
Integrating User Preferences and Decomposition

Methods for Many-objective Optimization

Asad Mohammadi∗, Mohammad Nabi Omidvar∗, Xiaodong Li∗ and Kalyanmoy Deb†

∗ School of Computer Science and IT

RMIT University, Melbourne, Australia

Emails: {asad.mohammadi, mohammad.omidvar, xiaodong.li@}rmit.edu.au
† Computational Optimization and Innovation Laboratory (COIN)

Michigan State University, Michigan, USA

Email: kdeb@egr.msu.edu)

Abstract—Evolutionary algorithms that rely on dominance
ranking often suffer from a low selection pressure problem when
dealing with many-objective problems. Decomposition and user-
preference based methods can help to alleviate this problem to a
great extent. In this paper, a user-preference based evolutionary
multi-objective algorithm is proposed that uses decomposition
methods for solving many-objective problems. Decomposition
techniques that are widely used in multi-objective evolutionary
optimization require a set of evenly distributed weight vectors
to generate a diverse set of solutions on the Pareto-optimal
front. The newly proposed algorithm, R-MEAD2, improves the
scalability of its previous version, R-MEAD, which uses a simplex-
lattice design method for generating weight vectors. This makes
the population size is dependent on the dimension size of the
objective space. R-MEAD2 uses a uniform random number
generator to remove the coupling between dimension and the
population size. This paper shows that a uniform random number
generator is simple and able to generate evenly distributed points
in a high dimensional space. Our comparative study shows that
R-MEAD2 outperforms the dominance-based method R-NSGA-II
on many-objective problems.

I. INTRODUCTION

Evolutionary multi-objective optimization (EMO) algo-
rithms have been successfully applied to many real-world
problems in the past decade [1]. It has been shown that
evolutionary multi-objective approaches can find evenly dis-
tributed and well-converged solutions on two or three objective
problems [2]. However, when dealing with many-objective
optimization problems which involve four or more objectives,
the performance of EMO algorithms degrade rapidly [3], [4].
Hence, there is a need for developing EMO methods that can
efficiently solve many-objective problems.

A number of challenges exist in solving many-objective
optimization problems [3], [5]. Firstly, in a high dimensional
objective space, even in the initial random population most
of the solutions are non-dominated to each other. Thus, there
would not be an adequate selection pressure making the
search process very slow or even completely stagnant when
a dominance-based algorithm is used. Secondly, generating
solutions to approximate the entire Pareto front becomes
computationally expensive [3], [4], [6]. Thirdly, it is difficult
to visualize the Pareto-optimal front in large dimensions,
which makes it difficult for the decision makers to select
their preferred solutions. Adopting a user-preference based

approach can mostly alleviate the second problem. In a user-
preference based approach the aim is to find a set of solutions
on a smaller region of the Pareto-optimal front which is
preferred by the decision maker. This technique requires less
computational resources by performing a more focused and
guided search rather than approximating the entire Pareto-
optimal front. This is of practical value when dealing with
many-objective problems. One popular type of user-preference
based EMO algorithm is the a priori method, which allows a
decision maker to provide the preference information (e.g. a
reference point) at the beginning of the search. Reference point
based [7], [8], reference direction based [9], and light beam
based [10] EMO approaches are a few attempts in this area.

Another approach for better handling many-objective op-
timization problems is using decomposition-based methods.
They convert a multi-objective problem into a set of single-
objective problems. This feature makes them less sensitive
to the selection pressure issue which is the prime source of
the degrading performance of dominance-based approaches
in dealing with many-objective problems. In other words,
in dominance-based algorithms individuals (with many ob-
jectives) become non-dominated to each other, hence the
selection pressure diminishes rapidly, making the population
difficult move towards the Pareto-optimal front [11]. Various
techniques for decomposing a multi-objective problem have
been developed, including boundary intersection [12], [13],
Tchebycheff and weighted-sum [14]. Some popular evolution-
ary EMO algorithms that employ such decomposition methods
are MOGLS [15], and MOEA/D [16].

As explained before, utilizing user preference informa-
tion and a decomposition-based approach can improve the
efficiency of an EMO algorithm in solving many-objective
problems. Also motivated by the fact that in most real-
world situations users are not usually interested in find-
ing the entire Pareto-optimal front and the availability of
some form of preference information makes preference-based
EMO approaches more applicable in real-world settings.
This makes a decomposition-based algorithm that takes into
account the preference information a promising approach
for tackling many-objective problems. R-MEAD [17] is the
first attempt in incorporating the user-preference information
into a decomposition-based EMO algorithm. R-MEAD uses
weighted-sum and Tchebycheff as decomposition methods
and a priori approach to search for preferred regions. How-

421

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

ever, it has only been applied to two and three-objective
problems [17]. The main difficulty in applying R-MEAD to
many-objective optimization lies in initializing a set of weight
vectors. As it inherited the simplex-lattice design method from
MOEA/D, the number of sample points is governed by the
dimensionality of the problem. In this paper, we aim to develop
an algorithm called R-MEAD2 which resolves this issue of
R-MEAD. In short, R-MEAD2 extends the R-MEAD in the
following aspects:

1) A new method for initializing the weight vector is
used which makes R-MEAD2 scalable and applicable
to many-objective optimization problems. This method
decouples the population size from the number of
objectives.

