
Computational Soundness for
Interactive Primitives

Michael Backes, Esfandiar Mohammadi, and Tim Ruffing

CISPA, Saarland University, Germany
{backes,mohammadi}@cs.uni-saarland.de, tim.ruffing@mmci.uni-saarland.de

Abstract. We present a generic computational soundness result for inter-
active cryptographic primitives. Our abstraction of interactive primitives
leverages the Universal Composability (UC) framework, and thereby
offers strong composability properties for our computational soundness re-
sult: given a computationally sound Dolev-Yao model for non-interactive
primitives, and given UC-secure interactive primitives, we obtain com-
putational soundness for the combined model that encompasses both
the non-interactive and the interactive primitives. Our generic result is
formulated in the CoSP framework for computational soundness proofs
and supports any equivalence property expressible in CoSP such as strong
secrecy and anonymity.
In a case study, we extend an existing computational soundness result
by UC-secure blind signatures. We obtain computational soundness for
blind signatures in uniform bi-processes in the applied π-calculus. This
enables us to verify the untraceability of Chaum’s payment protocol in
ProVerif in a computationally sound manner.

1 Introduction

Manual security analyses of cryptographic protocols are complex and error-prone.
As a result, various automated verification techniques have been developed
based on so-called Dolev-Yao models, which abstract cryptographic operations as
symbolic terms obeying simple cancellation rules [16, 30, 38, 39, 41, 43]. Numerous
verification tools such as ProVerif [16] and APTE [30] are capable of reasoning
about equivalence properties, e.g., strong secrecy and anonymity.

A wide range of these Dolev-Yao models is computationally sound, i.e., the
security of a symbolically abstracted protocol entails the security of a suitable
cryptographic realization [3, 9, 17, 24, 31, 33, 34, 54, 55]. However, virtually all of
these computational soundness results are inherently restricted to non-interactive
primitives such as encryption and signatures.

In contrast, interactive cryptographic primitives such as interactive zero-
knowledge proofs [46], forward-secure key exchange [40], and blind signatures [29],
have gained tremendous attention in the scientific community and widespread
deployment in real systems.

One example of their unique properties is that the prover in an interactive
zero-knowledge proof can always deny that it has proved something to the verifier,

1

as used in off-the-record messaging [19]. Another example is forward security in
modern key-exchange protocols such as TLS, i.e., after the communication ended,
even compromising honest parties does not reveal the shared key.

The security of interactive primitives is often defined and established in the
Universal Composability (UC) framework [21] or similar frameworks [10, 48, 52],
which enable to prove strong security guarantees in a composable manner [27, 28,
44]. In such frameworks, a primitive is secure if its execution is indistinguishable
from a setting in which all parties have a private connection to an imaginary
trusted machine, called ideal functionality, which performs the desired task locally
and in a trustworthy manner. Various interactive primitives have been proven to
fulfill this strong UC-security [27, 28, 44].

For interactive primitives, ideal functionalities are a suitable abstraction,
but for non-interactive primitives, DY-style abstractions have two significant
advantages compared to a abstraction as an ideal functionality (e.g., for encryption
schemes or digital signatures): first, as Dolev-Yao models do not incorporate
shared memory, the verification of concurrent processes that use Dolev-Yao models
is far more efficient, and second, the attacker is purely defined by symbolic rules
and is thus much better suited for automatically deriving desired properties such
as invariants.

Backes, Hofheinz, and Unruh introduced CoSP, a general framework for
computational soundness proofs [3], which decouples the treatment of the Dolev-
Yao model from the treatment of the language, e.g., the applied π-calculus or
RCF. Proving x cryptographic Dolev-Yao models sound for y languages only
requires x+ y proofs (instead of x · y).

Previous work on computational soundness of verification tools for ideal
functionalities [51] does not apply to protocols that combine interactive and
non-interactive primitives with such computationally sound DY-style abstractions.
In this work, we address this gap.

Contribution. We present a generic computational soundness (CS) result for
UC-secure interactive primitives. Given a computationally sound Dolev-Yao
model for non-interactive primitives and given UC-secure interactive primitives,
we show the combined CS for the non-interactive and the interactive primitives.
This allows us to handle protocols that combine interactive primitives with non-
interactive primitives, e.g., protocols that encrypt blind signatures, or protocols
that use interactive zero-knowledge proofs about ciphertexts. Our generic method
is compatible with any CS result for non-interactive primitives that is cast in the
CoSP framework for equivalence properties [7].

In a case study, we apply our method to a recent CS result [7]. We obtain the
combined CS for (non-interactive) ordinary signatures and (interactive) blind
signatures. The underlying CS result for non-interactive primitives supports
uniform bi-protocols, i.e., protocol pairs that always take the same branches and
differ only in the messages that they operate on. Consequently, our case study
supports uniform bi-processes in the applied π-calculus. Finally, we conduct a
computationally sound verification of the untraceability of Chaum’s payment
protocol [29] in ProVerif.

2

Remark on Supported Equivalence Properties. The aforementioned CS
result [7] is so far the only result established in the CoSP framework for equivalence
properties, and is limited to uniform bi-processes. As a result, it is unclear whether
a larger class of equivalence properties can be expressed within the existing CoSP
framework at all. Thus it is unclear whether our generic result could possibly
apply to a larger class of equivalence properties, even though we believe that our
core ideas do not fundamentally rely on the specifics of the CoSP framework.
The underlying problem is caused by the current embeddings of languages
(such as the applied π-calculus) into CoSP. These embeddings do not provide a
satisfying solution for concurrency, because they give the attacker full control
over the scheduling of even internal scheduling decisions such as the scheduling of
concurrent processes. Yet, CS results established with our generic method cover
any equivalence properties covered by the underlying CS result for non-interactive
primitives. Our work shares this limitation with other state-of-the-art CS results
for equivalence properties [31, 32, 33].

2 Overview of the Paper

To facilitate understanding, we first give a high-level and then a technical overview
of the proof strategy taken in the paper. Computational soundness of a symbolic
Dolev-Yao model ensures that this symbolic model captures all security relevant
aspects of the cryptographic model, which we call the computational model.
Computational soundness is typically stated for a symbolic Dolev-Yao setting DY,
a corresponding set of cryptographic schemes P.1 Computational soundness of DY
for cryptographic schemes P means the following: all attacks of a cryptographic
attacker, using the cryptographic schemes P, can also be symbolically mounted
in DY.

2.1 High-Level Overview

Typical CS results for non-interactive primitives (NIPs) state that the security
of a protocol in a symbolic Dolev-Yao setting DY implies the security of the
protocol in a computational setting, where real cryptographic algorithms are
used instead of DY-style constructors and destructors (Figure 1a).

Our proof strategy contains two computational settings: one setting with a
computational ideal functionality F and one setting with its UC-secure crypto-
graphic realization IP. For the sake of illustration, we start by explaining our
approach with only a single interactive primitive (Figure 1b).

(i) We transform the computational ideal functionality F to the symbolic
setting by incorporating it into a Dolev-Yao model DY.

(ii) We show CS for the Dolev-Yao model with respect to the ideal functionality
F , which lives in the computational setting.

1 Technically, a soundness result also depends on a class of protocols and a set of
security properties, which we omitted for the sake of illustration.

3

DYNIPs

NIPs

(a) CS for
NIPs

DY

F

IP

(i)

(ii)

(iii)

(b) CS for an IP
(our approach)

DY1 . . . DYn DYNIPs

F1 . . . Fn

IP1 . . . IPn

NIPs

(i)

assumption

(iii)

(ii)

(c) Combined CS result for NIPs and IPs (detailed
overview of our approach)

Fig. 1: An overview over different types of CS results for non-interactive primitives
(NIPs) and interactive primitives (IPs). Solid arrows represent computational
soundness. Dashed arrows represent UC-security.

(iii) Under the assumption that IP is a UC-secure cryptographic realization of F ,
we show CS for the Dolev-Yao model DY with respect to the cryptographic
realization IP of the interactive primitive.

Next, we consider the setting of the paper (Figure 1c). It consists of crypto-
graphic realizations IP1, . . . , IPn of several interactive primitives and additionally
of a set of cryptographic realizations NIPs of several non-interactive primitives.

(i) We transform the computational ideal functionalities F1, . . . ,Fn to the sym-
bolic setting by incorporating them into Dolev-Yao models DY1, . . . ,DYn
(Section 6).

(ii) We then consider a unified model (DY1, . . . ,DYn,DYNIPs) that consists of
the Dolev-Yao models for the interactive primitives as well as a single Dolev-
Yao model DYNIPs that incorporates a set of non-interactive primitives.
Under the assumption that DYNIPs is computationally sound with respect
to the cryptographic realizations NIPs, we show CS for the unified Dolev-
Yao model with respect to the algorithms (F1, . . . ,Fn,NIPs), i.e., with
respect to the ideal functionalities plus the cryptographic realizations for
the non-interactive primitives (Section 7).

(iii) Under the assumption that IP1, . . . , IPn are UC-secure realizations of
F1, . . . ,Fn, we show CS for the unified Dolev-Yao model with respect
to the cryptographic realizations (IP1, . . . , IPn,NIPs) (Section 9).

2.2 Technical Overview

This technical overview shall provide an orientation for the reader in the technical
sections (Section 6 to Section 9).

4

Symbolic Model with Interactive Primitives For the symbolic representa-
tion, our goal is to abstract away from concrete implementations of interactive
primitives by representing them in the symbolic model as ideal functionalities.

As a simple example, consider two parties A and B who run an interactive
key exchange. In a symbolic calculus such as the applied π-calculus, this will be
modeled as three parallel processes A | B | P , where P is a process that represents
the ideal functionality for key exchange. Basically, the process P generates a
fresh key and sends it to both parties on private channels. Since this abstracts
away from the complex cryptographic details of the key exchange, the protocol
A | B | P is amenable to automated symbolic verification.

Integrating Non-Interactive Primitives Non-interactive primitives are typ-
ically abstracted using Dolev-Yao models with constructors (uninterpreted func-
tion symbols) and destructors (functions from terms to terms). For example,
dec defined by dec(k, enc(k,m)) = m is a destructor that destructs the term
enc(k,m), which is itself built by the constructor enc.

To combine ideal functionalities (for interactive primitives) with Dolev-Yao
models (for non-interactive primitives), we formulate the process P in a way that
it applies a complex destructor DF of a Dolev-Yao model, which constitutes a
reformulation of the ideal functionality F .

As destructors are inherently non-interactive and stateless, DF itself (as
opposed to F) cannot perform communication or keep state. As a remedy, DF
expects a state as arguments. Additionally, DF expects the messages sent to the
ideal functionality, e.g., DF (state, A, key exchange with B) denotes that party
A sends a message key exchange with B to F . Accordingly, DF outputs an
updated state and a message that should be forwarded to a protocol party, e.g.,
DF (state, A, key exchange with B) = (state′, B, k) for a generated key k that
should be forwarded to B. The process P acts then merely as a wrapper around
DF that performs the communication and manages the state for DF .

2.3 Ideal Computational Execution

As a first step towards proving computational soundness, we explain how to
leverage existing computational soundness results for non-interactive primitives.

The formulation of F as destructor DF enables us to consider an ideal
computational execution, in which DF is implemented by a computational variant
AF of F . Similarly, all constructors and destructors for non-interactive primitives
are implemented by computational algorithms, e.g., the constructor enc is replaced
by an algorithm Aenc , and the destructor dec is replaced by an algorithm Adec .

Assume that we have a computational soundness result for the implementa-
tions of non-interactive primitives (e.g., Aenc and Adec). That is, the Dolev-Yao
model without the special destructor DF (only consisting of enc and dec) is
computationally sound. Then we can show that also the Dolev-Yao model with
the destructor DF is computationally sound as well.

5

Technically, this is done by inlining the code of DF in the process PD. In this
way, all applications of the destructor DF are eliminated and the computational
soundness result for the Dolev-Yao model without DF can be applied.

2.4 Real Computational Execution

As a final step, we prove computational soundness for the interactive primi-
tives. In the ideal computational execution, only non-interactive primitives have
been implemented by their cryptographic realizations. While AF is used in the
computational model, it is merely an algorithmic representation of the ideal
functionality F .

To close the gap to the actual cryptographic interactive protocol, we assume
that φ is a such an interactive protocol that is a UC-secure realization of F .
We encode this interactive protocol φ into an algorithm Aφ. At its core, Aφ has
the same interface as AF , i.e., Aφ relies on P to perform communication and to
manage state.

