows
the outcome of this stage. Each node is labeled by a number
that represents its stable name, and the dotted edges indicate
where we encountered a previously visited, shared node. The
placeholders are indicated by underlined stable names.

2. Float shared terms: All shared subterms float upwards in the
tree to just above the lowest node that dominates all edges to
the original position of that shared subterm — see the third
diagram in Figure 2. Floated subterms are referenced by circled
stable names located above the node that they floated to. If a
node collects more than one shared subterm, the subterm whose
origin is deeper in the original term goes on top — here, 9 on top
of 5. Nested sharing leads to subterms floating up inside other
floated subterms — here, 8 stays inside the subterm rooted in 5.

https://github.com/mchakravarty/hoas-conv
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Figure 2. Recovering sharing in an example term

3. Binder introduction: Each floated subterm gets let-bound right
above the node it floated to (rightmost diagram in Figure 2).
While we use explicit, bound names in the figure, we introduce
de Bruijn indices at the same time as introducing the lets.

3.2 Prune shared subterms
First, we identify and prune shared subtrees, producing a pruned
tree of the following form (second diagram in Figure 2):

◦T τ where
` :: ◦T τ -- binder conversion level
ντ :: ◦T τ -- pruned subtree (name)
C τ :: ◦T τ

λ`.◦T τ2 :: ◦T τ1→τ2
◦T τ1→τ2

1 @ ◦T τ1
2 :: ◦T τ2

A stable name (here, of type Name) associates a unique name
with each unique term node, so that two terms with the same stable
name are identical, and are represented by the same data structure in
memory. Here, we denote the stable name of a term as a superscript
during pattern matching — e.g., 1ν is a constant with stable name
ν, just as in the second and third diagram in Figure 2.

An occurrence map, Ω :: Name 7→ Int , is a finite map that
determines the number of occurrences of a Name that we encoun-
tered during a traversal. The expression Ων yields the number of
occurrences of the name ν, and we have ν ∈ Ω ≡ (Ων > 0). To
add an occurrence to Ω, we write νBΩ. We will see in the next sub-
section that we cannot simplify Ω to be merely a set of occurring
names. We need the actual occurrence count to determine where
shared subterms should be let-bound.

The identification and pruning of shared subtrees is formalised
by the following function operating on closed terms from T τ :

prune :: Level → (Name 7→ Int)→ T τ → ((Name 7→ Int), ◦T τ )
prune ` Ω eν | ν ∈ Ω = (ν B Ω , ν)
prune ` Ω eν | otherwise = enter (ν B Ω) e

where
enter Ω c = (Ω , c)
enter Ω (λx .e) = let

(Ω ′, e ′) = prune (`+ 1) Ω ([`/x ]e)
in
(Ω ′, λ`.e ′)

enter Ω (e1 @ e2) = let
(Ω1, e ′1) = prune ` Ω e1
(Ω2, e ′2) = prune ` Ω1 e2

in
(Ω2, e ′1 @ e ′2)

The first equation of prune covers the case of a term’s repeated
occurrence. In that case, we prune sharing by replacing the term eν

by a tag ν containing its stable name — these are the dotted lines
in the second diagram in Figure 2.

To interleave sharing recovery with the conversion from HOAS
to typed de Bruijn indices, prune tracks the nesting Level of
lambdas. Moreover, the lambda case of enter replaces the HOAS
binder x by the level ` at the binding and usage sites.

Why don’t we separate computing occurrences from tree prun-
ing? When computing occurrences, we must not traverse shared
subtrees multiple times, so we can as well prune at the same time.
Moreover, in the first line of prune , we cannot simply return e in-
stead of ν — e is of the wrong form as it has type T and not ◦T !

As far as type-preservation is concerned, we do lose information
due to replacing variables by levels `. This is the inevitable loss
described by Atkey et al. [1], which we make up for by a dynamic
check in an environment lookup, as already discussed.

3.3 Float shared subterms
Second, we float all shared subtrees out to where they should be
let-bound, represented by (see third diagram in Figure 2)

↑T
τ → ν : ↑T τ ′ � ↓T τ

↓T
τ
where

ντ :: ↓T
τ

C τ :: ↓T
τ

λν.↑T
τ2 :: ↓T

τ1→τ2

↑T
τ1→τ2
1 @ ↑T

τ1
2 :: ↓T

τ2

A term in ↑T comprises a sequence of floated-out subterms labelled
by their stable name as well as a body term from ↓T from which
the floated subterms where extracted. Moreover, the levels ` that
replaced lambda binders in ◦T get replaced by the stable name of
their term node. This simplifies a uniform introduction of de Bruijn
indices for let and lambda bound variables.

We write ν : ↑T for a possibly empty sequence of items:
ν1 : ↑T 1, . . . , νn : ↑Tn , where • denotes an empty sequence.