2) A uniform random number generator (ie., RNG) is used
which simplifies the update mechanism of weight vector
and make it more efficient.

3) The performance of R-MEAD2 is compared with the-
state-of-the-art R-NSGA-II [7].

Recently, an algorithm called UMOEA/D [18] is proposed
which detaches the population size from the number of objec-
tives. It replaces the simplex-lattice design with the good lattice
point (GLP) [19]. This study shows that UMOEA/D generates
more uniformly distributed solutions than MOEA/D using the
simplex-lattice design. In Section IV-A we will show that when
the number of objectives goes beyond eight a simple uni-
form random number generator(RNG), which is a commonly
used technique in various programming languages, produces
more uniformly distributed solutions than GLP according to a
measure called centered L2-discrepancy [20]. In case of less
than eight objectives RNG and GLP have similar performance
in most cases. R-MEAD2 replaces the simplex-lattice design
with a uniform random number generator (RNG). Employing
RNG is not only simpler and more efficient than GLP, but also
generates more uniformly distributed solutions when dealing
with problems with more than eight objectives. Another im-
provement of R-MEAD2 over R-MEAD is related to updating
weight vectors. In R-MEAD once the weight vectors are
initialized their relative distances to each other stay the same.
This is because a single descent direction vector is applied to
all weight vectors which is calculated based on the location
of the best and worst weight vectors. In R-MEAD2 a simple
hill climber is used to generate mutants based on a uniform
distribution to maintain the uniformity of the weight vectors.
In each iteration, a set of new weight vectors are generated
based on a uniform distribution within a certain region around
the best weight vector that is found so far and the process is
repeated until the weights converge to a solution. Finally, R-
MEAD2 with two well-known decomposition methods namely
PBI and Tchebycheff are compared with R-NSGA-II [7] to
show the advantage of decomposition-based approaches over
dominance based approaches.

The remainder of this paper is organized as follows.
Section II introduces some preliminaries and a brief survey of
previous studies is given. The proposed algorithm is described
in section III. Section IV contains the experimental results and
comparison between R-NSGA-II and R-MEAD2. The paper is

concluded in Section V.

II. PRELIMINARIES AND RELATED WORKS

A. Basic Definitions

A minimization multi-objective optimization problem with
m objectives is defined as:

minimize F(x) = (f1(x), . . . , fm(x)) , (1)

where F(x) ∈ R
m is the objective vector and fi(x) is the ith

objective function. Each decision vector x ∈ R
n is defined

as (x1, . . . , xn) where n is the number of dimensions in
decision space. A multi-objective problem with more than
three objectives is commonly referred to as a many-objective
problem.

Dominance concept can be introduced to multi-objective
optimization for relative comparison of two solutions. In a
minimization problem x1 dominates x2 which is shown as
x1 ≺ x2 if:

∀i∃j (fi(x1) ≤ fi(x2) ∧ fj(x1) < fj(x2)) ,

where i, j ∈ {1, . . . ,m}. Pareto-optimal set (PS) is a set of
non-dominated solutions (decision space) which dominate the
other solutions. When PS is plotted in objective space the
non-dominated vectors are collectively known as the Pareto-
optimal front (PF).

B. Decomposition Approaches

There are several techniques to convert a multi-objective
problem to a set of single-objective problems. Here, we discuss
two most widely used approaches Tchebycheff (Te) [14], and
penalty-based boundary intersection (PBI) [16].

1) Tchebycheff Approach: Tchebycheff method is formu-
lated as follows:

minimize (gtch(x,w, z⋆) = max{wi|fi(x)− z⋆i |}), (2)

where z⋆ ∈ R
m and is the ideal point, and w = (w1, . . . , wm)

is a weigh vector, which is positive. For each Pareto optimal
point x⋆, there is at least a weight vector w such that x⋆

is optimal solution of equation (2). The effect of the weight
vector is depicted in Figure 1.

Pareto−optimal Front

Search Direction

A Sub−optimal Solution

f1

f2

w

Fig. 1. Illustration of the Tchebycheff method.

422

Pareto−optimal Front

Search Direction

f2

f1

d 1

d
2

F(x)

z⋆

w

p

L

Fig. 2. Illustration of the PBI method.

2) Penalty-Based Boundary Intersection Approach (PBI):
This decomposition method is an improved version of normal
boundary intersection (NBI) [12]. Unlike NBI that can only
handle equality constraints, PBI [16] can handle both equality
and inequality constraints. PBI is formulated as follows:

minimize gpbi(x,w, z⋆) = d1 + θd2, (3)

where d1 =
∥∥(F(x)− z⋆)Tw)

∥∥ / ‖w‖

and d2 = ‖F(x)− (z⋆ + d1w)‖ .

As shown in Figure 2, L is a line passing through z⋆ with
the direction of w and p is the projection of F(x) on L. The
penalty parameter θ forces F(x) to be as close as possible to
L (penalizing d2). In this paper, the value of θ is set to 5 as
suggested in [16].

C. User-preference Based EMO Algorithms

This section gives a brief survey of user-preference based
EMO algorithms.