2.5 Computational Soundness for Interactive Primitives

Next, we leverage a composable security notion called UC-secure realization [21].
A protocol φ UC-securely realizes an ideal functionality F if there is a simulator
that can simulate the behavior of all parties that are not under the control of
the attacker in an indistinguishable manner.

We assume that the protocol φ is a UC-secure realization of the ideal func-
tionality F , and the UC framework allows for composability, a larger protocol
that uses F internally can securely use φ instead of F . To use the same example
as above in the applied π-calculus, we can prove that the real computational exe-
cution of A | B | P (using Aφ) is secure if the ideal execution of A | B | P (using
AF) is secure. In other words, if AF is a computationally sound implementation
of the interactive primitive DF (which we have already established), then Aφ
is a computational sound implementation of the interactive primitive DF . This
constitutes our main result.

3 Related Work

There is a successful line of research for computational soundness of trace prop-
erties [13, 31, 39, 42] such as authentication and for static equivalence properties
(i.e., against passive attackers) [2, 14, 49].

For equivalence properties against active attackers, however, there are only
few previous results. The simulatable DY-style library of Backes, Pfitzmann, and
Waidner [4, 9] was the first result to show computational soundness against active
attackers and for equivalence properties on payloads. For this DY-style library it
is not known how to formalize more properties than the secrecy of payloads, e.g.,
anonymity properties in protocols that encrypt signatures of different messages.

6

Cortier and Comon-Lundh [31] show computational soundness for observa-
tional equivalence for symmetric encryption in the applied π-calculus. The scope
of their work is incomparable to our work: their result is restricted to processes
that do not contain private channels and abort if a conditional fails, whereas our
result is restricted to uniform bi-processes.

An alternative approach to secure abstractions has recently been proposed
by Bana and Comon-Lundh [12, 13]. Instead of prescribing what an attacker
can do and showing that no deviating computational behavior is possible, they
pursue the approach to define what is impossible for an attacker (e.g., break
the encryption) as first-order logic formulas over symbolic representations. Then,
they specify the protocol in question and the existence of a potential attack in the
same symbolic model. In their framework, inconsistency of a set of axioms implies
security of the protocol. An inherent problem with this style of abstraction is
the verification: it is not amenable to general-purpose DY-style verification tools,
e.g., ProVerif [16] or Tarmarin [53].

With regard to the composability of computational soundness, Böhl, Cortier,
and Warinschi [17] show how a computational soundness result that has been
obtained via deduction soundness [35] can be extended to hash functions, MACs,
signatures, and symmetric and asymmetric encryption. While they add a set of
non-interactive primitives to a given computational soundness result, we add a
set of interactive primitives to a given computational soundness result.

UC Security and Computational Soundness. There is other work that
leverages the strength of the UC framework. Backes, Maffei, and Mohammadi
[5] prove a computational soundness result for SMPC that is parametric in the
same way as our result. However, their result considers only trace properties and
is specific to SMPC. Canetti and Herzog [24], extended by Canetti and Gajek
[23], show computational soundness for UC-secure key exchange protocols and
signatures. There are two major differences to our work. First, their result is
specific to the used primitives, while our result can be used for a large class
of UC-secure interactive primitives. Second, even though their result holds for
equivalence properties, the authors—in contrast to our work—do not show that
their result can be combined with computationally sound Dolev-Yao models for
non-interactive primitives.

Dahl and Damgård [36] show the computational soundness of a certain class
of two-party protocols with respect to UC security, i.e., symbolic security implies
computational UC security. While they use the UC framework to obtain strong,
composable computational security for protocols that use certain non-interactive
primitives, we use the UC framework to obtain ordinary, non-composable compu-
tational security for protocols that use UC-secure interactive primitives.

Küsters et al. [50] and Küsters, Truderung, and Graf [51] leverage non-
interference techniques for ideal functionalities in Java programs. While their
method is capable of covering a large class of protocols and interactive primitives,
it does not encompass DY-style abstractions of non-interactive primitives such as
encryption. Thus, they have to represent all non-interactive primitives as ideal
functionalities. Since the abstraction that uses ideal functionalities inherently

7

contains shared memory between protocol parties, automated verification tech-
niques are forced to deal with numerous interleaving runs and the verification
costs significantly increase with the number of ideal functionalities. We show
that UC-secure ideal functionalities of interactive primitives can be combined
with computationally sound DY-style abstractions of non-interactive primitives,
thereby minimizing the amount of ideal functionalities.

Fournet, Kohlweiss, and Strub [45] show computational soundness for the
refinement type system F7 (and later F∗) by relying on ideal functionalities as
abstraction. The required type annotations serve as local invariants and make the
verification feasible, even with shared memory and many interleaving runs. First
steps have been undertaken towards automated type inference [56] for the type
annotations; however, the automation is incomplete and still requires a significant
amount of human interaction. As the type system is for the computational setting
(against a computational attacker), automated type derivation is inherently harder
than in a symbolic setting (against a symbolic attacker).

Delaune, Kremer, and Pereira [37] and Böhl and Unruh [18] transfer simulation-
based security completely into the symbolic setting, including symbolic composi-
tion theorems. However, these results do not guarantee computational soundness.

4 Review of the CoSP Framework for Equivalence

The abstraction and the computational soundness result put forward in this
work are cast in an extension [7] of CoSP [3], a framework for symbolic protocol
analyses and conceptually modular computational soundness proofs that hold for
several languages, such as the applied π-calculus and RCF [6] (a core calculus of
F#). In this section, we review the basic concepts underlying the CoSP framework
for equivalence properties [7]. For technical details, we refer the reader to the
previous work [3, 7].

4.1 Symbolic Indistinguishability

We define a symbolic notion of indistinguishability for a pair of protocols. First, we
define a Dolev-Yao model, called symbolic model in CoSP. Then, we present how
protocols are represented in CoSP. Thereafter, we present the capabilities of the
symbolic attacker, and finally, we define the notion of symbolic indistinguishability.

Symbolic Model. In CoSP, symbolic abstractions of protocols and of the
attacker are formulated in a symbolic model M = (C,N,T,D): a set of free
functions C, an a countably infinite set N of nonces, a set T of terms (formed
by constructors and nonces), and a set D of destructors, i.e., partial functions
from a list of terms to a list of terms. We generally use underlines to denote lists,
e.g., we write t for a list of terms.

Protocols. Protocols are represented as infinite trees. Each node in this tree
represents an action in the protocol:computation nodes are used for drawing fresh

8

nonces and applying constructors and destructors; input nodes and output nodes
are used for sending and receiving terms; control nodes are used for allowing
the attacker to schedule the protocol. A computation node is annotated with
its arguments and has two outgoing edges: a yes-edge, used for the application
of constructors, for drawing a nonce, and for the successful application of a
constructor or destructor, and a no-edge, used for the failed application of a
constructor or destructor F on a term t, i.e., if evalF (t) = ⊥. Nodes have explicit
references to other nodes whose terms they use. For example, a computation
node that computes C(t) references the node that produced t, e.g., an input node
or another computation node.

Definition 1 (CoSP Bi-protocol). A CoSP bi-protocol Π is defined like a
protocol but uses bi-references instead of references. A bi-reference is a pair
(νleft, νright) of node identifiers of two (not necessarily distinct) nodes in the
protocol tree. In the left protocol left(Π) the bi-references are replaced by their
left components; the right protocol right(Π) is defined analogously.

Symbolic Operations. As a next step, we model the capabilities of the symbolic
attacker. We have to capture which protocol messages the attacker observes, in
particular in which order an attacker observe these messages. Moreover, we have
to capture which tests an attacker can perform in order to judge whether two
protocols are distinguishable. These tests, called symbolic operations, capture the
sequence of operations a symbolic attacker applies, including the used protocol
messages.

Definition 2 (Symbolic Operation). Let M = (C,N,T,D) be a symbolic
model. A symbolic operation O/n (of arity n) on M is a finite tree whose nodes
are labeled with constructors from C, destructors from D, nonces from N, and
formal parameters xi with i ∈ {1, . . . , n}. For constructors and destructors, the
children of a node represent its arguments (if any). Formal parameters xi and
nonces do not have children.

To unify notation, we introduce evalF (t): if F is a constructor, evalF (t) ··= F (t)
for F (t) ∈ T, and evalF (t) ··= ⊥ otherwise. If F is a nonce, evalF () ··= F . If F
is a destructor, evalF (t) ··= F (t) if F (t) 6= ⊥ and evalF (t) ··= ⊥ otherwise. If
F is a symbolic operation, the evaluation function evalO : Tn → T recursively
evaluates the tree O starting at the root as follows: The formal parameter xi
evaluates to ti. A node with F ∈ C∪NE ∪D evaluates according to evalF , where
NE ⊆ N are attacker nonces. If there is a node that evaluates to ⊥, the whole
tree evaluates to ⊥.

Definition 3 (Symbolic Execution). Let a symbolic model M = (C,N,T,D)
and a CoSP protocol Π be given. A symbolic execution is a path through a
protocol tree. It induces a view, which contains the communication with the
attacker. Together with the symbolic execution, we define an attacker strategy
as the sequence of symbolic operations that the attacker performs. Formally, a
symbolic execution of a protocol Π is a (finite) list of triples (Vi, νi, fi) as follows.

9

switch ν with
case computation node with constructor, destructor or nonce F

if m ··= evalF (t̃) 6= ⊥ then
V ′ ··= V ; ν′ ··= the yes-successor of ν; f ′ ··= f(ν ··= m)

else
V ′ ··= V ; ν′ ··= the no-successor of ν; f ′ ··= f

case input node
if there is a term t ∈ T and a symbolic operation O on M with evalO(VOut) = t then
ν′ ··= the successor of ν; V ′ ··= V :: (in, (t, O)); f ′ ··= f(ν ··= t)

case output node
ν′ ··= the successor of ν; V ′ ··= V :: (out, t̃1); f ′ ··= f

case control node with out-metadata l
ν′ ··= the successor of ν with some in-metadata l′
f ′ ··= f ; V ′ ··= V :: (control, (l, l′))

Fig. 2: Symbolic Execution

Initially, we have V1 = ε, ν1 is the root of Π, and f1 is an empty partial function
mapping node identifiers to terms. For every two consecutive tuples (V, ν, f) and
(V ′, ν′, f ′) in the list, let ν̃ be the nodes referenced by ν and define t̃ through
t̃j ··= f(ν̃j). Figure 2 depicts a case distinction over ν for defining valid successors
V ′, ν′, and f ′. Each Vi is called symbolic view.

SViews(Π) is set of all symbolic views of Π.Given a view V , VOut is the list
of terms t contained in (out, t) ∈ V . VOut-Meta is the list of terms l contained in
(control, (l, l′)) ∈ V . VIn (the attacker strategy) is the list of terms that contains
only entries of V of the form (in, (∗, O)) or (control, (∗, l′)), and the input term
and the out-metadata has been masked with the symbol ∗. [VIn]SViews(Π) is the
equivalence class of all views U ∈ SViews(Π) with UIn = VIn .

Symbolic Knowledge. The symbolic knowledge of the attacker comprises the
results of all the symbolic operations that the attacker can perform on messages
output by the protocol. The definition captures that the attacker knows exactly
which symbolic operation leads to which result.

Definition 4 (Symbolic Knowledge). Let M be a symbolic model. Given a
view V with |VOut | = n, the (full) symbolic knowledge KV is a function from
symbolic operations on M (see Definition 2) of arity n to {>,⊥}, defined by
KV (O) ··= ⊥ if evalO(VOut) = ⊥ and KV (O) ··= > otherwise.

Equivalent Views. Intuitively, we would like to consider two views equivalent
if they look the same for a symbolic attacker. Despite the requirement that they
have the same order of output, input and control nodes, this is the case if they
agree on the out-metadata (the control data sent by the protocol) as well as the
symbolic knowledge that can be gained out of the terms sent by the protocol.

Definition 5 (Equivalent Views). Let two views V, V ′ of the same length
be given. We denote their ith entry by Vi and V ′i , respectively. V and V ′ are
equivalent (V ∼ V ′), if the following three conditions hold:

1. (Same structure) Vi is of the form (s, ·) if and only if V ′i is of the form (s, ·)
for some s ∈ {out, in, control}.

10

2. (Same out-metadata) VOut-Meta = V ′Out-Meta .
3. (Same symbolic knowledge) KV = KV ′ .

Symbolic Indistinguishability. Finally, we define two protocols to be symbol-
ically indistinguishable if the two protocols lead to equivalent views when faced
with the same attacker strategy.