The floating function float maintains an auxiliary structure of
floating terms and levels, defined as follows:

Γ → ν
i
: ↑T

τ | ν i
: · | ν i

: `

These are floated subtrees named ν of which we have collected i
occurrences. The occurrence count indicates where a shared sub-
term gets let bound: namely at the node where it matches Ων.
This is why prune needed to collect the number of occurrences
in Ω . When the occurrence count matches Ων, we call the floated



term saturated. The following function determines saturated floated
terms, which ought to be let bound:

bind :: (Name 7→ Int)→ Γ → ∃τ.ν : ↑T τ

bind Ω • = •
bind Ω (ν

i
: e, Γ ) | Ων == i = ν : e, bind Ω Γ

bind Ω (ν
i
: , Γ ) = bind Ω Γ

Note that Γ does not keep track of the type τ of a floated term ↑T
τ

;
hence, floated terms from bind come in an existential package. This
does not introduce additional loss of type safety as we already lost
the type of lambda bound variables in ν

i
: `. It merely means that let

bound, just like lambda bound, variables require the dynamically
checked environment look up we already discussed.

When floating the first occurrence of a shared tree (not pruned
by prune), we use ν

i
: ↑T

τ
. When floating subsequent occurrences

(which were pruned), we use ν
i
: ·. Finally, when floating a level, to

replace it by a stable name, we use ν
i
: `.

We define a partial ordering on floated terms: ν1
i
: x < ν2

j
: y

iff the direct path from ν1 to the root of the AST is shorter than
that of ν2. We keep sequences of floated terms in descending order
— so that the deepest subterm comes first. We write Γ1 ] Γ2 to
merge two sequences of floated terms. Merging respects the partial
order, and it combines floated trees with the same stable name by
adding their occurrence counts. To combine the first occurrence and
a subsequent occurrence of a shared tree, we preserve the term of
the first occurrence. We write Γ \ ν to delete elements of Γ that
are tagged with a name that appears in the sequence ν.

We can now formalise the floating process as follows:

float :: (Name 7→ Int)→ ◦T τ → (Γ , ↑T
τ
)

float Ω `ν = (ν
1
: `, ν)

float Ω ν = (ν
1
: ·, ν)

float Ω eν = let
(Γ , e ′) = descend e
νb : eb = bind Ω Γ
d = νb : eb � e ′

in
if Ων == 1 then

(Γ \ νb , d)
else

(Γ \ νb ] {ν : d}, ν)
where

descend :: ◦T τ → (Γ , ↓T
τ
)

descend c = (•, c)
descend (λ`.e) = let

(Γ , e ′) = float Ω e
in
if ∃ ν′ i . (ν′ i: `) ∈ Γ then

(Γ \ {ν′}, λν′.e ′)
else

(Γ , λ .e ′)
descend (e1 @ e2) = let

(Γ 1, e ′1) = float Ω e1
(Γ 2, e ′2) = float Ω e2

in
(Γ 1 ] Γ 2, e ′1 @ e ′2)

The first two cases of float ensure that the levels of lambda bound
variables and the names of pruned shared subterms are floated
regardless of how often they occur. In contrast, the third equation
floats a term with name ν only if it is shared; i.e., Ων is not 1. If it
is shared, it is also pruned; i.e., replaced by its name ν — just as in
the third diagram of Figure 2.

Regardless of whether a term gets floated, all saturated floated
terms, νb : eb , must prefix the result, e ′, and be removed from Γ .

When descend ing into a term, the only interesting case is for
lambdas. For a lambda at level `, we look for a floated level of the
form ν′ : `. If that is available, ν′ replaces ` as a binder and we
remove ν′ : ` from Γ . However, if ν′ : ` is not in Γ , the binder
introduced by the lambda doesn’t get used in e . In this case, we
pick an arbitrary new name; here symbolised by an underscore ” ”.

3.4 Binder introduction
Thirdly, we introduce typed de Bruijn indices to represent lambda
and let binding structure (rightmost diagram in Figure 2):

envT τ where
C τ :: envT τ

envιτ :: envT τ

λ(τ1, env)T
τ2

:: envT τ1→τ2
envT τ1→τ2

1 @ envT τ1
2 :: envT τ2

let envT τ1
1 in (τ1, env)T

τ2
2 :: envT τ2

With this type of terms, e :: envT τ means that e is a term repre-
senting a computation producing a value of type τ under the type
environment env . Type environments are nested pair types, possi-
bly terminated by a unit type (). For example, (((), τ1), τ0) is a
type environment, where de Bruijn index 0 represents a variable of
type τ0 and de Bruijn index 1 represents a variable of type τ1.

We abbreviate let e1 in · · · let en in eb as let e in eb .
Both λ and let use de Bruijn indices ι instead of introducing
explicit binders.