Guided multi-objective evolutionary algorithm (G-
MOEA) [21], proposed by Branke et al., allows the user to
specify the linear trade-off between objectives. For example,
in a two objective problem the decision maker has to specify
how many units of the first objectives he/she is willing
to trade for one unit of the second objective. G-MOEA
then uses these trade-off information to guide the search
towards the more desired regions of the Pareto-optimal front.
Although G-MOEA is more flexible and intuitive than other
approaches, it is not always an easy task for the decision
maker to specify the trade-off between objectives, especially
for many-objective problems. Deb [22] applied bias sharing
technique on NSGA [23] where the biased Pareto-optimal
solutions are generated on a desired region by changing the
weights. An objective with a higher priority takes a higher
weight value. The main disadvantage of this technique is that
it cannot find solutions on a compromise region where all
objectives are of similar importance to the decision maker.
In another study, Branke and Deb [24] improved the idea of
biased sharing and compared its performance with G-MOEA.
They proposed biased crowding distance in NSGA-II which

has more flexibility than biased sharing in terms of finding
solutions inside the region of interest.

Deb et al. [7] proposed a method that integrated use-
preference information into NSGA-II [25]. The new method
which was called R-NSGA-II requires the decision maker to
provide one or more reference points at the beginning of the
search process. In R-NSGA-II a modified version of crowding
distance operator [25] preference distance was used to favor
the solutions which are closer to the reference point(s). To
compute the preference distance, the Euclidean distances of
all solutions to the reference point(s) are calculated and the
solutions with lower distance are ranked higher. To maintain
the diversity of solutions in the desired regions an extra
parameter ǫ was introduced.

Wickramasinghe and Li [26] integrated reference point
and light beam with particle swarm optimization (PSO). The
new approach, which is based on a distance metric, changes
the position of particles based on the user supplied informa-
tion to find the preferred regions. This distance-metric based
method was compared with another user-preference based
EMO (NSPSO) [27] which uses dominance-based comparison
and it was shown that the distance metric approach performed
better than NSPSO.

The above approaches use reference points as preference
information. However, the preference information can also be
obtained in terms of reference direction and light beam. Deb
and Abhishek [9] applied reference direction on NSGA-II.
In this new approach, RD-NSGA-II, user provided one or
more reference directions. The procedure finds a set of Pareto-
optimal solutions corresponding to the reference directions. In
another study, Deb and Kumar [10] applied light beam search
on NSGA-II. Decision maker provides aspiration, reservation
and preference threshold for each objective. To control the
density of solutions the parameter ǫ is used.

Most of the algorithms discussed so far are dominance-
based and are not suitable for many-objective optimization. In
this paper, we propose a scalable decomposition-based user-
preference algorithm and we compare its performance with
R-NSGA-II which is the state-of-the-art user-preference based
EMO algorithm.

III. PROPOSED APPROACH

This section describes the R-MEAD2 algorithm which is
a reference point based evolutionary algorithm that uses de-
composition methods for solving many-objective optimization
problems.

The population size of algorithms such as MOEA/D and
R-MEAD that rely on a simplex-lattice design grows dramati-
cally as the number of objectives increases. More precisely,
the weight values w1, w2, . . . , wm are chosen from the set

{ 0

H
, 1

H
,...,H

H } where H is a parameter chosen by the user.
Therefore, the number of these vectors and consequently
the population size is calculated by the following formula:

(H+m−1

m−1). Table I shows how the population size grows with
number of objectives when the simplex-lattice design is used
to generate the weight vectors. As it can be seen, most of
these population sizes are not commonly used in evolutionary
algorithms.

423

Best
Weight

Best
Weight

Preferred

Region

Reference Point

Pareto−optimal Front

Weight Vectors

Newly Generated

Pareto−optimal Front

Reference Point

Preferred

Region

f1

f2

w1

w1

w2

wb

wb w2

f2

f1

wb

⋆

⋆

⋆

Iteration t Iteration t+ 1

rr

Fig. 3. Illustration how weight vectors are updated in RMEAD-2

To remove the coupling between the population size
and the number of objectives, UMOEA/D [18] replaced the
simplex-lattice design with the good lattice point (GLP) in
MOEA/D [16] for generating the weight vectors. However, as
shown in Section IV-A, GLP does not necessarily have a better
uniformity as compared to a uniform random number generator
(RNG) when the number of objectives grows beyond eight.
Additionally, using RNG for generating the weight vectors
also removes the coupling between the population size and the
number of objectives. This allows the user to pick any suitable
population size irrespective of the number of objectives.

A. The R-MEAD2 Algorithm

In the proposed decomposition-based user-preference ap-
proach in order to guide the solutions towards the desired
region, the weight vectors should be dynamically updated so
that the solutions can converge in the direction of the reference
point, and ideally on the Pareto-optimal front. To achieve this
effect each solution is assigned to a weight vector which is
updated during the course of optimization.

Figure 3 shows how the weights are updated during the
optimization. On the left the black squares denote the solutions
at some iteration t. The gray squares represent the solutions
after running an iteration of the evolutionary optimizer. The
arrows show the update direction which is determined by the
weight vectors associated with each individual. At this stage
the weight vector associated with the closest solution to the
reference point is marked as the best weight vector (wb).
Once the best weight vector is identified, a set of new weight
vectors is generated using RNG within a region centered
around the best weight vector. This forms a hypercube in an m
dimensional space and the size of the region is determined by
parameter r which is the edge size of hypercube. The weight

TABLE I. POP-SIZE FOR R-MEAD FOR DIFFERENT OBJECTIVES

(H = 10).