Definition 6 (Symbolic Indistinguishability). Let M be a symbolic model
and P be a class of protocols on M. Given an attacker strategy VIn (in the sense
of Definition 3), two protocols Π1, Π2 ∈ P are symbolically indistinguishable
under VIn if for all views V1 ∈ [VIn]SViews(Π1) of Π1 under VIn , there is a view
V2 ∈ [VIn]SViews(Π2) of Π2 under VIn such that V1 ∼ V2, and vice versa.

Two protocols Π1, Π2 ∈ P are symbolically indistinguishable (Π1 ≈s Π2), if
Π1 and Π2 are indistinguishable under all attacker strategies. For a bi-protocol
Π, we say that Π is symbolically indistinguishable if left(Π) ≈s right(Π).

4.2 Computational Indistinguishability

On the computational side, the constructors and destructors in a symbolic
model are realized with cryptographic algorithms, which we call computational
implementations.

Computational Implementation. A computational implementation is a fam-
ily A = (Ax)x∈C∪D∪NP

of deterministic polynomial-time algorithms AF for each
constructor or destructor F ∈ C ∪ D well as a probabilistic polynomial-time
(ppt) algorithm AN for drawing protocol nonces N ∈ N.

Computational Execution. The computational execution of a protocol is the
interaction between a ppt machine called the computational challenger and a
ppt attacker A. The transcript of the execution contains the computational
counterparts of a symbolic execution.

The computational challenger traverses the protocol tree and interacts with
the attacker: at a computation node the corresponding algorithm is run and
depending on whether the algorithm succeeds or outputs ⊥, either the yes-branch
or the no-branch is taken; at an output node, the message is sent to the attacker;
at an input node a message is received by the attacker; and at a control node
the attacker is asked which edge to take.

Computational Indistinguishability. We rely on the notion of termination-
insensitive computational indistinguishability (tic-indistinguishability) [57] to
capture that two protocols are indistinguishable in the computational world. In
comparison to standard computational indistinguishability, tic-indistinguishability
does not require the the interactive machines to be polynomial-time, but it
solely considers decisions that were made after a polynomially-bounded prefix
of the interaction (where, both, the attacker’s and the protocol’s steps are
counted). If after an activation, (say) the second protocol does not output
anything within a polynomial numbers of steps, then the bi-protocol will be

11

considered indistinguishable no matter how the first protocol will behave in this
case. We write the fact that a machine M terminates after n steps with the
output a as M ⇓n a.

Definition 7 (Tic-indistinguishability [57]). Given two machines M,M ′

and a polynomial p, we write Pr[〈M |M ′〉 ⇓p(k) x] for the probability that the
interaction between M and M ′ terminates within p(k) steps and M ′ outputs x.

We call two machines A and B termination-insensitively computationally
indistinguishable for a machine A (A ≈Atic B) if for all polynomials p, there is a
negligible function µ such that for all z, a, b ∈ {0, 1}∗ with a 6= b,

Pr[〈A(k)|A(k, z)〉 ⇓p(k) a]

+ Pr[〈B(k)|A(k, z)〉 ⇓p(k) b] ≤ 1 + µ(k).

Here, z represents an auxiliary string. Additionally, we call A and B termination-
insensitively computationally indistinguishable (A ≈tic B) if we have A ≈Atic B
for all polynomial-time machines A.

With the notion of tic-indistinguishability, computational indistinguishability for
bi-protocols is naturally defined. A bi-protocol is computationally indistinguishable
if the corresponding challengers are tic-indistinguishable.

Definition 8 (Computational Indistinguishability). Let Π be an efficient2
CoSP bi-protocol and let A be a computational implementation of M. Π is
(termination-insensitively) computationally indistinguishable if for all ppt attack-
ers A and for all polynomials p, ExecA,M,left(Π) ≈tic ExecA,M,right(Π).

Computational Soundness The previous notions culminate in the definition
of CS for equivalence properties. It states that the symbolic indistinguishability
of a bi-protocol implies its computational indistinguishability.

Definition 9 (Computational Soundness). Let a symbolic model M and a
class P of efficient protocols be given. A computational implementation A of M
is computationally sound for M if every pair of protocols in P is computationally
indistinguishable whenever it is symbolically indistinguishable.

5 Review of the UC Framework

We briefly review the UC framework [21], as we use it to establish our compu-
tational soundness result. The UC framework is designed to enable a modular
analysis of security protocols. In this framework, the security of a protocol φ
is defined by comparing the protocol with a setting in which all parties have
a private connection to a trusted machine F , called ideal functionality, which
2 A (bi-)protocol is efficient if the size of every node identifier ν is polynomially
bounded in the length of the path to the root, and ν is computable in deterministic
polynomial time given all node and edge identifiers on this path.

12

performs the desired protocol task locally. The ideal functionality F serves as an
abstraction of this taskand as a constructive way to formalize security guarantees.

Security in the UC framework is defined as follows: A protocol φ UC-realizes
an ideal functionality F if for all ppt machines A (the attacker) there is a ppt
machine S (the simulator) such that no ppt machine Z (the environment) can
distinguish an interaction with φ and A from an interaction with F and S. The
environment is connected to the protocol and the attacker in the real setting or
to the functionality and the simulator in the ideal setting.

Each machine M has two different input tapes. First, it has a subroutine
input tape, which is used when another machine M ′, e.g., the environment Z,
calls them as a local subroutine; the written data is called subroutine output
generated by M ′. Second, each machine has a network tape, which is connected
to the attacker A or the simulator S.

The order in which computations are performed in UC is as follows. The
execution starts with the environment Z. Its execution pauses whenever it writes
a message to an input tape of another machine M ′. At this point, M ′ is activated
and runs until M ′, in turn, writes a message to a tape of another machine M ′′.
If a machine halts, the environment Z is activated, and chooses which machine
to activate next.

In the proof, we use the so-called dummy attacker Ad. Ad is an attacker that
only follows the commands of the environment: Ad forwards all messages from
the environment Z to a party’s network channel and all messages that it receives
from a party (i.e., all network messages) to the environment. Canetti shows [21]
that it suffices to prove security against the dummy attacker Ad (and any ppt
environment Z).

6 Ideal Functionalities in the Symbolic Model

We abstract away from concrete implementations of interactive primitives by
representing them in the symbolic model as ideal functionalities. As a simple
example, consider two parties A and B running an interactive key exchange. For
example in the applied π-calculus, this is modeled as three parallel processes
A | B | P , where P is the symbolic key exchange abstraction that generates a
fresh key and sends it to both parties on private channels.

6.1 Conditions for the Underlying Model

First, in order to formalize our results, we need some standard symbolic and
computational assumptions about the CS result for non-interactive primitives
that we would like to extend by interactive primitives.

Symbolic Constraints. The symbolic model must fulfill the following proper-
ties, which will be necessary to formulate ideal functionalities in CoSP. First, it
should be possible to construct pairs in the symbolic model. Second, we require
that there is a distinguished dummy term that can be tested to be equal to other

13

terms. More formally, we say that a CoSP symbolic model M = (C,N,T,D) is
standard if (i) there are constructors pair/2 ∈ C and destructors fst/1, snd/2 ∈ D,
and (ii), there is a constructor null/0 ∈ C and a destructor equals/2 ∈ D.

Note that we only require the existence of certain constructors and destructors,
but we do not impose explicit semantic restrictions symbolically.

Implementation Constraints. In contrast, semantic conditions are necessary
for the algorithms that implement of these constructors and destructors. We
call a CoSP computational implementation A for the standard symbolic model
M standard if (i) for all x, y ∈ {0, 1}∗, we have Afst(Apair(x, y)) = x as well
as Asnd(Apair(x, y)) = y, and (ii) no algorithm AC in A with C ∈ C \ {null}
produces Anull() on any input. The second condition ensures that Anull() is of a
unique type and can be achieved by a suitable tagging.

6.2 Formalizing Ideal Functionalities

An ideal functionality F in CoSP is symbolically abstracted as a CoSP protocol
with only computation nodes; it will serve as a subroutine in another protocol.

State and Communication. Technically, F excepts five parameters state, sid,
sender, input, and rand as input. Since destructors and algorithms in CoSP are
stateless as opposed to machines in UC, we model the state explicitly by the first
parameter. A message sent to F is modeled by the parameters sender and input,
where sender represents an identifier of the sending party and input the contents.
If the message comes from the attacker, sender is null(). The sid parameter gives
F access to its session id. The last parameter rand is a fresh randomness for F .

Only one message from one party can be sent to F per invocation. This
form of communication is closely related to the sequential execution model in
UC: Whenever the execution is handed over to a machine M , e.g., an ideal
functionality, only one other machine M ′ may have written a message to a tape
of M .

For the output, F contains result nodes. They indicate the end of an invocation
of F , and the messages computed by the reached result nodes encode F ’s output.
Note that there may be (infinite) paths through the protocol tree of F , which do
not contain any result nodes, however we will require that a symbolic execution
of F reaches a result after finitely many steps.

Every result node µr and its second argument node µ′r are computational
nodes that are both annotated with the pair constructor. The term or bitstring
constructed by the result node is a triple, encoded using two pairs.

Parameterized CoSP Protocols. For a bi-protocol Π, we formalize the ideal
functionalities with the help of parameterized CoSP protocols, which have the
following properties: Nodes in such protocols are not required to have succes-
sors and instead of other nodes, also formal parameters can be referenced. A
parameterized CoSP protocol is intended to be plugged into another protocol;
in that case the formal parameters references must be changed to references to

14

actual nodes. Given terms t that instantiate the parameters of a parameterized
protocol Π, the symbolic execution of Π is defined canonically: Whenever a
parameter reference to parameter i is resolved, the parameter ti is used. This
allows us to define an ideal functionality in CoSP as parameterized protocol with
the parameters state, sid, sender, input and rand as described above.

Definition 10 (Ideal Functionality). Suppose the symbolic model M = (C,
N,T,D) is standard (Section 6.1).A CoSP ideal functionality is an efficient
probabilistic parameterized CoSP protocol on the symbolic model M such that:
1. F references parameters state, sid, sender, input and rand.
2. F contains no other nodes than computation nodes that are not be annotated

by a nonce.
3. There is a subset result(F) of the nodes in F , such that µ ∈ result(F) implies

that there is no ν′ ∈ result(F) on the path from µ to the root. The nodes in
result(F) are called result nodes of F . A result node has no successor.

4. Each result node µ is annotated with the constructor pair. The second refer-
enced node of µ is another computation node µ′ with the constructor pair.

5. The symbolic execution of F reaches a result nodes with all parameters
tstate, tsid, tsender, tinput, trand ∈ T.

F is an ideal model on M if each F ∈ F is a CoSP ideal functionality on M.

Observe that the second condition ensures that the symbolic execution of F
is deterministic, and thus DF is deterministic and well-defined.

6.3 Ideal Functionalities in the Symbolic Model

An ideal functionality yields a potentially complex destructor DF with the same
behavior as the symbolic operation. To combine ideal functionalities for interactive
primitives with Dolev-Yao models for non-interactive primitives, we formulate
the aforementioned process P , which models the ideal task, essentially as an
application of the destructor DF .

An application of the destructor corresponds to a message sent to the UC
machine implementing the ideal functionality. This allows a CoSP protocol to
use the ideal functionality like a subroutine (as in the UC framework).

A destructor is necessary, because CoSP constructors are just symbols with
an arity, whereas destructors are partial functions that map terms to terms.

Definition 11 (Ideal Destructor). Let F be an ideal model based on the
symbolic model M = (C,N,T,D), and let F ∈ F.

The ideal destructor of F is a destructor DF : T5 → T with (tstate, tsid,
tsender, tinput, trand) 7→ tres. Here tres is the term produced by the reached result
node in the symbolic execution of F with parameters tstate, tsid, tsender, tinput, trand.

Extended Symbolic Model. Given destructors DF for F ∈ F and a symbolic
model M = (C,N,T,D) (for non-interaction primitives), the extended symbolic
model is MF ··= (C,N,T,DF) where DF ··= D ∪ {DF/5 | F ∈ F}.

15

7 Ideal Functionalities in the Computational Model

As a first step to prove computational soundness, we explain how to leverage
existing computational soundness results for non-interactive primitives. The
formulation of F as a destructor DF enables us to consider an ideal computational
execution, in which DF is implemented by a computational variant (called the
canonical algorithm) AF of F .

Definition 12 (Canonical Algorithm). Let an extended symbolic model MF

based on M and a computational implementation A of M be given. The canonical
algorithm of F is the algorithm AF : N× ({0, 1}∗)5 → {0, 1}∗ with (bstate, bsid,
bsender, binput, brand) 7→ bres. It runs the an unbounded variant of the computational
execution of F and stops if the first reached result node is reached. (An attacker
is not involved, because F contains only computation nodes.) The output bres is
the bitstring computed by that result node. The first argument of AF represents
the security parameter and the other arguments determine the inputs. If the result
node produces ⊥ as output, then the output of AF is also ⊥.