To replace the names of pruned subtrees and of lambda bound
variables by de Bruijn indices, we need to construct a suitable
type environment as well as an association of environment entries,
their de Bruijn indices, and the stable names that they replace. We
maintain the type environment with associated de Bruijn indices in
the following environment layout structure:

env∆env′
where

◦ :: env∆()

env∆env′
; envιτ :: env∆(env′, t)

Together with a layout, we use a sequence of names ν of the same
size as the layout, where corresponding entries represent the same
variable. As this association between typed layout and untyped
sequence of names is not validated by types, the lookup function
lyt ↓ i getting the ith index of layout lyt makes use of a dynamic
type check. It’s signature is (↓) :: N → env∆env′

→ envιτ .
Now we can introduces de Bruijn indices to body expressions:

body :: env∆env → ν → ↓T
τ → envT τ

body lyt (νρ,0, . . . , νρ,n) ν
| ν == νρ,i = lyt ↓ i

body lyt νρ c = c
body lyt νρ (λν.e) = λ(binders lyt+ (ν, νρ) e)
body lyt νρ (e1 @ e2) = (binders lyt νρ e1) @ (binders lyt νρ e2)

The first equation performs a lookup in the environment layout
at the same index where the stable name ν occurs in the name
environment ν. The lookup is the same for lambda and let bound
variables. It is the only place where we need a dynamic type check
and that is already needed for lambda bound variables alone.

In the case of a lambda, we add a new binder by extending
the layout, denoted lyt+, with a new zeroth de Bruijn index and
shifting all others one up. Keeping the name environment in sync,
we add the stable name ν, which ↓T used as a binder.

In the same vein, we bind n floated terms ν : e with let bind-
ings in body expression eb , by extending the type environment n
times (map applies a function to each element of a sequence):
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Figure 3. Produce/producer and consumer/producer fusion

binders :: env∆env → ν → ↑T
τ → envT τ

binders lyt νρ (ν : e � eb) =
let map (binders lyt νρ) e in body lyt+n (ν, νρ) eb

where n = length (ν : e)

We tie the three stages together to convert from HOAS with sharing
recovery producing let bindings and typed de Bruijn indices:

hoasSharing :: T τ → ()T
τ

hoasSharing e = let
(Ω , e ′) = prune 0 • e
(•, e ′′) = float Ω e ′

in
binders ◦ • e ′′

4. Array fusion
Fusion in a massively data-parallel, embedded language for GPUs,
such as Accelerate, requires a few uncommon considerations.

Parallelism. While fusing parallel collective operations, we must
be careful not to lose information essential to parallel execution.
For example, foldr/build fusion [15] is not applicable, because
it produces sequential tail-recursive loops rather than massively
parallel GPU kernels. Similarly, the split/join approach used
in Data Parallel Haskell (DPH) [16] is not helpful, although fused
operations are split into sequential and parallel subcomputations, as
they assume an explicit parallel scheduler, which in DPH is written
directly in Haskell. Accelerate compiles massively parallel array
combinators to CUDA code via template skeleton instantiation, so
any fusion system must preserve the combinator representation of
the intermediate code.

Sharing. Existing fusion transforms rely on inlining to move pro-
ducer and consumer expressions next to each other, which allows
producer/consumer pairs to be detected. However, when let-bound

variables are used multiple times in the body of an expression, un-
restrained inlining can lead to duplication of work. Compilers such
as GHC, handle this situation by only inlining the definitions of let-
bound variables that have a single use site, or by relying on some
heuristic about the size of the resulting code to decide what to inline
[26]. However, in typical Accelerate programs, each array is used at
least twice: once to access the shape information and once to access
the array data; so, we must handle at least this case separately.

Filtering. General array fusion transforms must deal with filter-
like operations, for which the size of the result structure depends on
the value of the input structure, as well as its size. Accelerate does
not encode filtering as a primitive operation, so we do not need to
consider it further.1

Fusion at run-time. As the Accelerate language is embedded in
Haskell, compilation of the Accelerate program happens at Haskell
runtime rather than when compiling the Haskell program. For this
reason, optimisations applied to an Accelerate program contribute
to its overall runtime, so we must be mindful of the cost of analysis
and code transformation. On the flip-side, runtime optimisations
can make use of information that is only available at runtime.

Fusion on typed de Brujin terms. We fuse Accelerate programs
by rewriting typed de Bruijn terms in a type preserving manner.
However, maintaining type information adds complexity to the def-
initions and rules, which amounts to a partial proof of correctness
checked by the type checker, but is not particularly exciting for the
present exposition. Hence, in this section, we elide the steps neces-
sary to maintain type information during fusion.

4.1 The Main Idea
All collective operations in Accelerate are array-to-array transfor-
mations. Reductions, such as fold, which reduce an array to a sin-
gle element, yield a singleton array rather than a scalar expression.
Hence, we can partition array operations into two categories:

1. Operations where each element of the result array depends on at
most one element of each input array. Multiple elements of the
output array may depend on a single input array element, but
all output elements can be computed independently. We refer to
these operations as producers.

2. Operations where each element of the result array depends on
multiple elements of the input array. We call these functions
consumers, in spite of the fact that they also produce an array.