Objs (m) 4 5 6 7 8 9 10

Pop-size 286 1001 3003 8008 19448 43758 92378

vectors w1 and w2 are generated with a uniform distribution
around wb as shown in the box at the center of Figure 3.
Next, these weights are assigned back to the solutions that
were obtained in the last iteration. Finally, the solutions are
optimized with the newly assigned weights. This process is
shown on the right-hand side of Figure 3. As it can be seen,
the new solutions marked by ‘⋆’ gradually converge within a
confined region in the direction of the reference point.

Algorithm 1 shows the details of the proposed method. The
main steps are outlined below:

Step 1 - Initialization: The initial population is cre-
ated, and the weight vectors are initialized using rng and
init_weights functions respectively (lines 1-2). The initial
weight vectors are generated using RNG over the entire space
of weight vectors in order to increase the probability of finding
a good initial weight vector. Also the weights are normalized
so that the components of a weight vector add up to one.

Step 2 - Main Evolutionary Cycle: The population is
evolved and the weight vectors are updated until a stopping
criterion is met (lines 3-10).

Step 2.1 - Evolving the Population: The population is
evolved to find better solutions. The evolve function first
uses a decomposition method as specified by the dm variable
to convert the multi-objective problem F(x) to a set of single-
objective problems similar to MOEA/D [16]. Then, it applies
several genetic operations in order to evolve the population
(lines 4). Finally, the new population is evaluated using the
original objective function F(x) to find a set of solutions (PF)
in the objective space (line 5).

Step 2.2 - Updating weights: In order to update the
weight vectors, the best weight vector which is associated
to the solution with the shortest Euclidean distance to the
reference point, has to be found. The euclid_dist function
calculates the distance of all solutions to the reference point
R. Then the min_ind function finds the index of the closest
solution to the reference point which matches the index of the
best weight vector. The closest solution helps the convergence
of solutions in the direction of reference points. Finally, the

424

Algorithm 1: R-MEAD2

Inputs:
popsize : the initial population size.

r : determines the size of the preferred region.

m : number of objectives.

n : number of decision variables.

dm : the decomposition method (Tchebycheff or PBI).

R : the reference point.

F(x) : the objective function.

Variables:
P : population of individuals (popsize × n).

W : matrix of weight vectors (popsize×m).

PF : solution set (popsize×m).

1. P← rng(lbounds, ubounds, popsize , n)

2. W ← init_weights(popsize, m)

3. while stop criteria not met do

4. P← evolve(P, F(x), W, dm)

5. PF← evaluate(P, F(x))
6. d← euclid_dist(PF, R)

7. best← min_ind(d)

8. wb ←W[best, :]
9. W ← uniform(popsize, r, wb)

10. end while

uniform function uses RNG to generate a set of uniform
weight vectors around the best weight vector wb (lines 7-9).
The process repeats from Step 2.1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section includes three main experimental settings.
Firstly, the uniformity of GLP and RNG is compared to
measure which method is more suitable for many-objective
problems. Secondly, the convergence behavior of weight vec-
tors on different reference points are analyzed. Finally, based
on the parameter setting in section IV-B the performance of
R-MEAD2 using Tchebycheff and PBI on DTLZ1-DTLZ6
benchmark problems is compared with R-NSGA-II. All al-
gorithms are tested on problems with 4 to 10 objectives.

A. RNG vs GLP

In order to compare the performance RNG and GLP, we
use a discrepancy measure called centered L2-discrepancy
(CD2) [20]. Since we are interested in the uniformity of
sample points, a lower value of CD2 implies better uniformity.
Let P be a n×m matrix of sample points where the sample
point xi = (xi1, . . . , xim) is the ith row vector in matrix
P, and m is the dimensionality of the sample points that,
in this context, matches the number of objectives. Centered
L2-discrepancy [20] is defined as follows:

CD2(P) =

(
13

12

)m

−

2

n

n∑
k=1

m∏
j=1

(
1 +

1

2
|xkj −

1

2
| −

1

2
|xkj −

1

2
|2

)
+

1

n2

n∑
k=1

n∑
j=1

m∏
i=1

[
1 +

1

2
|xki −

1

2
|+

1

2
|xji −

1

2
|+

1

2
|xki − xji|

]
,

Table II contains CD2 values for RNG and GLP using
different sample sizes and dimensions (number of objectives
m). As it can be seen, in case of all population sizes (50-
5000) when the number of objectives grows beyond eight,

RNG is consistently better than GLP. For typical population
sizes such as 100, 250, and 500 which are commonly used
for solving many-objective problems, RNG is better when the
number of objectives is more than seven. Table II shows that in
case of lower number of objectives (less than eight) when the
population size is relatively small, then GLP can be beneficial.
GLP can be useful when solving problems with expensive
objective function evaluation where a small population size
is more practical. It is easy to see that when a small number
of sample points are allowed, then a more systematic approach
such as GLP might be advantageous. However, when the
number of sample points grow, GLP and RNG may perform
similarly. This behavior can be observed in Table II when the
sample size is 1000 and 5000. It is clear that in majority of
cases, both RNG and GLP have similar CD2 values.