Recall that we extend a symbolic model M by ideal destructors DF , resulting
in a new symbolic model MF. Analogously, we extend a computational imple-
mentation A for M by the canonical algorithms AF , given that each AF is
computable in polynomial-time. Writing AF instead of ADF , the resulting ideal
implementation AF ··= (Ax)x∈C∪DF∪N implements MF.

Note that by definition, F is efficient (Section 4.2) and the algorithms in
A are computable in polynomial time. Though, this does not imply that AF is
polynomial-time. In fact, it is possible that a result node is not reached and the
execution may not terminate at all.3 Thus we must require explicitly each AF
runs in polynomial time.

Computational Soundness for the Ideal Functionalities. Assume we have
a computational soundness result for the implementations of non-interactive
primitives (e.g., Aenc and Adec). That is, the Dolev-Yao model without the
special destructor DF (only consisting of enc and dec) is computational sound.
Then we can show that also the Dolev-Yao model with the destructor DF is
computationally sound given that DF is implemented by AF .

In the following, we state the computational soundness of the ideal func-
tionalities, which are ideal implementations in the computational model. To
leverage existing computational soundness results for non-interactive primitives,
which hold for symbolic models without destructors DF , we inline the calls to all
destructors DF .
3 Even if the number of processed nodes is polynomially bounded, the running time can
be super-polynomial, if the functions in A produce too large outputs. For instance,
consider the function F which accepts an input of the form 1x and outputs 12x.
Clearly, it is computable in deterministic polynomial time. A trace of length O(k) can
implement a k-fold application of F on the input 1, which yields the exponentially
long bitstring 12

k

.

16

Definition 13 (Full Protocol). Let Π an efficient CoSP (bi-)protocol. The
corresponding full protocol Π̂ is obtained from Π by inlining the calls to ideal
functionalities: Each computation node ν with destructor DF is replaced by the
tree of the ideal functionality F . The references in F are changed to references to
the corresponding nodes referenced by ν and the subtree rooted at the yes-successor
of ν is appended to every result node of F .

Lemma 1 (Soundness of Ideal Implementations). Let MF be an extended
symbolic model based on M, and let A be a computationally sound implementation
of M for protocols Π in a class of protocols P. Suppose that MF has the ideal
implementation AF. Let the protocol class P′ be defined as {Π | Π̂ ∈ P} =·· P′,
where Π̂ is the full protocol corresponding to Π.

Then the ideal implementation AF is computationally sound for MF and the
protocol class P′.

Proof. Let Π be an efficient CoSP bi-protocol in P′ that symbolically satisfies
indistinguishability. By definition, every F ∈ F contains no input and output
nodes, i.e., no communication with the attacker is carried out. Thus the views of
Π and the full protocol Π̂ do not differ. This holds for the symbolic views as well
as for the computational views. We conclude that the symbolic indistinguishability
of Π implies the symbolic indistinguishability of Π̂.

Since A is a computationally sound implementation of the symbolic model
M and Π̂ ∈ P is a protocol on M (in particular it does not use DF) Π̂ with A
is computationally indistinguishable. As the computational views of Π̂ and Π
are identical, the computational indistinguishability of Π follows.

8 Real Protocols in CoSP

In the ideal computational execution, the interactive primitives are not imple-
mented by their actual cryptographic realizations: while AF is computational,
it is merely an algorithmic representation of the ideal functionality F . To close
the gap to a real interactive protocol, we assume that there is a an interactive
protocol φ that is a UC-secure realization of F .

Formally, we define a real algorithm Aφ, which has the same interface as an
algorithm AF , i.e., it takes bitstrings bstate, bsid, bsender, binput, brand as input and
produces a triple (b′state, (breceiver, boutput)), encoded as nested pair, of bitstrings
as output.

The arguments directly correspond to the arguments of canonical algorithms
of ideal functionalities, and the same intuition should be applied in general. In
contrast to an ideal functionality however, there is no “joint state” between the
parties of a real protocol. We do not model that explicit here. Instead, we assume
that Aφ enforces the separation of states on its own, e.g., by letting state be a
list of protocol states of individual parties. If Aφ enforces that each party can
only access its own state, then the other states can be dummy values in practice.

Since the algorithms can output a state, each UC protocol can be re-formulated
as a real algorithm in our model. If we have a cryptographic realization for every

17

F in an ideal model F, we can extend a computational implementation A to a real
implementation AΦ. AF and AΦ allow us to compare an ideal implementation of
the interactive primitives with a real one, as in the UC framework.

9 Computational Soundness for Interactive Primitives

As a final step, we prove computational soundness for the interactive primitives.
We leverage the composability of UC security: If the real protocol φ is a UC-
secure realization of the ideal functionality F , then instances of F used in a
larger protocol can be replaced securely by instances of φ.

Using the UC framework, we would like to show an analogous result in our
model: if some machine µ(φ) is a UC-secure realization of some machine µ(F),
then instances of the canonical algorithm AF used in a larger protocol can be
replaced securely by instances of the real algorithm Aφ. Consequently, if AF
is a computational sound implementation of the destructor DF , then Aφ is a
computational sound implementation of the destructor DF .

9.1 Protocol Conditions

To ensure that the CoSP computational execution corresponds to an exection
in the UC framework, we require certain natural protocol conditions concerning
the interactive primitives. The conditions ensure (i) that inputs and outputs
of the interactive primitives actually plugged to input and output nodes, (ii)
that sessions and state are handled correctly and (iii), that fresh randomness is
provided for each call (the rand argument). Within a concrete symbolic calculus,
syntactic criteria that imply the protocol conditions can be introduced. The
wrapper in Section 10.3 will be an example for the applied π-calculus.

Definition 14 (Protocol Conditions for Interactive Primitives). Given
a CoSP protocol Π on an extended symbolic model MF, consider the directed
graph ref (Π) which has the property that a node νs is successor of a node νp if
and only if νp references νs in its annotations. It is a tree because nodes may
only reference nodes which are on the path to the root in the protocol tree. For a
node ν of Π, the reference tree of ν is the subtree of ref (Π) which is rooted at
ν and reachable from there. We say that a node ν is determined by a node ν′ if
on the path (through ref (Π)) from ν to ν′ exclusive, every node has exactly one
successor. The corresponding path is called reference path to ν′.

Π fulfills the protocol conditions for interactive primitives if the following
criteria are met for for all ideal functionalities F and all computation nodes ν
with a destructor DF :

1. We say that two computation nodes with the same destructor DF belong to
the same session if and only if one of them is contained in the reference tree
of the state argument node of the other. Two compuation nodes with the same
destructor DF are required to be part of the same session if and only if they
have the same sid argument node.

18

2. Let ν′ be the bottom-most predecessor of ν that belongs to the same session, if
any. Let (state, receiver, output) (encoded using pairs)be the output computed
by ν′ in a computational execution of the protocol. On the path from ν′ to ν,
there are the following nodes:
– Three computation nodes νstate, νreceiver and νoutput which produce the
bitstrings state, receiver and output, respectively. They are determined by
ν′. Their reference paths to ν′ contain only computation nodes and ν is
in the yes-subtree of all these computation nodes.

– If and only if in a computational execution of the protocol, the bitstring
produced by νreceiver is Anull(), an output node referencing νoutput.

3. The state argument of ν is νstate or a computation node with constructor
null().

4. νstate is not referenced by other nodes than ν.
5. The sender argument is a computation node with constructor null() if and

only if the input argument is an input node.
6. The rand argument of ν is a computation node νrand with nonce N ∈ N. On

a path trough νrand, there is no other computation node with nonce N . νrand
is not referenced by other nodes than ν.

9.2 Interfacing CoSP and UC

To simplify notation, we write Aθ to denote an interactive algorithm θ that is
either the canonical algorithm for an ideal functionality θ = F or the algorithm
for a real protocol θ = φ.

To make use of the UC framework, we first bring interactive algorithms to
the UC setting by constructing machines in the UC sense from them. We write
µ(θ) for the machine that runs Aθ internally. It basically provides an interface
to a computational CoSP execution that activates µ(θ) whenever Aθ should be
executed. In case that θ = φ is a real algorithm, we require that µ(θ) separates
the state of distinct protocol parties. This models a real protocol execution as
the parties can only communicate via the attacker.

As we consider only UC protocol machines µ(θ) as well as variants thereof, we
leave the involved dummy parties in the definition of the ITM and in the remainder
of the paper implicit, i.e., we face the protocol machine in an UC execution directly
with the environment and annotate each message with an explicit party identifier.
Recall that the dummy parties just relay messages from the environment to the
UC ideal functionality and vice-versa. We stress that this treatment is only to
simplify presentation; our model actually contains dummy parties as in UC.

Definition 15 (UC Machine for an Algorithm). Let Aθ be an algorithm
that uses the standard computational implementation A for the symbolic model
M. Let AN be the algorithm that implements nonces. The interactive Turing
machine (in the UC sense) µ(θ) runs the following algorithm:
– At the beginning of the first activation, initialize the variable state ··= Anull().
– Whenever µ(Aθ) is activated with a message input, let sender be the party
identifier of the invoking party, or Anull() if the message comes from the

19

attacker. Let rand ··= AN (k) and res ··= Aθ(k, (state, sid, sender, input, rand)),
where sid is the session ID of µ(θ).
• If res = ⊥, send (no) to the environment and block all further activations.
• Otherwise continue:
Let state′ ··= Afst(res), let receiver ··= Asnd(Afst(res)) and let output ··=
Asnd(Asnd(res)). Set state ··= state′.
∗ If Aequals(receiver, Anull()) = ⊥, send (yes receiver, output) to the
environment.
∗ Else pass output on the network to the attacker.

9.3 Conditions for the Interactive Primitives

We require that the ideal functionality F and the real protocol φ adhere to few
technical conditions. We explain why these conditions are necessary, what they
exactly are, and why they do not constitute fundamental restrictions.

Problems. Our goal is to consider a UC environment Z that runs a computa-
tional CoSP execution but does not handle interactive nodes. Instead, this task
should be delegated to a UC machine. For a interactive algorithm Aθ however,
the standard machine µ(θ) does not suffice for this purpose:

One problem stems from the fact that in the CoSP execution run by Z,
communication with the attacker happens only when an input or an output node
is reached in the CoSP protocol. However, the machine µ(θ) could just not adhere
to this restriction and exchange messages with the attacker machine even if the
CoSP execution run by Z does not currently process an input or an output node.

The second problem concerns only the ideal setting, and consists of a lack of
information of the environment Z. The CoSP view output by the environment
must contain the communication between F and the simulator S, but this
communication is not visible for Z in UC. In fact, µ(F) and S can exchange
arbitrary messages without even noticed by Z.

To understand why this second problem does not arise in the real setting,
consider w.l.o.g. the dummy attacker Ad. By definition, Ad will only relay
communication between the environment Z and the machine µ(φ). Thus Z is
informed about all communication between µ(φ) and Ad.

Technical Remedy. In the proof of our main theorem, we build wrapper
machines around µ(θ) and µ(φ). They report that communication took place
between µ(F) or µ(φ) and the attacker, but not what communication.

Definition 16 (Honest and CoSP Compatible Machine). Given a ma-
chine µ(θ) for an interactive algorithm Aθ, the corresponding honest machine
µ̃(θ) internally runs µ(θ) and relays the communication with the following ex-
ception: If µ(θ) generates output for the attacker, it is not forwarded, but stored.
Instead, a subroutine output (output ready) is passed to the environment and all
messages from the environment or the attacker are blocked4until the environment
4 Blocking can generally be realized by handing over the execution back to the activating
party immediately.

20

sends a subroutine input (deliver). Then the stored message is passed to the
attacker.

Moreover, we define for a given µ(θ) for an interactive algorithm Aθ, the
corresponding CoSP compatible machine µ̂(θ) that internally runs µ(θ) and relays
the communication with the following two exceptions.
1. If µ(θ) generates output m for the attacker, it is not forwarded, but stored.

Instead, a subroutine output (output ready,m) is passed to the environment.
2. If µ(θ) receives a message m from the attacker, it stores this messages, informs

the environment with (input ready,m), waits for a (deliver) messages from
the environment (and ignores all other messages), and only then forwards m
to µ(θ).

If the honest machine is used, the environment is informed before giving output
to the attacker. Then the environment is forced to let µ̃(θ) deliver the output to
the attacker explicitly. This is similar to a computational CoSP execution with
Aθ where communication with the attacker can be observed in the views and
the sent message is not available to the attacker until a special output node is
reached.