Table 1 summarises the collective array operations that we support.
In a parallel context, producers are more pleasant to deal with be-
cause independent element-wise operations have an obvious map-
ping to the GPU. Consumers are a different story, as we need to
know exactly how the computations depend on each other to im-
plement them efficiently. For example, a parallel fold (with an asso-
ciative operator) can be implemented efficiently as a tree reduction,
but a parallel scan requires two separate phases [9, 31]. Unfortu-
nately, this sort of information is obfuscated by most fusion tech-
niques. To support the different properties of producers and con-
sumers, our fusion transform is split into two distinct phases:

• Producer/producer: fuse sequences of producers into a single
producer. This is implemented as a source-to-source transfor-
mation on the AST.

• Consumer/producer: fuse producers followed by a consumer
into the consumer. This happens during code generation, where
we specialise the consumer skeleton with the producer code.

1 filter is easily implemented as a combination of the core primitives, and
is provided as part of the library.



Producers
map :: (Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b) map a function over an array
zipWith :: (Exp a -> Exp b -> Exp c) -> Acc (Array sh a) -> Acc (Array sh b) apply funciton to. . .

-> Acc (Array sh c) . . . a pair of arrays
backpermute :: Exp sh’ -> (Exp sh’ -> Exp sh) -> Acc (Array sh a) backwards permutation

-> Acc (Array sh’ e)
replicate :: Slice slix => Exp slix extend array across. . .

-> Acc (Array (SliceShape slix) e) . . . new dimensions
-> Acc (Array (FullShape slix) e)

slice :: Slice slix remove existing dimensions
=> Acc (Array (FullShape slix) e) -> Exp slix
-> Acc (Array (SliceShape slix) e)

generate :: Exp sh -> (Exp sh -> Exp a) -> Acc (Array sh a) array from index mapping

Consumers
fold :: (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array (sh:.Int) a) tree reduction along. . .

-> Acc (Array sh a) . . . innermost dimension
scan{l,r} :: (Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a) left-to-right or right-to-left

-> Acc (Vector a) . . . vector pre-scan
permute :: (Exp a -> Exp a -> Exp a) -> Acc (Array sh’ a) forward permutation

-> (Exp sh -> Exp sh’) -> Acc (Array sh a) -> Acc (Array sh’ a)
stencil :: Stencil sh a stencil => (stencil -> Exp b) -> Boundary a map a function with local. . .

-> Acc (Array sh a) -> Acc (Array sh b) . . . neighbourhood context

Table 1. Summary of Accelerate’s core collective array operations, omitting Shape and Elt class constraints for brevity. In addition, there
are other flavours of folds and scans as well as segmented versions of these.

Separating fusion into these two phases reduces the complexity of
the task, though there is also a drawback: as all collective opera-
tions in Accelerate output arrays, we might wish to use the output
of a consumer as an input to a producer as in map g . fold f z.
Here, the map operation could be fused into the fold by apply-
ing the function g to each element produced by the reduction be-
fore storing the final result in memory. This is useful, as Accelerate
works on multidimensional arrays, so the result of a fold can be
a large array rather than just a singleton array. Our approach cur-
rently does not fuse producer/consumer pairs, only consumer/pro-
ducer and producer/producer combinations.

Figure 3 illustrates how fusion affects the AST: blue boxes p1
to p7 represent producers, where p5 is a producer like zipWith
with two input arrays. The consumers are c1 and c2. Firstly, we
fuse all producers, with the exception of p1 whose result is used by
both c1 and p2. Next, we plug the fused producers into consumers
where possible. Again, p1 is left as is. It would be straightforward
to change our implementation such that it would fuse p1 into both
p2 and c1. This would duplicate the work of p1 into both p2 and
c1, which, despite reducing memory traffic, is not always advanta-
geous. Our current implementation is conservative and never dupli-
cates work; we plan to change this in future work as the restricted
nature of Accelerate means that we can compute accurate cost es-
timates and make an informed decision. In contrast, producer/con-
sumer fusion of c1 into p4 would require fundamental changes.

4.2 Producer/producer fusion for parallel arrays
The basic idea behind the representation of producer arrays in
Accelerate is well known: simply represent an array by its shape
and a function mapping indices to their corresponding values. We
previously used it successfully to optimise purely functional array
programs in Repa [17], but it was also used by others [11].

However, there are at least two reasons why it is not always
beneficial to represent all array terms uniformly as functions. One is
sharing: we must be able to represent some terms as manifest arrays
so that a delayed-by-default representation can not lead to arbitrary
loss of sharing. This is a well known problem in Repa. The other

consideration is efficiency: since we are targeting an architecture
designed for performance, we prefer more specific operations. An
opaque indexing function is too general, conveying no information
about the pattern in which the underlying array is accessed, and
hence no opportunities for optimisation. We shall return to this
point in Section 5, but already include a form of structured traversal
over an array (Step) in the following definition:

data DelayedAcc a where
Done :: Acc a

-> DelayedAcc a

Yield :: (Shape sh, Elt e)
=> Exp sh
-> Fun (sh -> e)
-> DelayedAcc (Array sh e)