B. Parameter Settings and Performance Metrics

We used the population size of 200 for 4-7 objective
problems, 300 for 8-objectives and 350 for 9 and 10-objective
problems. A single reference point is used for all test problems
(fi = 0.25, i ∈ {1, . . . ,m}). In R-MEAD2-Te and R-MEAD2-
PBI the parameter r which determines the size of the preferred
region is set to 2, and in R-NSGA-II the parameter ǫ is set to
0.002.

In order to compare the performance of R-MEAD2-PBI,
R-MEAD2-Te and R-NSGA-II we have adopted inverted gen-
erational distance (IGD) [28] that measures both convergence
and diversity of solutions. The calculation of IGD is based
on the average closest distances between sample points on the
Pareto-optimal front and the obtained solutions. We used 10m

sample points for four, five, six and seven objective problems
and 5m for eight, nine and ten objective problems, where m
is the number of objectives. It should be noted that because
of memory limitations, fewer number of samples points were
generated to approximate the Pareto-optimal front for problems
with more than seven objectives. IGD is calculated as follows:

IGD(P ∗, Q) =

∑
v∈P∗ d(v,Q)

|P ∗|
. (4)

where Q is the set of obtained solutions and P ∗ is the set
of sample points on the Pareto-optimal front, and function
d(v,Q) returns the Euclidean distance between a point v and
the closest point to it in a set Q. Since all algorithms used
in this study are user-preference based, we only consider the
solutions that fall within a desired region. The desired region
is a hypersphere with radius ρ around the sample point on the
Pareto-optimal front which is closest to the reference point.
For all experiments in this study the parameter ρ is set to 2.

C. Weight Vector Convergence

Figure 4 shows the convergence behavior of weight vectors
for both PBI and Tchebycheff on DTLZ1 using two different
reference points. As it can be seen the weight values fluctuate
at the beginning of the search, but they gradually stabilize and
converge to a fixed value towards the end of a run. Depending
on the position of a reference point, weight vectors converge to
different values. For example, when R = (0.25, 0.25) which
is near the center of the Pareto-optimal front, both weight
values converge to a value close to 0.5. However, when the
reference point is biased towards a particular objective (e.g.

425

TABLE II. THE AVERAGE CD2 VALUE OF 25 INDEPENDENT RUNS FOR TWO INITIALIZATION METHODS: A UNIFORM RANDOM NUMBER

GENERATOR(RNG), AND GOOD LATTICE POINT (GLP) FOR DIFFERENT OBJECTIVES. THOSE LEAD TO STATISTICALLY SIGNIFICANTLY LOWER CD2 VALUE

(AT SIGNIFICANT LEVEL OF 5% ACCORDING TO MANN-WHITNEY-WILCOXON (MWW) TEST) OVER OTHERS ARE HIGHLIGHTED IN BOLD

Objectives
Sample Sizes

50 100 250 500 1000 5000
RNG GLP RNG GLP RNG GLP RNG GLP RNG GLP RNG GLP

4 2.74 2.71 2.73 2.73 2.75 2.74 2.75 2.75 2.75 2.75 2.75 2.75
5 2.99 2.94 2.97 2.96 2.98 2.97 2.98 2.98 2.98 2.98 2.98 2.98
6 3.21 3.19 3.23 3.22 3.24 3.22 3.23 3.23 3.22 3.23 3.23 3.22
7 3.48 3.47 3.51 3.50 3.50 3.49 3.49 3.50 3.50 3.50 3.50 3.50
8 3.82 3.76 3.78 3.81 3.78 3.81 3.78 3.81 3.80 3.79 3.79 3.79
9 4.12 4.14 4.12 4.15 4.11 4.14 4.11 4.14 4.10 4.14 4.11 4.11
10 4.48 4.48 4.47 4.54 4.46 4.50 4.46 4.50 4.45 4.50 4.45 4.45
11 4.91 4.92 4.86 4.94 4.83 4.89 4.82 4.90 4.83 4.89 4.82 4.87
12 5.33 5.43 5.27 5.41 5.24 5.32 5.23 5.32 5.24 5.31 5.22 5.30
13 5.83 6.01 5.73 5.94 5.68 5.69 5.69 5.79 5.67 5.78 5.66 5.75
14 6.46 6.70 6.30 6.58 6.16 6.17 3.16 6.23 6.15 6.29 6.14 6.23
15 6.97 7.50 6.80 7.33 6.73 6.86 6.69 6.71 6.66 6.76 6.64 6.76

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

iterations

w
ei

gh
t v

al
ue

s

(a) DTLZ1 R-MEAD2-PBI R = (0.25, 0.25)

0 50 100 150 200 250 300
0.4

0.45

0.5

0.55

0.6

0.65

iterations

w
ei

g
h

t
va

lu
es

(b) DTLZ1 R-MEAD2-Te R = (0.25, 0.25)

0 50 100 150 200 250 300

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

iterations

w
ei

g
h

t
va

le
s

(c) DTLZ1 R-MEAD2-PBI R = (0.2, 0.5)

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

iterations

w
ei

g
h

t
va

lu
es

(d) DTLZ1 R-MEAD2-Te R = (0.2, 0.5)

Fig. 4. Weight vector convergence behavior on 2-objective DTLZ1 using PBI and Tchebycheff. Objective-1 is shown by ‘+’ and objective-2 by ‘O’.