To ensure that it is sound to use the wrapper machines instead of the original
machines, we assume that the ideal functionality F and the real protocol φ are
good, i.e. we require them to adhere to one technical condition each.

Good Ideal Functionalities and Real Protocols. Before we explain the
condition in full detail, we first review the situations that make them necessary
in more detail.

Consider an UC execution in the real setting, i.e., a setting with a honest
machine µ̃(φ). Suppose that the attacker machine is the dummy attacker Ad. The
goal is to show that a simulator S can fake the same execution in the ideal setting
with µ̃(F). Now assume that during an execution in the real setting, µ̃(φ) produces
true subroutine output, i.e. not (output ready), after it has been activated by
Ad. In an ideal setting with the standard machine µ(F), the simulator S is able
to exchange several messages with µ(F) to make it produce subroutine output
as well. However in an ideal setting with µ̃(F), the simulator S must ensure that
the standard machine µ(F), internally run by the honest machine µ̃(F), does not
reply back to S. If that happened, the honest machine would tell the environment
by sending (output ready), which could distinguish the real and the ideal setting
trivially. In particular, if the environment runs a computational CoSP execution,
an output node would eventually be reached in the ideal setting but not in the
real setting. To circumvent this case, the condition in the following Definition 17
guarantees that S is able to force AF and thus µ(AF) to produce true subroutine
output immediately. It allows the simulator S to check beforehand whether a
particular message m to µ̃(F), which relays it to µ(F), would trigger subroutine
output or a reply message back to S. Furthermore, Definition 17 ensures that
µ(F) must not change its internal state if it hands back to S. That is, the
simulator S is able to discard dummy messages that would lead to an immediate

21

reply, because they would be ignored anyway. Hence S is able to come up with a
message that triggers subroutine output certainly.

Definition 17 (Condition for the Ideal Functionality). Let F be an ideal
functionality using the computational implementation A, and let AN be the
algorithm that implements nonces. Consider an execution of AF such that res ··=
AF (state, sid, sender, input, rand) with the following properties:
– state, sid, input ∈ {0, 1}∗
– sender = Anull(), i.e. the execution is initiated by a message from the attacker
machine

– rand ··= AN (), i.e. rand is drawn according to AN
F is good for A if the following condition holds for each such execution of AF :
– If and only if input = Anull(), we have res 6= ⊥ and Aequals(receiver, Anull()).

In that case, we say that AF has received a dummy message from the attacker
machine.

– For invocations by dummy messages, we additionally require state′ = state and
output = Anull(), where state′ ··= Afst(res) and receiver ··= Asnd(Afst(res)).
That is, AF does not fail but ignores the invocation completely and sends
Anull() to the attacker machine.

Another problem is a converse situation: Suppose that during an execution in the
real setting, the honest machine µ̃(φ) reports (output ready) to the environment,
because µ(φ) has generated a message for the attacker, whereas µ(F) in the
ideal setting generates true subroutine output s. If µ̃(φ) has been activated by a
message from the dummy attacker Ad, then the simulator S has been instructed
by the environment to relay this message to the protocol machine. Thus S has
been activated and is able to send a dummy message to µ̃(F), which delays the
subroutine output such that in both settings, (output ready) is reported to the
environment. However, this is not possible in the case that µ̃(φ) has not been
invoked by the attacker. Consequently, Definition 18 excludes this case.

Definition 18 (Condition for the Real Protocol). Let φ be a real protocol,
and let A be a standard computational implementation. Moreover, let AN be
the algorithm that implements nonces. Consider an execution of φ such that
res ··= φ(state1, sid, sender, input, rand) with the following properties:
– state1, sid, input ∈ {0, 1}∗
– sender 6= Anull(), i.e. the execution is not initiated by a message from the
attacker

– rand ··= AN (), i.e. rand is drawn according to AN
φ is good for A if for each such execution of φ, it holds that
– res 6= ⊥ and
– destination = network.

The following lemma states that we can use the honest machines instead of
the original machines given the ideal functionality and the real protocol are good.
This captures that the conditions on the ideal functionality and the real protocol
are indeed sufficient to overcome our problems.

22

Lemma 2. Suppose that the real protocol φ is good and the ideal functionality F
is good. Further suppose that µ(φ) UC-realizes µ(F). Then the honest machine
µ̃(φ) UC-realizes the honest machine µ̃(F).

Proof. Let Z̃ an arbitrary polynomial-time UC environment. As µ(φ) realizes
µ(F), there is a valid simulator S for the dummy attacker Ad. The main part of
the proof compares the executions of Execµ̃(F),S,Z̃ , Execµ(F),S,Z , Execµ(φ),Ad,Z

and Execµ̃(φ),Ad,Z̃ , where Z is an environment which internally runs Z̃. Z hides
the syntactic differences between the honest machines µ̃ and the standard ma-
chines µ, i.e. the messages (output ready) and (deliver), by acting as a wrapper
for Z̃. The considered executions are depicted in Figure 3. We prove that Z̃
cannot distinguish these four executions. In particular, this environment cannot
distinguish Execµ̃(F),S,Z̃ and Execµ̃(φ),Ad,Z̃ . In other words, S is also valid simu-
lator for the executions with the honest machines, and µ̃(φ) UC realizes µ̃(F).

Z

Z̃

S µ̃(F) µ̃(φ)Ad

µ(φ)AdS µ(F)

Fig. 3: The considered executions in the proof of Lemma 2

The conditions for the ideal functionality F (Definition 17) ensure that F ,
and thus µ(F), produces subroutine output if and only it receives a dummy
message. Dummy messages do not have any effect on the state of the machines in
the network, since the activated machine immediately hands back to S without
sending any information. That is, the validity of S does not depend on the dummy
messages it sends to µ̃(F). Thus, without loss of generality, we may assume that
S sends a dummy message to µ(F) if and only if S is instructed to send a message
to the protocol but instead would send a message to the environment Z directly.
This implies that S activates µ(F) whenever it is instructed by Z to relay a
message to the protocol, i.e. whenever the dummy attacker Ad activates µ(φ).

23

We distinguish cases on the possible actions of Z̃ and the reaction of the
machine activated after Z̃. First, consider the case that Z̃ instructs the respective
attacker machine to deliver a message to the protocol, and that µ̃(φ) as well
as µ(φ), respectively, generate subroutine output. In the ideal settings, assume
for contradiction that S generates a message for the environment. Then the
environment Z is able to distinguish Execµ(φ),Ad,Z and Execµ(F),S,Z ; in the
former setting Z has received a message from µ(φ) whereas in the latter, the
origin of the received the message is S. This contradicts the validity of S, which
hence sends a message to µ(F). By construction, this is no dummy message. Thus
Definition 17 guarantees that the internal instance of µ(F) does not directly reply
to S. Such a reply would be observable since µ̃(F) would report (output ready).
Instead, µ(F) generates subroutine output, which is relayed to Z̃ by µ̃(F). As S
is a valid simulator for µ(F), this output is indistinguishable from the output
given in the real settings.

Second, assume that we are in the case that µ(φ), internally run by µ̃(φ),
generates a message back to Ad, after this attacker has forwarded m to µ̃(φ).
The honest machine µ̃(F) informs the environment with a message containing
(output ready). In this case, a standard message, i.e. not a dummy message,
from S to µ(F) would lead to subroutine output. Again, Z could distinguish
Execµ(φ),Ad,Z and Execµ(F),S,Z . Hence by construction, S generates a dummy
message for µ(F) and µ̃(F) reports (output ready) to Z̃.

Third, it remains to consider the case that Z̃ sends subroutine input to the
protocol machines. By Definition 18, we know that the protocol machine µ(φ) in
the real setting does not immediately reply to Z̃; it sends a message to the attacker
instead. Hence µ(F) does the same, otherwise Z could distinguish Execµ(φ),Ad,Z
and Execµ(F),S,Z trivially. The attacker machines are finally activated in all four
settings. The rest of this case is analogous to the previous case.

Altogether, Z̃ is informed about the communication between the protocol and
the respective attacker in all four executions and especially cannot distinguish
Execµ̃(F),S,Z̃ and Execµ̃(φ),Ad,Z̃ . That is, µ̃(φ) UC realizes µ̃(F).

Discussion. We stress that both the conditions for the ideal functionality and
the conditions for the real protocol are rather technical requirements instead of
severe restrictions. The conditions are fulfilled by virtually all natural interactive
primitives such as blind signatures [44], zero-knowledge proofs [20], oblivious
transfer [21], and secure function evaluation [21]. In some cases, a technical
reformulation of the ideal functionality or the real protocol is necessary. The
following paragraphs discuss these reformulations in more detail.

Immediate Outputs. Let φ be the real protocol. If φ gets inputs from a
protocol party Pin, it is not able to pass a output immediately to a different
party Pout 6= Pin without having to communicate via the network (the attacker)
in between. Thus a so-called immediate output is only possible back to Pin. That
is, Definition 18 basically imposes the restriction that subroutine output cannot
be given immediately back to Pin when φ received subroutine input from φ. This

24

essentially means that φ (and also F if φ realizes F) must be formulated such
that the results of the protocol are output whenever they are locally determined
for a party. That is, the outputs of φ need not be requested through an interface;
the reply to such a request would be an immediate output.

This is a natural assumption for interactive primitives, where cryptographic
operations do not take place only locally as it is the case for encryption or digital
signatures for instance. Indeed, the ideal functionalities for public-key encryption
and signatures proposed by Canetti use immediate outputs, see [21] for a general
discussion of immediate outputs.

Corruption. Our approach can be used with different corruption models. How-
ever, to be compatible with the conditions in Definitions 17 and 18, we treat
adaptive corruption formally slightly different from the original UC framework.

Our convention is that the corruption messages are sent by the environment
directly to the currupted party and not “via” the attacker. (This convenction
is also used by Hofheinz and Shoup [47].) The corrupted party (or the ideal
functionality on behalf of the currupted party) then informs the attacker about
the corruption. This treatment avoids that the simulator in the ideal world has
to deliver the corruption message to the ideal functionality, which would in turn
activate the simulator, because this message flow is excluded by the condition for
the ideal functionality.

The Price for Re-usability of Earlier Results. The main cause for the two
technical conditions is a discrepancy between the UC framework and the CoSP
framework. We use the latter in order to leverage existing results [7]. As a result,
we inherit the restrictions that stem from the way previous embeddings resolved
non-deterministic choices, e.g., concurrent computations: the distinguisher has
full control over all scheduling decisions of concurrent computations and is fully
aware of the execution state with respect to control flow. As a consequence the
distinguisher can observe that communication between the simulator and the
ideal functionality takes place. This is in contrast to the UC framework, where
the distinguisher (the environment) cannot observe this communication.

9.4 Main Result

The main theorem states that we can extend a computational soundness result
for equivalence properties to a computational soundness result for interactive
primitives that are soundly abstracted by ideal functionalities. To establish the
theorem, we need some natural protocol conditions (Section 9.1). They ensure
(i) that inputs and outputs of the ideal functionalities are actually plugged to
input and output nodes, (ii) that sessions and state are handled correctly and
(iii), that fresh randomness is provided for each call of the ideal functionality
(the rand argument). Within a concrete symbolic calculus, syntactic criteria that
imply the protocol conditions can be introduced.

Theorem 1. Let MF be an extended symbolic model based on M, and let AΦ

be a computational implementation of MF based on A. Let P be a class of

25

CoSP protocols such that every protocol in P fulfills the protocol conditions for
interactive primitives (Section 9.1), and let the protocol class P′ be defined as
{Π | Π̂ ∈ P} =·· P′, where Π̂ is the full protocol corresponding to Π. Suppose
that every F ∈ F is a good ideal functionality and every φ ∈ Φ is a good real
protocol (see Definitions 17 and 18). Suppose that for every ideal functionality
F ∈ F and the corresponding real protocol φ ∈ Φ, we have that µ(φ) UC-realizes
µ(F).

If A is a computationally sound implementation of M for P with respect to
equivalence properties, then AΦ is a computationally sound implementation of
MF for P′ with respect to equivalence properties.

Proof. For simplicity, we consider only one ideal functionality F and its imple-
mentation φ. Let Π ∈ P′ be a symbolically indistinguishable bi-protocol using
the destructor DF . Lemma 1 entails that the computational execution of Π with
the canonical algorithm AF is computationally indistinguishable.