Step :: (Shape sh, Shape sh’, Elt e, Elt e’)
=> Exp sh’
-> Fun (sh’ -> sh)
-> Fun (e -> e’)
-> Idx (Array sh e)
-> DelayedAcc (Array sh’ e’)

We have three constructors: Done injects a manifest array into the
type. Yield defines a delayed array in terms of its shape and a func-
tion which maps indices to elements. The third constructor, Step,
encodes a special case of the more general Yield that represents
the application of an index and/or value space transformation to the
argument array. The type Fun (sh -> e) is that of a term rep-
resenting a scalar function from shape to element type. The type
Idx (Array sh e) is that of a de Bruijn index representing an
array valued variable. Representing the argument array in this way
means that both Step and Yield are non-recursive in Acc terms,
and so they can always be expressed as scalar functions and em-
bedded into consumers in the second phase of fusion.

We represent all array functions as constructors of the type
DelayedAcc. Producer/producer fusion is achieved by tree con-



traction on the AST, merging sequences of producers into a single
one. All array producing functions, such as map and backpermute,
are expressed in terms of smart constructors for the DelayedAcc
type. The smart constructors manage the integration with succes-
sive producers, as shown in the following definition of mapD, the
delayed version of the map function:

mapD :: (Shape sh, Elt a, Elt b)
=> Fun (a -> b)
-> DelayedAcc (Array sh a)
-> DelayedAcc (Array sh b)

mapD f (Step sh p g v) = Step sh p (f . g) v
mapD f (Yield sh g) = Yield sh (f . g)

The function composition operator (.) is overloaded here to work
on scalar function terms. With this definition we now have the well
known fusion rule that reduces mapD f . mapD g sequences to
mapD (f . g). Similarly, the definition of delayed backpermute
means that backpermuteD sh p (backpermuteD q arr) re-
duces to backpermute sh (q . p) arr:

backpermuteD
:: (Shape sh, Shape sh’, Elt e)
=> Exp sh’
-> Fun (sh’ -> sh)
-> DelayedAcc (Array sh e)
-> DelayedAcc (Array sh’ e)

backpermuteD sh’ p acc = case acc of
Step _ ix f a -> Step sh’ (ix . p) f a
Yield _ f -> Yield env sh’ (f . p)
Done env a -> Step sh’ p identity (toIdx a)

Of course, combinations of maps with backpermutes also reduce to
a single producer.

As desired, this approach also works on producers which
take their input from multiple arrays. This is in contrast to
foldr/build [15], which can fuse one of the input arguments,
but not both. The definition of zipWithD considers all possible
combinations of constructors (only some of which we list here)
and can therefore fuse producers of both arguments:

zipWithD :: (Shape sh, Elt a, Elt b, Elt c)
=> Fun (a -> b -> c)
-> DelayedAcc (Array sh a)
-> DelayedAcc (Array sh b)
-> DelayedAcc (Array sh c)

zipWithD f (Yield sh1 g1) (Yield sh2 g2)
= Yield (sh1 ‘intersect‘ sh2)

(\sh -> f (g1 sh) (g2 sh))
zipWithD f (Yield sh1 g1) (Step sh2 ix2 g2 a2)
= Yield ...

In this manner, sequences of producers fuse into a single producer
term; then, we turn them back into a manifest array using the
function compute. It inspects the argument terms of the delayed
array to identify special cases, such as maps or backpermutes, as
shown in the following snippet of pseudo-code:

compute :: DelayedAcc a -> Acc a
compute (Done a) = a
compute (Yield sh f) = Generate sh f
compute (Step sh p f v)
| sh == shape a, isId p, isId f

= a
| sh == shape a, isId p = Map f a
| isId f = Backpermute sh p a
| otherwise = Transform sh p f a
where a = Avar v

Since we operate directly on the AST of the program, we can
inspect function arguments and specialise the code accordingly.
For example, isId :: Fun (a->b) -> Bool checks whether a
function term corresponds to the term λx.x.

4.3 Consumer/Producer Fusion
Now that we have the story for producer/producer fusion, we dis-
cuss how to deal with consumers. We pass producers encoded in
the DelayedAcc representation as arguments to consumers, so that
the consumers can compute the elements they need on-the-fly. Con-
sumers themselves have no DelayedAcc representation, however.

Consumers such as stencil, access elements of their argument
array multiple times. These consumers are implemented carefully
not to duplicate work. Indeed, even when the argument of such a
consumer is a manifest array, the consumer should ensure that it
caches already fetched elements, as GPUs impose a high perfor-
mance penalty for repeated memory loads. Some consumers can be
implemented more efficiently when given a producer expressed in
terms of a function from a multi-dimensional array index to an ele-
ment value. Other consumers prefer functions that map the flat lin-
ear index of the underling array to its value. Our consumer-friendly
representation of delayed arrays therefore contains both versions:

data Embedded sh e
= (Shape sh, Elt e)
=> DelayedArray { extent :: Exp sh

, index :: Fun (sh -> e)
, linearIndex :: Fun (Int -> e) }

embedAcc :: (Shape sh, Elt e)
=> Acc (Array sh e) -> Embedded sh e

embedAcc (Generate sh f)
= DelayedArray sh f (f . (fromIndex sh))

embedAcc (Map f (AVar v))
= DelayedArray (shape v) (indexArray v)

(linearIndexArray v)
embedAcc ...