R = (0.2, 0.5)) the weight values differ as it can be seen in
Figures 4(c) and 4(d).

D. Benchmark Results

In this section we compare the performance of R-MEAD2
based on two decomposition methods Tchebycheff and PBI
(abbreviated as R-MEAD2-Te and R-MEAD2-PBI respec-
tively) with R-NSGA-II which is a dominance-based approach.

To test the significance of the obtained results we used the
non-parametric Kruskal-Wallis one-way ANOVA [29] to detect
if there is any significant difference between the performance
of the three algorithms. The null and alternative hypotheses
for Kruskal-Wallis are as follow:

H0 : all samples come from the same distribution.

Ha : at least one sample comes from a different distribution.

In order to rank the algorithms, we used Mann-Whitney-
Wilcoxon (MWW) test with Bonferroni correction only when
the null hypothesis of Kruskal-Wallis was rejected under 95%
confidence interval. Bonferroni correction is a simple tech-
nique for controlling the family-wise error rate [29]. Family-
wise error rate is the accumulation of type I errors when
more than one pair-wise comparison is used to rank a set of
results. Under Bonferroni correction, in order to achieve an
overall significance level of α, the pair-wise tests should be
performed with a significance level of α′ = α

h
, where h is the

number of pair-wise comparisons which is three in this study.
For our experiments, the significance level of Kruskal-Wallis

was set to 5%, and for pair-wise MWW tests a significance
level of 1.67% was used, which results in an overall significant
level of approximately 5%. Table III contains the median for
25 independent runs for the three algorithms. The last three
columns show the p−value for three MWW pair-wise tests
and the column labeled ‘K-W’ contains the p-value for the
Kruskal-Wallis ANOVA test.

Table III shows IGD results for all three algorithms. It
can be observed that the difference between algorithms is
significant for all functions and over all numbers of objectives.
So in all cases MWW test is used and the best performing
algorithm is shown in bold. If the performance of two al-
gorithms are statistically similar then both entries are shown
in bold. The table shows that in general a decomposition
approach is superior to the dominance-based approach, R-
NSGA-II. For the sake of clarity we have summarized the
comparison between R-NSGA-II and both versions of R-
MEAD2 in Table IV. From a total of 42 experiments, R-
MEAD2-Te outperforms R-NSGA-II on 37 functions and ties
on 2, and R-MEAD2-PBI outperforms R-NSGA-II on 35
functions and ties on 2. By looking back at Table III we can
see that R-NSGA-II outperforms R-MEAD-PBI on DTLZ1
when the number of objectives is below 9. However, R-NSGA-
II on DTLZ1 with 9 and 10 objectives, is outperformed by
R-MEAD-PBI. Although R-NSGA-II in some objectives of
DTLZ1 and DTLZ6 performs better than R-MEAD-PBI and
R-MEAD-TE, in case of other test problems (DTLZ2-DTLZ5)
R-NSGA-II is outperformed by both versions of R-MEAD.
It should be noted that IGD takes both convergence and

426

TABLE III. IGD VALUES ON DTLZ1-DTLZ6 TEST PROBLEMS. THE MEDIAN OF 25 INDEPENDENT RUNS ARE REPORTED.

R-MEAD2-PBI R-MEAD2-PBI R-MEAD2-Te

Func. # Obj R-MEAD2-PBI R-MEAD2-Te R-NSGA-II K-W vs vs vs

R-NSGA-II R-NSGA-II R-NSGA-II

DTLZ1

4 2.7179e-02 2.0047e-02 2.6913e-02 2.37e-12 2.77e-12 4.43e-01 9.73e-11

5 1.5969e-02 1.3061e-02 1.3489e-02 1.89e-12 2.77e-12 9.73e-11 1.99e-01

6 1.9221e-03 1.4998e-03 1.5202e-03 8.51e-13 2.77e-12 9.73e-11 2.02e-02

7 5.7668e-03 4.9279e-03 5.1213e-03 4.82e-13 2.77e-12 9.73e-11 4.50e-03

8 1.0997e-02 8.7635e-03 1.0280e-02 1.10e-13 2.77e-12 1.05e-04 9.73e-11

9 8.2376e-03 6.0180e-03 8.7701e-03 4.43e-14 2.77e-12 1.10e-05 9.73e-11

10 1.3500e-02 1.0895e-02 1.5834e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11

DTLZ2

4 8.0403e-03 8.6697e-03 2.2126e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11

5 4.4710e-03 4.9080e-03 9.1054e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

6 4.8012e-04 5.0287e-04 7.2498e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11

7 1.1177e-03 1.4606e-03 1.6713e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

8 1.7828e-03 2.1404e-03 2.7116e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

9 9.8180e-04 1.0688e-03 1.4740e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