Recall that for an interactive primitive θ (be it F or φ) with a computa-
tional implementation Aθ, there is a CoSP compatible UC machine µ̂(θ) (see
Definition 16). Since Π fulfills the protocol conditions, the CoSP computational
execution of Π can be formulated as a UC machine CoSPUC that calls µ̂(F)
(or µ̂(φ), respectively) instead of executing F (or φ) on its own.5 Because the
computational execution with AF is computationally indistinguishable, we know
that for all protocols Π ∈ P CoSPUC with left(Π) is tic-indistinguishable from
CoSPUC with right(Π) when using µ̂(F). Since µ̃(F) leaks less information than
µ̂(F), we can conclude that for all protocols Π ∈ P CoSPUC with left(Π) is
tic-indistinguishable from CoSPUC with right(Π) when using µ̃(F).

Suppose that µ(φ) UC-realizes µ(F), and let µ̃(φ) and µ̃(F) be its corre-
sponding honest machines, as described in Definition 16. Given that φ and F are
good (see Definitions 17 and 18), Lemma 2 shows that µ̃(φ) UC-realizes µ̃(F).
Since µ̃(F) UC-realizes µ̃(φ) and since tic-indistinguishability is transitive in a
computationally indistinguishable part [57, Lemma 22], it follows that for all pro-
tocols Π ∈ P CoSPUC with left(Π) is tic-indistinguishable from CoSPUC with
right(Π) when using µ̃(φ). By the completeness of the dummy attacker, we can
w.l.o.g. assume that the network attacker is the dummy attacker. Consequently,
the environment learns the communication from the protocol to the network
attacker. Recall that the only difference between µ̂ and µ̃ is that µ̂ additionally
leaks this communication from the protocol to the network attacker. Thus, it
follows that for all protocols Π ∈ P CoSPUC with left(Π) is tic-indistinguishable
from CoSPUC with right(Π) when using µ̂(φ).

5 The UC machine CoSPUC is a formulation of the CoSP computational execution in the
UC framework. In contrast to the CoSP computational execution, however, CoSPUC
does not compute an interactive primitive θ itself but calls µ̂(θ) instead. In order to
produce the same output as the CoSP computational execution, CoSPUC constructs
the CoSP view accordingly. In particular CoSPUC maps the messages (output ready, m)
and (input ready,m) to view entries that correspond to attacker communication.

26

Limitations. While our result can be used with a wide range of natural two-
party and multi-party primitives in the UC framework, it comes with several
limitations.

First, since UC security is a very strong notion, some interactive primitives
cannot be achieved in the UC framework, or they can only achieved under
additional assumptions, or they require less efficient protocols than under ordinary
security definitions. For instance, zero-knowledge proofs and oblivious-transfer
are impossible without additional assumptions [21, 26]. However, these primitives
are possible if a common reference string (CRS) and authenticated message
transfer (e.g., using a public-key infrastructure) is assumed [21, 22]. Another
example is UC-secure key exchange, which is, depending on the formulation,
strictly stronger than standard key exchange [25], and thus requires less efficient
protocols. We refer to Canetti [21, 2005 revision] for a comprehensive overview
over different primitives in the UC framework.

Second, our result cannot be used to abstract non-interactive primitives using
the UC framework. (While such abstractions are not desirable for automated
verification (see Section 3), they might be desirable to achieve composability.)
The culprit is the condition for the real protocol. Recall that it imposes that the
protocol does not immediately reply to the environment, i.e., to the caller. While
this is a natural assumption for interactive primitives,6 it is very unnatural for
non-interactive primitives. Indeed, all meaningful “protocols” that realize ideal
functionalities for public-key encryption and signatures proposed by Canetti [21]
violate the condition that we impose upon real protocols, because they perform
the cryptographic operation locally without network communication involving the
attacker. However, we are not aware of any natural interactive protocol, which
cannot be reformulated to adhere to the technical conditions outlined above.

10 Case Study: Untraceable Payments

Untraceable payments, proposed by Chaum [29], allow a payer to perform a
payment to a payee, say a shop, via a bank. In Chaum’s protocol, a payer basically
buys a coupon, i.e., a signed random bitstring, such that the bank does not know
the coupon. Then, the user can pay with this coupon at a shop, and the shop will
check the validity of the coupon with the bank. As the main cryptographic tool
for untraceable payments Chaum suggests blind signatures, which guarantee that
the bank neither learns the message nor the signature while signing the message.

We verify the untraceability of the payments with the verification tool
ProVerif [16] using a UC-secure abstraction of blind signatures by Fischlin [44].
Our computational soundness theorems entail that the result of ProVerif’s verifi-
cation carries over to the computational realization of untraceable payments.

Although Chaum’s protocol is not a state-of-the-art e-cash protocol and much
better protocols exist (e.g., [11, 15]), we chose it to illustrate the expressiveness
of our result: the symbolic abstraction of (interactive) blind signatures, i.e., the
6 It is the very nature of interactive protocols that a message is sent on the network,
i.e., the protocol activates the attacker, before it reports results to the caller.

27

Upon (KeyGen, sid) for Bank from Z
if sid = (B, sid′) then

if Bank is honest then
generate signature keys (sk , vk)←Setupbs(1

k)
else

send (Keys, sid) to A
wait for (Keys, sk , vk , sid) from A

send (KeyGen, vk , sid) to A and Z for Bank

Upon (Sign, sid,m, vk ′) for Useri from Z
if Useri is honest and |m| = c(k) then

send (Signature, sid) to A
wait for (Signature, sid) from A
send (Signature, sid) to Z for Bank
compute sig←Sigbs(sk ,m)
send sig to Useri

else if Useri is malicious then
send (Sign, sid,m) to A
send (Signature, sid) to Z for Bank

Fig. 4: The family of ideal functionalities Fk,n for blind signatures, where c is a
function that specifies the length of a verification key, as detailed in the underlying
computational soundness result for non-interactive primitives [7]. In our model,
the tokens (i.e., the blindly signed messages) of the users are verification keys,
which contain enough entropy to be unpredictable. If desired, they can optionally
be used by the users to transfer a signed message along with the token, when the
token is spent.

symbolic ideal functionality, internally uses (non-interactive) digital signatures.
We show that we can naturally model this combination of interactive and non-
interactive primitives.

10.1 Ideal Blind Signatures

Fischlin [44] introduced an ideal functionality and proved that there is a UC-secure
realization for it under standard cryptographic assumptions. Our formulation is
a slight variation that is better amenable to automated verification.

Our ideal functionality F (see Figure 4)for blind signatures models a scenario
with one bank Bank and n users Useri(for i = 1 to n). It consists of a setup phase
and offers a signing oracle to the users. In the setup phase, the bank generates
signature keys or receives them from the attacker (recall that ideal functionalities
are incorruptible). Then, the functionality distributes the verification keys to the
bank Bank and all users Useri (for i = 1 to n).

Upon a signing request (Sign, sid,m, vk ′) from Useri, the functionality for
an honest Useri waits for the attacker to deliver the message, signs the message
m using the stored signing key sk , and sends the result to Useri. For a malicious
Useri, the ideal functionality F informs A about the signing request and the
message. Then, as in the honest user case, it informs the bank that a signature
is being requested.

28

Fischlin [44] showed the existence of a protocol that UC-realizes an ideal
functionality for blind signatures under standard cryptographic assumptions.

The protocol gives the attacker even more freedom than the functionality from
Figure 4. Our functionality F has four differences to the ideal functionality of [44].
First, our functionality uses a fixed signature scheme. Second, our functionality
performs a real key generation, locally stores the signing keys, and distributes
the verification keys. Third, the ideal functionality does not fake the signatures
but uses the signing key to produce real signatures. Fourth, our functionality
does not have a verification phase, because we distribute the verification keys
and every party can locally verify signatures. Since we only increase the power
of the ideal functionality, the realization proof of our ideal functionality is very
similar to the realization proof presented in [44]. Using Fischlin’s construction,
we can prove realization if we require that the signature scheme, used in our ideal
functionality (Figure 4), is unforgeable. Details can be found in Appendix A.

10.2 Computational Soundness of Signatures and Blind Signatures

We rely on a symbolic model Msig for digital signatures. (It contains also public-
key encryption, which we do not use). The model is computationally sound in
CoSP for uniform bi-protocols (explained below) with respect to a computational
implementation Asig [7]. The aforementioned ideal functionality F for blind
signatures and its UC-secure realization φ yields a CoSP destructor DF and a real
implementation Aφ, respectively. Symbolically, we extend Msig by DF , resulting
inMsig,bsig. Computationally, we extendAsig by Aφ, resulting inAsig,bsig. Finally,
Theorem 1 and the computational soundness for signatures in uniform bi-processes
in the applied π-calculus [7, Theorem 3] yield the computational soundness of
our case study.

Theorem 2. Let Q be an applied-π bi-process on the symbolic model Msig,bsig
that is randomness-safe [7] and fulfills the protocol conditions (Section 9.1). If Q
is uniform, then the computational bi-protocol corresponding to Q, which uses
the computational implementation Asig,bsig, is computationally indistinguishable.

Uniform Bi-protocols. We leverage a computational soundness result [7],
which is restricted to uniform bi-protocols. Bi-protocols are pairs of protocols
that always take the same branches and differ only in the messages that they
operate on.

Uniform bi-protocols cannot express equivalence between protocols with
processes of different structure. For example, consider a protocol Π1 with a client
process that sends some request to a server twice. If the requests are unlinkable to
each other, then formally, the client process is equivalent to a protocol Π2 with the
parallel composition of two client processes that send one request each. However,
Π1 and Π2 have different structure, i.e., they differ in more than the terms they
operate on. Thus a uniform bi-protocol cannot model this unlinkability.

A uniform bi-process [16] in the applied π-calculus is the counterpart of a
uniform bi-protocol in CoSP. A bi-process is a pair of processes that only differ

29

in the terms they operate on. Formally, they contain expressions of the form
choice[a, b], where a is used in the left process and b is used in the right one.
A bi-process Q can only reduce if both its processes can reduce in the same
way. We consider the variant of the applied π-calculus used for the original
CoSP embedding [3]. The operational semantics is defined in terms of structural
equivalence (≡) and internal reduction (→); for a precise definition of the applied
π-calculus, we refer to [16].

Definition 19 (Uniform Bi-process). A bi-process Q in the applied π-calculus
is uniform if left(Q) → Rleft implies that Q → R for some bi-process R with
left(R) ≡ Rleft, and symmetrically for right(Q)→ Rright with right(R) ≡ Rright.

10.3 Verifying Untraceability in ProVerif

ProVerif [16] is an automated verification tool that can prove the uniformity of
bi-processes in the applied π-calculus [1]. We use a wrapper process (Figure 6) in
the applied π-calculus that enforces the protocol conditions from Section 9.1.

This wrapper maintains the session identifier in a way that is compatible with
UC, maintains the state of the ideal functionality, and offers an interface that is
compatible with our computational soundness result for interactive primitives.

Model in ProVerif. We used ProVerif to model a small untraceable payment
system with two payers and one payee, say a shop owner. We modeled the
scenario in which the bank is compromised and two honest payers purchase
coupons. Then, one of the payers uses the coupon, and the shop owner leaks
the coupon to the bank by cashing it. We modeled the scenario as a process for
the ideal functionality of blind signatures and one bi-process that models both
the payers and the shop owner. Since we consider untraceability, the bank is not
modeled explicitly, it is the attacker.It should not be able to distinguish who of
the two payers purchased the coupon.

To help ProVerif terminate, we replaced the process that executes the very
complex destructor DF by an equivalent process consisting of a series of let and if
commands. As there is no communication in the equivalent process, the modified
protocol differs only in the fact that it offers more scheduling possibilities: the
attacker can schedule other processes in the middle of the computation, which is
not possible in the unmodified process with the atomic destructor DF . Thus any
attack possible on the unmodified process is also possible on the modified one.

Moreover, we do not include the length functions, since ProVerif typically
does not terminate, once a symbolic model includes length functions. Below, we
discuss why our verification is still sound.

Our code [8] has about 200 lines of code. ProVerif proves uniformity within
under a second on a machine with an Intel i7 CPU (2GHz) and 4GB RAM.

10.4 Soundness of the Verification

Even though the symbolic model Msig includes a length function, we did not
include the corresponding length destructor in the case study, because ProVerif

30

does otherwise not terminate. Nevertheless, our verification is computationally
sound, because the length functions in the underlying result [7] are only necessary
to handle public-key encryption, which is not part of Msig in our case study.

Formally, we present the following lemma, which can be useful beyond our
case study when applying the result of [7]. The lemma states that we can ignore
a destructor d in the symbolic analysis of a bi-protocol, if (i) d is not used in the
bi-protocol and (ii) d can be simulated using other destructors and constructors.