The function embedAcc intelligently injects each producer into
the Embedded type by inspection of the constructor, as shown
in the code snippet above. In theory, compute and embedAcc
could be combined to go directly from the delayed representation
which is convenient for producer/producer fusion to the one for
consumer/producer fusion. However, these two steps happen at
different phases in the compilation, so we want to limit the visibility
of each delayed representation to the current phase.

Producers are finally embedded into consumers during code
generation. During code generation, the code for the embedded pro-
ducers is plugged into the consumer template. The codegenAcc
function inspects the consumer and generates code for the argu-
ments of the consumer. It then passes these CUDA code snippets
to a function specialised on generating code for this particular con-
sumer (mkFold in the example below), which combines these snip-
pets with the actual CUDA consumer code:

codegenAcc :: DeviceProperties -> OpenAcc arrs
-> Gamma aenv -> CUTranslSkel arrs

codegenAcc dev (OpenAcc (Fold f z a)) aenv
= mkFold dev aenv (codeGenFun f) (codeGenExp z)

(codegenDelayedAcc $ embedAcc a)
codegenAcc dev (OpenAcc (Scanl f z a)) aenv

= ...

As a result, the code producing each element is integrated directly
into the consumer, and no intermediate array needs to be created.



4.4 Exploiting all opportunities for fusion
As mentioned previously, we need to be careful about fusing shared
array computations, to avoid duplicating work. However, scalar
Accelerate computations that manipulate array shapes, as opposed
to the bulk array data, can lead to terms that employ sharing, but
can never duplicate work. Such terms are common in Accelerate
code, and it is important to that they do not inhibit fusion.

Consider the following example that first reverses a vector with
backpermute and then maps a function f over the result. Being
a sequence of two producer operations, we would hope these are
fused into a single operation:

reverseMap f a
= map f
$ backpermute (shape a) (\i->length a-i-1) a

Unfortunately, sharing recovery, using the algorithm from Sec-
tion 3, causes a problem. The variable a is used three times in the
arguments to backpermute; hence, sharing recovery will introduce
a let binding at the lowest common meet point for all uses of the
array. This places it between the map and backpermute functions:

reverseMap f a
= map f
$ let v = a

in backpermute (shape v) (\i->length v-i-1) v

This binding, although trivial, prevents fusion of the two producers,
and it does so unnecessarily. The argument array is used three
times: twice to access shape information, but only once to access
the array data — in the final argument to backpermute.

Fortunately, there is a simple work around. Recall that our
delayed array constructors Step and Yield carry the shape of
the arrays they represent. Hence, we can eliminate all uses of the
array that only access shape information, leaving us with a single
reference to the array’s payload. That single reference enables us to
remove the let binding and to re-enable fusion.

Similarly, we may float let bindings of manifest data out (across
producer chains). This helps to expose further opportunities for
producer/producer fusion. For example, we allow the binding of
xs to float above the map so the two producers can be fused:

map g $ let xs = use (Array ...)
in zipWith f xs xs

While floating let bindings opens up the potential for further
optimisations, we are careful to not increase the lifetime of bound
variables, as this would increase live memory usage.

5. Benchmarks
Benchmarks were conducted on a single Tesla T10 processor (com-
pute capability 1.3, 30 multiprocessors = 240 cores at 1.3GHz,
4GB RAM) backed by two quad-core Xenon E5405 CPUs (64-bit,
2GHz, 8GB RAM) running GNU/Linux (Ubuntu 12.04 LTS). The
reported GPU runtimes are averages of 100 runs.

5.1 Execution Overheads
Runtime program optimisation, code generation, kernel loading,
data transfer, and so on can contribute significant overheads to short
lived GPU computations. Accelerate mitigates these overheads via
caching and memoisation. For example, the first time a particu-
lar expression is executed it is compiled to CUDA code, which is
reused for subsequent invocations. In the remainder of this section
we factor out the cost of runtime code generation, and the associ-
ated caching, by reporting just the runtimes of the GPU kernels —
for our system as well as the others we compare against.

5.2 Dot product
Dot product uses the code from Section 2.1. Without fusion the in-
termediate array produced by zipWith is created in GPU memory
before being read back by fold. This is a simple memory-bound
benchmark; hence, fusion roughly doubles the performance.

The Data.Vector baseline is sequential code produced via
stream fusion [12], running on the host CPU. The Repa version
runs in parallel on all eight cores of the host CPU, using the fusion
method reported in [17]. The NDP2GPU version [4] compiles NESL
code [6] to CUDA. The performance of this version suffers because
the NDP2GPU compiler uses the legacy NESL compiler for the front-
end, which introduces redundant administrative operations that are
not strictly needed when evaluating a dot product.