10 1.8515e-03 2.0637e-03 2.5305e-03 3.74e-16 2.77e-12 9.72e-11 9.72e-11

DTLZ3

4 7.1956e-03 9.1197e-03 2.2122e-02 1.04e-15 4.27e-11 7.54e-10 9.73e-11

5 4.2700e-03 5.8662e-03 9.1130e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

6 1.1976e-03 4.6246e-04 7.2545e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11

7 1.2094e-03 1.3654e-03 1.6704e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

8 1.7592e-03 2.5105e-03 2.7037e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

9 9.9098e-04 1.1612e-03 1.4536e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

10 1.8656e-03 2.4228e-03 2.5326e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

DTLZ4

4 8.2896e-03 1.0301e-02 2.2212e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11

5 4.2842e-03 8.5091e-03 9.1201e-03 1.46e-15 2.77e-12 9.73e-11 2.64e-09

6 4.1579e-04 7.0932e-04 8.3514e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11

7 1.0711e-03 1.6623e-03 2.0305e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

8 1.6788e-03 2.6767e-03 2.9353e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

9 1.1728e-03 1.3986e-03 1.5749e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

10 1.7495e-03 2.4007e-03 2.6921e-03 4.40e-16 4.43e-12 1.38e-10 9.73e-11

DTLZ5

4 1.6671e-02 1.6204e-02 1.7121e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11

5 5.8838e-03 5.7738e-03 5.9900e-03 9.53e-13 2.77e-12 5.51e-08 5.51e-08

6 1.8945e-03 1.7910e-03 1.9025e-03 1.46e-15 2.77e-12 2.64e-09 9.73e-11

7 6.4055e-04 6.2722e-04 6.4189e-04 5.11e-15 2.77e-12 5.51e-08 9.73e-11

8 9.6134e-04 9.1614e-04 9.6588e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11

9 8.1450e-04 7.9596e-04 8.1874e-04 1.46e-15 2.77e-12 2.64e-09 9.73e-11

10 7.2022e-04 6.7489e-04 7.2718e-04 1.46e-15 2.77e-12 2.64e-09 9.73e-11

DTLZ6

4 1.6829e-02 1.6831e-02 1.7129e-02 2.89e-11 2.77e-12 8.85e-07 8.85e-07

5 5.8428e-03 5.7819e-03 5.9870e-03 3.42e-09 2.77e-12 4.50e-03 1.10e-05

6 1.8867e-03 1.9213e-03 1.9077e-03 1.59e-14 2.77e-12 8.85e-07 9.73e-11

7 6.3685e-04 6.6313e-04 6.4248e-04 4.43e-14 2.77e-12 1.10e-05 9.73e-11

8 9.5918e-04 9.2020e-04 9.6915e-04 1.46e-15 2.77e-12 2.64e-09 9.73e-11

9 8.1404e-04 8.2422e-04 8.2033e-04 5.11e-15 2.77e-12 5.51e-08 9.73e-11

10 6.6082e-04 6.2611e-04 6.7947e-04 1.33e-12 4.43e-12 5.07e-02 9.73e-11

diversity of solutions into account. Therefore, we can conclude
that decomposition methods generally perform better than R-
NSGA-II in terms of both convergence and diversity on most
many-objective problems. Finally, by comparing the results
of R-MEAD2-PBI and R-MEAD2-Te we can see that both
decomposition methods have very similar performance, but the
PBI version performs slightly better than Tchebycheff on 24
functions and losing on 18 functions.

TABLE IV. R-NSGA-II’S NUMBER OF WINS, LOSES AND TIES

AGAINST R-MEAD2-TE AND R-MEAD2-PBI.

R-MEAD2-Te R-MEAD2-PBI

Wins Loses Ties Wins Loses Ties

R-NSGA-II 3 37 2 5 35 2

V. CONCLUSIONS

In this paper, a user-preference based evolutionary algo-
rithm for many-objective optimization problems has been pro-
posed. The proposed algorithm R-MEAD2 has the following
advantages: 1) Because of using a decomposition framework,
R-MEAD2 is less susceptible to the selection pressure issue as

compared to dominance-based approaches such as R-NSGA-II.
The experimental results using IGD metric showed that both
versions of R-MEAD2 (Tchebycheff and PBI) outperform R-
NSGA-II on a range of many-objective problems. 2) Unlike
R-MEAD the population size and the number of objectives
are decoupled and the increase of number of objectives does
not cause the grow of population size. As a result, R-MEAD2
is better suited for solving many-objective problems. 3) R-
MEAD2 uses a simple random number generator (RNG) to
initialize the weight vectors. The results of centered L2-
discrepancy showed that RNG can generate more uniform
weights than GLP when the number of objectives grow beyond
7 with a typical sample size of 100, 250 and 500. In case of,
other sample sizes (50, 1000 and 5000) RNG can produce
points with lower discrepancy than GLP when the number of
objectives goes beyond eight. It should be noted that a uniform
set of weight vectors do not necessarily map to a uniform set of
solution in the objective space, especially on highly non-linear
and complex Pareto-optimal fronts. This requires a feedback
mechanism to adjust the weights in order to obtain a set of
uniform solutions which is the topic of our future works. In
this paper, the performance of PBI and Tchebycheff appeared

427

to be very similar. However, a conclusive conclusion requires
further investigations on functions with more complex Pareto-
optimal fronts.