Lemma 3. Let M = (C,N,T,D) be a symbolic model. Consider the model
M′ = (C,N,T,D′) with D′ = D \ {d}. Let Π be a bi-protocol on M′(i.e., Π
does not use the destructor d).

Assume there is a function simD with the following property: given any
symbolic operation Od in M, and any view V , but only the symbolic knowledge
KM′

V of M′, simD outputs a symbolic operation OsimD on M′ that simulates d,
i.e., OsimD(t) = d((Od(t)) for all sequences of terms t ∈ T∗.

Then Π is indistinguishable in the symbolic model M if it is indistinguishable
in the symbolic model M′.

Proof. We now prove the contrapositive. Assume Π is distinguishable in M.
More precisely, there is a symbolic operation O in M (that is not in M′) that
distinguishes Π. If O is available in M′ as well, then there is nothing to show.
Otherwise, if O is available in M but not in M, then recall that M and M′

only differ in the availability of the destructor length. Thus the distinguishing
symbolic operation O contains a call to length that yields different results for
Πleft and Πright.

Because SimLength computes length by assumption correctly, the outputs
of SimLength(Od, , Vleft,K

M′

Vleft
) and SimLength(Od, Vright,K

M′

Vright
) differ as well.

These outputs only depend on Od, the view and the oracle answers. m and the
views are identical up to that point. Thus, the answers to oracle calls, i.e., the
evaluations of symbolic operations in M′ yield different results in the left and the
right protocol. Thus, there is a symbolic operation O′M in M′ that distinguishes
Π. ut

Claim. SimLength defined as in Figure 5 is a function for the length destructor
in [7] as required by Lemma 3.

Proof. The claim holds by code inspection of SimLength (see Figure 5). ut

Plugging everything together, the successful ProVerif verification, Theorem 2,
and Lemma 3 prove for our case study bi-process that any realization (adhering
to our implementation conditions) is computational indistinguishability.

31

SimLength(O, V,KV)

switch O with
case KV (equals(Oc, O)) 6= ⊥ for some Oc ∈ {empty,O}

length(Oc)
case KV (d(O)) 6= ⊥ for some d ∈ {unstring0, unstring1}
astring · SimLength(d(O)) + bstring

case KV (d(O)) 6= ⊥ for some d ∈ {S}
alength · SimLength(d(O)) + blength

case KV (d(O)) 6= ⊥ for some d ∈ {isvk , issk , isek , isdk}
length(T (r))

case KV (d(O)) 6= ⊥ for some d ∈ {fst, snd}
apair · SimLength(d(O)) + bpair · SimLength(d̄(O)) + cpair

case KV (verify(vkof (O), O)) 6= ⊥
asig · SimLength(vkof (O)) + bsig · SimLength(verify(vkof (O), O)) + csig

case ∃garbage term g(l) s.t. KV (equals(g,O)) 6= ⊥
l, where g ∈ {garbage(l, O′), garbageSig(l, O′) | O′ is a symbolic operation}

case otherwise
length(r), where r is some (symbolic) attacker nonce

Fig. 5: The definition of SimLength. “·” and “+” denote symbolic multiplication
and addition operations and af , bf , cf denote the coefficients for the length
destructor for the message type f . Note that the length destructor is required to
be linear [7].

32

let functionalityWrapper_F =
(* initialize *)
in(initInputC_F, any_value);
new attSessC; new protSessInC; new commonSessC;
out(attC, attSessC);
out(initOutputC_F, protSessInC);
new stateC; new resC; new sid;
(

(* initialize state *)
out(stateC, null()

)
|
!(

(
(* receive from attacker *)
in(attSessC, attInput);
out(commonSessC, (attInput, attSessC))

) | (
(* receive from protocol party *)
in(protSessInC, (protInput, protParty));
out(commonSessC, (protInput, protParty))

) | (
(* handle both types of input *)
in(commonSessC, (input, sender));
in(stateC, state);
new rand;
(* execute ideal functionality *)
let (state’, (receiver, output)) =

D_F(state, sid, input, sender, rand) in
out(resC, (state’,(receiver, output)))

) | (
(* process outputs *)
in(resC, (state’, (receiver, output)));
out(receiver, output);
out(stateC, state’)

)
)

).

Fig. 6: The wrapper for the ideal functionality

33

11 Conclusion

We presented the first general computational soundness that encompasses uni-
formity properties for interactive primitives, such as verifiable computation or
blind signatures, for which equivalence properties are crucial. In a case study, we
illustrated the applicability of our results by modeling and verifying untraceable
payments and verifying in ProVerif.

Acknowledgments. We thank the reviewers for their helpful and valuable
comments. This work was supported by the German Ministry for Education and
Research (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA) and the German Universities Excellence Initiative.

A Blind Signatures

We use the UC secure construction of blind signatures by Fischlin [44]. For an
extended exposition of the construction, we refer to the work of Fischlin [44].7

In the construction, we use single theorem unique zero-knowledge proofs [44].
Such proof systems have two modes. In the mode key, a key pair (PK,SK) is
generated, and, in mode prove, ZK proofs are generated with this PK. Uniqueness
states that for each PK there each statement has exactly one valid proof per
witness.

We use a ZK relation over (a sequence of) circuits CBScrs,PK indexed by a CRS
crs and PK. Circuit CBScrs,PK expects as input a statement

x = C||ek ||crsCom ||vk ||H(PK)||m

of length χ(n) = c(n) + 2e(n) + h(n) + s(n) + n and a witness w = u||v||B of
length ω(n) = 2n+s(n), and returns an output bit which is determined as follows.
In the construction, we will use the circuit of the algorithms Enc,Com,Versig for
checking that the signature verification succeeds,

Versig(vk ,Com(crsCom ,m||H(PK)||v;u), B) = 1

and that the value C equals the ciphertext, i.e.,

Enc(ek ,Com(crsCom ,m||H(PK)||v;u)||B; v).

The corresponding relation is defined as follows:

RBScrs,PK = {(x,w) ∈ {0, 1}χ(n) × {0, 1}ω(n) | CBScrs,PK(x,w) = 1}.

We use a second zero-knowledge proof with an NP relation Rss that is defined
by a sequence of circuits Cssn that evaluates to 1 if and only if for statement
x = U ||E||ek ||crsCom ||crsuni the following three conditions hold:
7 For the sake of readability, we omit the session id in our descriptions, since we only
consider a single-session functionality.

34

Upon (KeyGen) for Bank from Z
send (GetCRS) to Fcrs

wait for crs from Fcrs

send (GetCRSSS) to Fcrs-ss

wait for crsss from Fcrs-ss

send (GetCRSCom) to Fcrs-com

wait for crsCom from Fcrs-com

send (GetEncKey) to Fpki-enc

wait for ek from Fpki-enc

generate signature keys (sk , vk)←Setupsig(1
η)

send (Register, vk) to Z

Upon (Sign, πss, (User, i)) for Bank from A
extract the public statement from πss as (U ||E||ek ||crsCom ||crsuni)
let xss ← (U ||E||ek ||crs)
compute b← Verzk-ss(crsss , xss, πss)
if b = 1 then

compute B ← Sig(sk , U)
send (Signed, B) to Useri via A

Fig. 7: The protocol for blind signatures for the bank

1. E = Enc(ek ,m||PK||u||SK||v;u′)
2. U = Com(crsCom ,m||H(PK)||v;u)
3. There exists a randomness string ρ with (PK,SK)← Proveuni(key, crsuni ; ρ).

Construction 1 (UC Blind Signature Scheme [44]) Let (Setupsig , Sig, Versig)
be a signature scheme, (Setupenc , Enc, Dec) be an encryption scheme, and
(Setupcom , Com) be a commitment scheme. Let (Setupzk ,Prove,Verzk) be a non-
interactive zero-knowledge proof system for RBS and let (Setupzk-ss,Provess,Verzk-ss)
be a non-interactive zero-knowledge proof system for Rss.

The UC protocol for blind signature consists of one party that executes the bank
protocol, defined in Figure 7, and several parties that execute the user protocol,
defined in Figure 8. As setup assumptions, we use public key infrastructures and
common reference strings, formalized as the ideal functionalities, i.e., the protocol
is formulated in the Fpki-sig, Fpki-enc, Fcrs, Fcrs-ss, Fcrs-com hybrid model.

Let vkBS = (crs, vk) and skBS = sk . Verification is non-interactive. Thus,
we give the construction of the verification algorithm directly:
Versig-bs(vkBS ,m, S) : Parse S = C||π and extract the statement x from π as
x = C||ek ||crsCom ||vk ||m, check whether vk = vk ′ from vkBS = (crs, vk). Then,
output ←Versig(crs, x, π) for x = C||ek ||crsCom ||vk ||m.

Like the construction of Fischlin [44], we need the property that the used
encryption scheme, the commitment scheme and the signature scheme do not leak
information through the length of their outputs. This ensures that a malicious
bank cannot just identify a particular blind signature by its length. We briefly

35

Upon first invokation
send requestCRS to Fcrs

store crs
send requestCRS to Fcrs-ss

wait for a response crsss store it
send requestCRSCom to Fcrs-com

wait for a response crsCom store it
generate (dk , ek)← Setupenc(1

η)
send (Register, ek) to Fpki-enc

generate (sk , vk)← Setupsig(1
η)

store vk

Upon (Sign,m, vk ′) for Useri from Z
choose (u, v, u′, ρ)← {0, 1}n
let (PK,SK)← Proveuni(key, crsuni ; ρ)
compute U ← Com(crs,m||H(PK)||v;u)
compute E ← Enc(ek ,m||PK||v||SK||u;u′)
let xss ← U ||E||ek ||crsCom ||crsuni
let wss ← m||v||u||u′||ρ
compute πss ← Prove(crs, xss, wss)
send (Sign, πss) to Bank

Upon (Signed, B, (User, i)) for Useri from A
compute b← Versig(vk , U,B)
if b = 1 then

compute C ← Enc(ek , U ||B; v)
set x← C||ek ||crsCom ||vk ||H(PK)||m
set w ← u||v||B
let π ← Proveuni(prove, crs, x, w, SK)
output S ← C||PK||π to Z

Fig. 8: The protocol for blind signatures for Useri

restate the exact notions used in [44]: A signature scheme is length-invariant
if all its verification keys vk and signatures have the same length s(η) where η
is the security parameter. A commitment scheme that commits on strings of
length η using η bits of randomness is length-invariant if all commitments are of
length c(η). Finally, we say that an encryption scheme is length-invariant if all
its encryption keys ek as well as ciphertexts (for plaintexts of length c(η) + s(η))
have the length e(η).

Moreover, we assume that the commitment scheme has unique openings, .i.e.,
there do not exists (z, r) 6= (z′, r′) with Com(crsCom , z; r) = Com(crsCom , z

′; r′)
with overwhelming probability.

Construction 2 Let (Setupbs , Sig
′
bs ,Versig-bs) be the following a signature scheme,

where Versig-bs is defined as in Construction 1.

36

Setupbs(1η): Let crs ← Setupzk-uni(1η), crsss ← Setupzk-ss(1η), crsCom ←
Setupcom(1η), (dk , ek) ← Setupenc(1η), and (sk , vk) ← Setupsig(1η). Let
skBS ← (crs, crsss , crsCom , dk , sk) and vkBS ← (crs, crsss , crsCom , ek , vk).
Output (skBS , vkBS).

Sig′bs(skBS ,m): Run the user and the signer protocol from Construction 1 and
output the output of the user.

From Theorem 2 in the work of Fischlin [44] it immediately follows that the
Construction 2 is strongly existentially unforgeable.8

Theorem 3 ([44]). Suppose that the signature scheme (Setupsig , Sig,Versig) is
length-invariant, unforgeable against adaptive chosen-message attacks, and that
Sig is deterministic. Further suppose that the encryption scheme (Setupenc ,Enc,Dec)
is length-invariant and IND-CPA secure. Additionally, let (Setupcom ,Com) be
a length-invariant non-interactive commitment scheme in the common refer-
ence string model, which is statistically binding and computationally hiding and
has unique openings. Also let H be a collision-intractable hash function family
and (Setupzk-uni,Proveuni,Verzk-uni) be a single-theorem unique non-interactive
zero-knowledge proof system for RBS with deterministic verifier Verzk-uni. Let
(Setupzk-ss,Provess,Verzk-ss) be a (regular) non-interactive zero-knowledge proof
system for Rss.

Construction 2 is an strongly existentially unforgeable signature scheme.