The Accelerate version is still slightly slower than CUBLAS.
The fused code embeds a function of type (sh -> a) into the
reduction. The extra arithmetic for converting the multidimentional
sh index to a linear index is significant for this simple benchmark.

5.3 Black-Scholes options pricing
Black-Scholes uses the code from Figure 1. The source contains
several let-bound variables that are used multiple times, and with-
out sharing recovery the corresponding values are recomputed for
each occurrence. The Accelerate version is faster than the reference
CUDA version because the latter contains a common subexpression
that is not eliminated by the CUDA compiler. The CUDA version
is part of the official NVIDIA CUDA distribution. The common
subexpression performs a single multiplication.

5.4 N-Body gravitational simulation
The n-body example simulates Newtonian gravitational forces on
a set of massive bodies in 3D space, using the naive O(n2) algo-
rithm. In a data-parallel setting, the natural implementation first
computes the forces between every pair of bodies, before reduc-
ing the components applied to each body using a segmented sum.
Without fusion this approach requires O(n2) space for the interme-
diate array of forces, which exhausts the memory of our device for
more than about 5k bodies. With fusion, the reduction consumes
each force value on-the-fly, so that the program only needs O(n)
space to store the final force values.

Even with fusion the hand-written CUDA version is over 10×
faster, as it uses on-chip shared memory to reduce the memory
bandwidth requirements of the program. The shared memory is
essentially a software managed cache, and making automatic use
of it remains an open research problem [21].

5.5 Mandelbrot fractal
The Mandelbrot set is generated by sampling values c in the com-
plex plane, and determining whether under iteration of the complex
quadratic polynomial zn+1 = z2n + c that |zn| remains bounded
however large n gets. As recursion in Accelerate always proceeds
through the host language, we define each step of the iteration as a
collective operation and unfold the loop a fixed number of times.

Table 2 shows that without fusion performance is poor because
storing each step of the iteration saturates the memory bus. The
CUDA version is about 70% faster because it includes a custom
software thread block scheduler to manage the unbalanced work-
load inherent to this benchmark.

5.6 Fluid Flow
Fluid flow implements Jos Stam’s stable fluid algorithm [32], a fast
approximate algorithm intended for animation and games, rather
than accurate engineering simulation. The core of the algorithm
is a finite time step simulation on a grid, implemented as a matrix
relaxation involving the discrete Laplace operator (∇2). Relaxation



Contender Accelerate Accelerate Accelerate
Benchmark Input Size (ms) full (ms) no fusion (ms) no sharing (ms)
Black Scholes 20M 6.70 (CUDA) 6.19 (92%) (not needed) 116 (1731%)
Canny 16M 50.6 (OpenCV) 78.4 (155%) (not needed) 82.7 (164%)
Dot Product 20M 1.88 (CUBLAS) 2.35 (125%) 3.90 (207%) (not needed)
Fluid Flow 2M 5461 (Repa -N7) 107 (1.96%) (not needed) 119 (2.18%)
Mandelbrot (limit) 2M 14.0 (CUDA) 24.0 (171%) 245 (1750%) 245 (1750%)
N-Body 32k 54.4 (CUDA) 607 (1116%) (out of memory) (out of memory)
Radix sort 4M 780 (Nikola) 442 (56%) 657 (84%) 657 (84%)
SMVM (protein) 4M 0.641 (CUSP) 0.637 (99%) 32.8 (5115%) (not needed)

Table 2. Benchmark Summary

is performed by stencil convolution using the standard four-point
Laplace kernel. The program is very memory intensive, performing
approximately 160 convolutions of the grid per time step. The Repa
version running on the host CPUs is described in [20]; it suffers
from a lack of memory bandwidth compared with the GPU version.

5.7 Canny edge detection
Edge detection applies the Canny algorithm [7] to square images
of various sizes. The algorithm consists of seven phases, the first
six are naturally data parallel and performed on the GPU. The last
phase uses a recursive algorithm to “connect” pixels that make up
the output lines. In our implementation this phase is performed
sequentially on a host CPU, which accounts for the non-linear
slowdown visible with smaller images. We also show the runtime
for just the first six data parallel phases.

The data parallel phases are slightly slower than the baseline
OpenCV version. This is as our implementation of stencil convolu-
tion in Accelerate checks whether each access to the source array
is out of bounds, and must have boundary conditions applied. To
address this shortcoming we intend to separate computation of the
border region which requires boundary checks, from the main in-
ternal region which does not [19], but we leave this to future work.

5.8 Radix sort
Radix sort implements the algorithm described in Blelloch [5] to
sort an array of signed 32-bit integers. We compare our implemen-
tation against a Nikola [22] version.2

The Accelerate version is faster then Nikola because Nikola is
limited to single kernel programs and must transfer intermediate
results back to the host. Hand written CUDA implementations
such as in the Thrust [29] library make use of on-chip shared
memory and are approximately 10× faster. As mentioned earlier,
automatically making use of GPU shared memory remains an open
research problem [21].