REFERENCES

[1] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-

tionary Computation). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[2] R. C. Purshouse and P. J. Fleming, “Evolutionary many-objective
optimisation: An exploratory analysis,” in Evolutionary Computation,

2003. CEC’03. The 2003 Congress on, vol. 3. IEEE, 2003, pp. 2066–
2073.

[3] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Proc of 2008 IEEE Congress

on Evolutionary Computation, 2008, pp. 2419–2426.

[4] ——, “Evolutionary many-objective optimization,” in Proc. of 3rd

International Workshop on Genetic and Evolving Fuzzy Systems, no.
March, 2008, pp. 47–52.

[5] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Evolutionary
many-objective optimization by NSGA-II and MOEA/D with large
populations,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE

International Conference on. IEEE, 2009, pp. 1758–1763.

[6] K. Deb, Multi-Objective Optimization using Evolutionary Algorithm.
Wiley, 2001.

[7] K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Refer-
ence point based multi-objective optimization using evolutionary algo-
rithms,” International Journal of Computational Intelligence Research,
vol. 2, no. 3, pp. 273–286, 2006.

[8] L. Thiele, K. Miettinen, P. J. Korhonen, and J. Molina, “A preference-
based evolutionary algorithm for multi-objective optimization,” Evolu-

tionary Computation, vol. 17, no. 3, pp. 411–436, 2009.

[9] K. Deb and A. Kumar, “Interactive evolutionary multi-objective op-
timization and decision-making using reference direction method,” in
Proceedings of the 9th annual conference on Genetic and evolutionary

computation. ACM, 2007, pp. 781–788.

[10] ——, “Light beam search based multi-objective optimization using
evolutionary algorithms,” in Evolutionary Computation, 2007. CEC

2007. IEEE Congress on. IEEE, 2007, pp. 2125–2132.

[11] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Evolutionary
many-objective optimization by nsga-ii and moea/d with large popu-
lations,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE

International Conference on. IEEE, 2009, pp. 1758–1763.

[12] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization
problems,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657,
1998.

[13] A. Messac, A. Ismail-Yahaya, and C. A. Mattson, “The normalized
normal constraint method for generating the pareto frontier,” Structural

and multidisciplinary optimization, vol. 25, no. 2, pp. 86–98, 2003.

[14] K. Miettinen, Nonlinear Multiobjective Optimization. Norwell, MA:
Kluwer, 1999.

[15] H. Ishibuchi and T. Murata, “A multi-objective genetic local search al-
gorithm and its application to flowshop scheduling,” IEEE Transactions

on Systems, Man and Cybernetics, Part C (Applications and Reviews),
pp. 392–403, 1998.

[16] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary al-
gorithm based on decomposition,” Evolutionary Computation, IEEE

Transactions on, vol. 11, no. 6, pp. 712–731, 2007.

[17] A. Mohammadi, M. N. Omidvar, and X. Li, “Reference point based
multi-objective optimization through decomposition,” in Evolutionary

Computation (CEC), 2012 IEEE Congress on. IEEE, 2012, pp. 1–8.

[18] Y. yan Tan, Y. chang Jiao, H. Li, and X. kuan Wang, “MOEA/D +
uniform design: A new version of moea/d for optimization problems
with many objectives,” Computers and Operations Research, vol. 40,
no. 6, pp. 1648 – 1660, 2013.

[19] K. Fang and Y. Wang, Number-theoretic methods in statistics. Chap-
man and Hall/CRC, 1993.

[20] K.-T. Fang and D. K. Lin, “Uniform experimental designs and their
applications in industry,” Handbook of Statistics, vol. 22, pp. 131–170,
2003.

[21] J. Branke, T. Kaubler, and H. Schmeck, “Guidance in evolution-
ary multi-objective optimization,” Advances in Engineering Software,
vol. 32, no. 6, pp. 499–507, 2001.

[22] K. Deb, “Multi-objective evolutionary algorithms: Introducing bias
among pareto-optimal solutions,” in Advances in evolutionary comput-

ing. Springer, 2003, pp. 263–292.

[23] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary computation, vol. 2,
no. 3, pp. 221–248, 1994.

[24] J. Branke and K. Deb, “Integrating user preferences into evolutionary
multi-objective optimization,” in Knowledge incorporation in evolution-

ary computation. Springer, 2005, pp. 461–477.

[25] K. Deb, a. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, pp. 182–197, 2002.

[26] U. K. Wickramasinghe and X. Li, “Using a distance metric to guide pso
algorithms for many-objective optimization,” in Proceedings of the 11th

Annual conference on Genetic and evolutionary computation. ACM,
2009, pp. 667–674.

[27] ——, “Integrating user preferences with particle swarms for multi-
objective optimization,” in Proceedings of the 10th annual conference

on Genetic and evolutionary computation. ACM, 2008, pp. 745–752.

[28] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-
seca, “Performance Assessment of Multiobjective Optimizers: An Anal-
ysis and Review,” Evolutionary Computation, IEEE Transactions on,
vol. 7, no. 2, pp. 117–132, 2003.

[29] D. J. Sheskin, Handbook of parametric and nonparametric statistical

procedures. crc Press, 2003.

428