A.1 UC Realization Proof for Blind Signatures

Theorem 4. Suppose that the signature scheme (Setupsig , Sig,Versig) is length-
invariant, unforgeable against adaptive chosen-message attacks, and that Sig is
deterministic. Further suppose that the encryption scheme (Setupenc ,Enc,Dec)
is length-invariant and IND-CPA secure. Additionally, let (Setupcom ,Com) be
a length-invariant non-interactive commitment scheme in the common refer-
ence string model, which is statistically binding and computationally hiding and
has unique openings. Also let H be a collision-intractable hash function family
and (Setupzk-uni,Proveuni,Verzk-uni) be a single-theorem unique non-interactive
zero-knowledge proof system for RBS with deterministic verifier Verzk-uni. Let
(Setupzk-ss,Provess,Verzk-ss) be a (regular) non-interactive zero-knowledge proof
system for Rss.

Then Construction 1 realizes the ideal functionality in Figure 4 in the Fpki-sig,
Fpki-enc, Fcrs, Fcrs-ss, Fcrs-com hybrid model.

8 Fischlin showed the result for a variant of the construction in which Z and πss
are not send in the first round. However, these two messages are not used in the
final output; hence his result immediately carries over to Construction 2. Moreover,
Fischlin formulated unforgeability for blind signatures, i.e., for interactive protocols.
An attacker against the strong existential unforgeability game can be used to break
the unforgeability of the underlying blind signature scheme by simulating the signing
oracle by computing the protocol of Useri.

37

Proof. The proof follows along the lines of the work of Fischlin [44]. We refer
the interested reader to [44, Theorem 4] for an extended exposition. We only
present a proof outline and elaborate on the parts of the proof that differ from [44,
Theorem 4].

We have to show that for each attacker A attacking the real-world protocol
from Construction 1 there exists a simulator S against the ideal-functionality
such that for all environments Z.

We describe a sequence of games indistinguishable that is indistinguishable
for all ppt environments Z. Let game 0 be the ideal setting in which the ideal
functionality communicates with the simulator S.

In game 1, the simulator S1 computes the setup functionalities Fpki-sig,
Fpki-enc, Fcrs, Fcrs-ss, and Fcrs-com. As S1 honestly computes the setup func-
tionalities, game 0 and game 1 are perfectly indistinguishable.

In game 2, all ZK proofs of honest parties are simulated (for both ZK proof
schemes). By the zero-knowledge property game 2 is indistinguishable from game
1.

In game 3, all encryption operations are replaced by encryptions of the
constant 0 string. By the IND-CPA security of the encryption scheme, game 3 is
indistinguishable from game 2.

In game 4, all commitment operations are replaced by commitments of the
constant 0 string. By the hiding property of the commitment scheme, game 4 is
indistinguishable from game 3.

In game 5, the simulator S5 instead of the protocol computes all cryptographic
operations because the real messages are not needed anymore. Moreover, in game
5 the ideal functionality replaced the (by now modified) protocol. Game 5
is perfectly indistinguishable from game 4 because the simulator receives all
information that it needs to simulate game 4.

Hence, there is a simulator such that game 5 and game 0 are computationally
indistinguishable.

References

1. Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication.
In: POPL’01, pp. 104–115. ACM (2001)

2. Abadi, M., Baudet, M., Warinschi, B.: Guessing Attacks and the Computational
Soundness of Static Equivalence. In: FOSSACS’06, pp. 398–412. Springer (2006)

3. Backes, M., Hofheinz, D., Unruh, D.: CoSP: A General Framework for Computa-
tional Soundness Proofs. In: CCS’09, pp. 66–78. ACM (2009)

4. Backes, M., Laud, P.: Computationally Sound Secrecy Proofs by Mechanized Flow
Analysis. In: CCS, pp. 370–379. ACM (2006)

5. Backes, M., Maffei, M., Mohammadi, E.: Computationally Sound Abstraction and
Verification of Secure Multi-Party Computations. In: FSTTCS’10, pp. 352–363.
Schloss Dagstuhl (2010)

6. Backes, M., Maffei, M., Unruh, D.: Computationally Sound Verification of Source
Code. In: CCS, pp. 387–398. ACM (2010)

7. Backes, M., Mohammadi, E., Ruffing, T.: Computational Soundness Results for
ProVerif. In: POST’14, pp. 42–62. Springer (2014)

38

8. Backes, M., Mohammadi, E., Ruffing, T.: ProVerif code of the case study. url:
https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_
untraceable_payments.zip

9. Backes, M., Pfitzmann, B., Waidner, M.: A Composable Cryptographic Library with
Nested Operations (Extended Abstract). In: CCS’03, pp. 220–230. ACM (2003)

10. Backes, M., Pfitzmann, B., Waidner, M.: The Reactive Simulatability (RSIM)
Framework for Asynchronous Systems. Inf. Comput. 205(12), 1685–1720 (2007)

11. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous Transferable
E-cash. In: PKC’15, pp. 101–124. Springer (2015)

12. Bana, G., Comon-Lundh, H.: A Computationally Complete Symbolic Attacker for
Equivalence Properties. In: CCS’14, pp. 609–620 (2014)

13. Bana, G., Comon-Lundh, H.: Towards Unconditional Soundness: Computationally
Complete Symbolic Attacker. In: POST’12, pp. 189–208. Springer (2012)

14. Baudet, M., Cortier, V., Kremer, S.: Computationally Sound Implementations
of Equational Theories Against Passive Adversaries. In: ICALP’05, pp. 652–663.
Springer (2005)

15. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: Decentralized Anonymous Payments from Bitcoin. In: S&P’14, pp. 459–
474. IEEE (2014)

16. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equiva-
lences for Security Protocols. In: LICS’05, pp. 331–340 (2005)

17. Böhl, F., Cortier, V., Warinschi, B.: Deduction Soundness: Prove One, Get Five for
Free. In: CCS’13, pp. 1261–1272. ACM (2013)

18. Böhl, F., Unruh, D.: Symbolic Universal Composability. In: CSF’13, pp. 257–271.
IEEE (2013)

19. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record Communication, or, Why Not
to Use PGP. In: pp. 77–84. ACM (2004)

20. Camenisch, J., Krenn, S., Shoup, V.: A Framework for Practical Universally Com-
posable Zero-Knowledge Protocols. In: ASIACRYPT’11, pp. 449–467. Springer
(2011)

21. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Full and revised version of FOCS’01 paper. IACR Cryptology ePrint
Archive: 2000/067/20130717:020004 (2013)

22. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: CRYPTO’01,
pp. 19–40. Springer (2001)

23. Canetti, R., Gajek, S.: Universally Composable Symbolic Analysis of Diffie-Hellman
based Key Exchange. IACR Cryptology ePrint Archive: 2010/303 (2010)

24. Canetti, R., Herzog, J.: Universally Composable Symbolic Security Analysis. J. of
Crypt. 24(1), 83–147 (2011)

25. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: CRYPTO’02, pp. 143–161. Springer (2002)

26. Canetti, R., Kushilevitz, E., Lindell, Y.: On the Limitations of Universally Com-
posable Two-Party Computation without Set-up Assumptions. J. of Crypt. 19(2),
68–86 (2003)

27. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-party
and Multi-party Secure Computation. In: STOC’02, pp. 494–503. ACM (2002)

28. Chandran, N., Goyal, V., Sahai, A.: New Constructions for UC Secure Computation
Using Tamper-Proof Hardware. In: EUROCRYPT’08, pp. 545–562. Springer (2008)

29. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO’82, pp. 199–
203. Plenum Press (1982)

39

https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_untraceable_payments.zip
https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_untraceable_payments.zip
http://eprint.iacr.org/2000/067/20130717:020004
http://eprint.iacr.org/2010/303

30. Cheval, V.: APTE: An Algorithm for Proving Trace Equivalence. In: TACAS’14,
pp. 587–592. Springer (2014)

31. Comon-Lundh, H., Cortier, V.: Computational Soundness of Observational Equiva-
lence. In: CCS’08, pp. 109–118. ACM (2008)

32. Comon-Lundh, H., Cortier, V., Scerri, G.: Security Proof with Dishonest Keys. In:
POST, pp. 149–168. Springer (2012)

33. Comon-Lundh, H., Hagiya, M., Kawamoto, Y., Sakurada, H.: Computational Sound-
ness of Indistinguishability Properties Without Computable Parsing. In: ISPEC’12,
pp. 63–79. Springer (2012)

34. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally Sound Symbolic
Secrecy in the Presence of Hash Functions. In: FSTTCS’06, pp. 176–187. Springer
(2006)

35. Cortier, V., Warinschi, B.: A Composable Computational Soundness Notion. In:
CCS’11, pp. 63–74. ACM (2011)

36. Dahl, M., Damgård, I.: Universally Composable Symbolic Analysis for Two-Party
Protocols Based on Homomorphic Encryption. In: EUROCRYPT’14, pp. 695–712.
Springer (2014)

37. Delaune, S., Kremer, S., Pereira, O.: Simulation Based Security in the Applied Pi
Calculus. In: FSTTCS’09, pp. 169–180. Schloss Dagstuhl (2009)

38. Delaune, S., Kremer, S., Ryan, M.: Verifying Privacy-Type Properties of Electronic
Voting Protocols. J. Comput. Secur. 17(4), 435–487 (2009)

39. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal Analysis of Protocols Based
on TPM State Registers. In: CSF, pp. 66–80. IEEE (2011)

40. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated
Key Exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

41. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

42. Dougherty, D.J., Guttman, J.D.: Symbolic Protocol Analysis for Diffie-Hellman. In:
TGC’13, Springer (2013)

43. Even, S., Goldreich, O.: On the Security of Multi-Party Ping-Pong Protocols. In:
FOCS’83, pp. 34–39. IEEE (1983)

44. Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Refer-
ence String Model. In: CRYPTO’06, Springer (2006)

45. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular Code-based Cryptographic
Verification. In: CCS’11, pp. 341–350. ACM (2011)

46. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comp. 18(1), 186–207 (1989)

47. Hofheinz, D., Shoup, V.: GNUC: A New Universal Composability Framework. IACR
Cryptology ePrint Archive: 2011/303 (2011)

48. Hofheinz, D., Shoup, V.: GNUC: A New Universal Composability Framework. J. of
Crypt. 28(3), 423–508 (2013)

49. Kremer, S., Mazaré, L.: Adaptive Soundness of Static Equivalence. In: ESORICS’07,
pp. 610–625. Springer (2007)

50. Küsters, R., Scapin, E., Truderung, T., Graf, J.: Extending and Applying a Frame-
work for the Cryptographic Verification of Java Programs. In: POST’14, pp. 220–239.
Springer (2014)

51. Küsters, R., Truderung, T., Graf, J.: A Framework for the Cryptographic Verification
of Java-like Programs. In: CSF’12, pp. 198–212. IEEE (2012)

52. Küsters, R., Tuengerthal, M.: The IITM Model: a Simple and Expressive Model for
Universal Composability. IACR Cryptology ePrint Archive: 2013/025 (2013)

40

http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2013/025

53. Meier, S., Schmidt, B., Cremers, C., Basin, D.A.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: CAV’13, pp. 696–701. Springer (2013)

54. Micciancio, D., Warinschi, B.: Soundness of Formal Encryption in the Presence of
Active Adversaries. In: TCC’04, pp. 133–151. Springer (2004)

55. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically
Sound Theorem Proving. In: CSFW’06, pp. 153–166. IEEE (2006)

56. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying Higher-
order Programs with the Dijkstra Monad. In: PLDI’13, pp. 387–398. ACM (2013)

57. Unruh, D.: Termination-Insensitive Computational Indistinguishability (and Appli-
cations to Computational Soundness). In: CSF’11, pp. 251–265. IEEE (2011)

41

	 Computational Soundness for Interactive Primitives
	Introduction
	Overview of the Paper
	High-Level Overview
	Technical Overview
	Ideal Computational Execution
	Real Computational Execution
	Computational Soundness for Interactive Primitives

	Related Work
	Review of the CoSP Framework for Equivalence
	Symbolic Indistinguishability
	Computational Indistinguishability

	Review of the UC Framework
	Ideal Functionalities in the Symbolic Model
	Conditions for the Underlying Model
	Formalizing Ideal Functionalities
	Ideal Functionalities in the Symbolic Model

	Ideal Functionalities in the Computational Model
	Real Protocols in CoSP
	Computational Soundness for Interactive Primitives
	Protocol Conditions
	Interfacing CoSP and UC
	Conditions for the Interactive Primitives
	Main Result

	Case Study: Untraceable Payments
	Ideal Blind Signatures
	Computational Soundness of Signatures and Blind Signatures
	Verifying Untraceability in ProVerif
	Soundness of the Verification

	Conclusion
	Blind Signatures
	UC Realization Proof for Blind Signatures