5.9 Sparse-matrix vector multiplication (SMVM)
SMVM multiplies a sparse matrix in compressed row format
(CSR) [9] with a dense vector. Table 3 compares Accelerate to
the CUSP library [3], which is a special purpose library for sparse
matrix operations. For test data we use a 14 matrix corpus derived
from a variety of application domains [33].

Compared to our previous work [8] the fusion transformation
converts the program to a single segmented reduction. The corre-
sponding reduction in memory bandwidth puts Accelerate on par
with CUSP for several test matrices. In a balanced machine SMVM
should be limited by memory throughput, and a dense matrix in
sparse format should provide an upper bound on performance.

2 We repeat figures of [22] as Nikola no longer compiles with recent GHC
versions. The figures from [22] were obtained using the same GPU as ours.
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Dense 4M (2K) 14.48 14.62 3.41
Protein 4.3M (119) 13.55 13.65 0.26
FEM/Spheres 6M (72) 12.63 9.03 4.70
FEM/Cantilever 4M (65) 11.98 7.96 4.41
Wind Tunnel 11.6M (53) 11.98 7.33 4.62
FEM/Harbour 2.37M (50) 9.42 6.14 0.13
QCD 1.9M (39) 7.79 4.66 0.13
FEM/Ship 3.98 (28) 12.28 6.60 4.47
Economics 1.27M (6) 4.59 0.90 1.06
Epidemiology 1.27M (4) 6.42 0.59 0.91
FEM/Accelerator 2.62M (22) 5.41 3.08 2.92
Circuit 959k (6) 3.56 0.82 1.08
Webbase 3.1M (3) 2.11 0.47 0.74
LP 11.3M (2825) 5.22 5.04 2.41

Table 3. Overview of sparse matrices tested and results of the
benchmark. Measurements are in GFLOPS/s (higher is better).

However, with matrices such as FEM/Spheres which contain
only a few non-zeros per row (. 2× warp size = 64), Accelerate
is slightly slower than CUSP. We conjecture that this is due to the
way our skeleton code vector read of each matrix row is coalesced
and aligned to the warp boundary to maximise global memory
throughput, but is then not able to amortise this extra startup cost
over the row length.

Matrices with large vectors and few non-zeros per row (e.g.,
Epidemiology), exhibit low flop/byte ratio and poorly suit the CSR
format, with all implementations performing well below peak.

6. Related work
Repa [17] is a Haskell library for parallel array programming on
shared-memory SMP machines. Repa uses the delayed/manifest
representation split on which our DelayedAcc type is based,
though the idea of representing arrays as functions is folklore. With
Repa the conversion between array representations is done manu-
ally and can cause shared expressions to be recomputed rather than
stored. Such recomputation can improve runtime performance de-
pending on the algorithm. In Accelerate the conversion is automatic
and conservative, so that shared expressions are never recomputed.

Vertigo [13], Nikola [22] and Obsidian [10] are EDSLs in
Haskell and were mentioned in Section 1. Vertigo is a first-order
language for writing shaders, and does not provide higher-order
combinators such as map and fold. Nikola uses an instance of
Gill’s approach [14] to sharing recovery, is limited to single GPU
kernel programs, and performs no fusion.
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Obsidian [10] is a lower level language where more details of
the GPU hardware are exposed to the programmer. Recent versions
of Obsidian [11] implement Repa-style delayed pull arrays as well
as push arrays. Whereas a pull array represents a general producer,
a push array represents a general consumer. Push arrays allow the
intermediate program to be written in continuation passing style
(CPS), and helps to compile (and fuse) append-like operations.

Baracuda [18] is another Haskell EDSL that produces CUDA
GPU kernels, though is intended to be used offline, with the kernels
being called directly from C++. The paper [18] mentions a fusion
system that appears to be based on pull arrays, though the mecha-
nism is not discussed in detail. Barracuda steps around the sharing
problem by requiring let-bindings to be written using the AST node
constructor, rather than using Haskell’s native let-expressions.

Delite/LMS [28] is a parallelisation framework for DSLs in
Scala that uses library-based multi-pass staging to specify complex
optimisations in a modular manner. Delite supports loop fusion for
DSLs targeting GPUs using rewrite rules on a graph-based IR.

NDP2GPU [4] compiles NESL code down to CUDA. As the
source language is not embedded there is no need for sharing
recovery. NDP2GPU performs map/map fusion but cannot fuse
maps into reduction combinators.

Sato and Iwasaki [30] describe a C++ library for GPGPU pro-
gramming that includes a fusion mechanism based on list homo-
morphisms [25]. The fusion transformation itself is implemented
as a source to source translation. SkeTo [24] is a C++ library that
provides parallel skeletons for CPUs. SkeTo’s use of C++ templates
provides a fusion system similar to delayed arrays, which could be
equivalently implemented using CUDA templates. The authors of
SkeTo note that the lack of type inference in C++ leads them to
write their array code as nested expressions — to avoid intermedi-
ate variable bindings and their required type annotations.
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