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ABSTRACT 
SPARK offers a way to develop formally-verified software in a 
language (Ada) that is designed with safety in mind and is 
further restricted by the SPARK language subset. However, 
much critical embedded software is developed in C or C++. We 
look at whether and how benefits similar to those offered by the 
SPARK language subset and associated tools can be brought to a 
C++ development environment. 

Categories and Subject Descriptors 
F.3.1 [Logics and meanings of programs]: Specifying and 
Verifying and Reasoning about Programs – assertions, 
invariants, mechanical verification, pre- and post-conditions, 
specification techniques.  

General Terms 
Reliability, Security, Languages, Verification 

Keywords 
Formal methods; software verification; design by contract; C++; 
high integrity software 

1. INTRODUCTION 
The Ada language is generally considered to be well-designed 
from a safety perspective. The SPARK [1] subset, designed for 
use in developing high-integrity software, restricts the Ada 
language by removing constructs that are considered unsafe or 
difficult to reason about, and adds notation for information flow, 
function contracts, and other formal specifications. The SPARK 
tool set allows the annotated program to be analyzed, in 
particular it can generate verification conditions and attempt to 
prove them. The most recent versions of the SPARK tools use 
the function contract notation of Ada 2012 in preference to the 
older notation involving comments that start with a special 
character. 

Despite the advantages of the Ada programming language and 
the SPARK subset, much critical embedded software is today 
written in C and there is an increasing use of C++ in this field. C 
and C++ are both supported on a wide range of embedded 
processors by a number of compilers and development

 

environments of good quality. However, in comparison with 
Ada, from a correctness and safety perspective C is a poorly 
designed language. To mitigate this, subsets of C are widely 
used in developing high-integrity software, of which the best 
known is MISRA-C, now in its third version [2]. Many 
commercial static checking tools for C are available, and most 
of these can be configured to enforce MISRA-C compliance to a 
greater or lesser extent. 

Unfortunately, C also lacks important features, such as 
encapsulation at the object level, and generics. Lack of object 
encapsulation makes it difficult to protect data from unintended 
modification and enforce object invariants, except where there is 
only a single instance of the type. Lack of generics means that 
either the same code is written more than once to work on 
different types, or type safety has to be sacrificed by using void 
pointers for parameter passing, for example in the standard 
library functions qsort and bsearch. C++ provides object-level 
encapsulation by supporting classes, and generics by supporting 
template declarations. So when developing critical software, a 
subset of C++ could offer advantages over MISRA-C, given 
suitable support from static checking and verification tools. 

There are already subsets of C++ designed for high-integrity 
software, notably MISRA-C++ 2008 [3] and JSF-C++ [4]. Both 
are based on sets of rules that prohibit the use of various 
features of C++. We have concerns over the use of these subsets 
in the most critical software, for example at Safety Integrity 
Level 4 which is where formal verification is most often 
performed. Our concerns are these: 

 C++ is a large and complicated language. It is 
difficult to identify all the weaknesses in it that may 
contribute towards inadvertent errors. 

 Because of its size, it is difficult to develop formal 
semantics and associated verification tool support for 
the language in its entirety. 

In practice, critical embedded software developers do not need 
the full C++ language. Dynamic memory allocation is generally 
prohibited in critical embedded software, and this in turn limits 
the C++ features that can be used. 

We therefore propose a different approach. Most well-written C 
programs are also valid C++ programs, and programs that are 
valid in both C and C++ have the same semantics in both 
languages, provided that a small number of potential issues are 
avoided. So our approach is: 

 Start with the MISRA-C:2012 subset of C; 

 Add selected features from C++ along with rules 
limiting how they may be used; 
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 Further constrain the MISRA-C:2012 rules by banning 
C constructs that are not needed because better C++ 
constructs can replace them, and by banning 
constructs that can have different semantics in C and 
C++; 

 Add notation for adding SPARK-like function 
contracts and other specifications to C++ source code; 

 Implement formal verification of all constructs 
permitted by the resulting C++ subset, using the 
Verified Design-by-Contract paradigm [20]. 

Our aim was to produce a C++ language subset that is sufficient  
for critical embedded software development, that addresses the 
main safety-related limitations of C, that is amenable to formal 
verification, and for which we can provide tool support in a 
reasonable time frame. 

In keeping with the theme of this conference, this paper 
addresses  the contribution to software safety that is made by the 
programming language and the analysis techniques that it 
supports. There are of course many other factors that contribute 
to software safety. 

2. DESIGN OF THE C++ LANGUAGE 
SUBSET 
2.1 C++ Safety Issues Inherited From C 
The C++ language [5, 6] includes several features that do not fit 
well with safety. Fortunately for us, most of them are inherited 
from C, and the C language has been widely-studied in relation 
to safety. Some known vulnerabilities in a number of 
programming languages, including Ada, SPARK and C, are 
listed in [7]. Unfortunately, that publication does not list 
vulnerabilities in C+� +. Vulnerabilities in C are also listed in 
the MISRA-C:2012 guidelines [2], along with rules to avoid 
them. Examples of such vulnerabilities include: excessive 
automatic type conversion, identifier re-use, accidental use of  
'=' where '==' was intended, and operator precedence issues. 
When the MISRA-C guidelines are enforced, these 
vulnerabilities are for the most part avoided. Enforcing some of 
them requires the use of formal techniques in the general case. 
Almost all the MISRA-C 2012 guidelines can be mapped 
directly or with only minor modifications to our subset of C++. 

Many vulnerabilities of C fall into the categories of undefined, 
unspecified and implementation-dependent behaviour. For the 
most part, we can avoid these behaviours by defining 
appropriate preconditions for the constructs concerned, and 
using formal verification to ensure that these preconditions are 
satisfied. This is akin to proving exception freedom in SPARK. 
Some implementation-defined behaviours cannot be avoided, 
and for those we provide tool configuration options to describe 
the behaviour of the compiler and platform. For example, we 
provide a means to specify the ranges of the built-in integral 
types, and whether integer division of a negative by a positive 
number rounds up or down. 

There are some particular weaknesses in C that cannot be 
mitigated simply by subsetting the language. Three of them are 
concerned with pointers. Whereas SPARK bans the use of Ada 
access types, in C it is necessary to use pointers at least for 
passing array parameters between functions. However, the C 
language does not distinguish between a pointer to an object and 

a pointer to an array of objects. On receiving a pointer to an 
array, it is not possible to inquire of the pointer how many 
elements are in the array. Furthermore, C allows any pointer 
type to take the value NULL; but in most instances of using 
pointers to pass parameters, a null pointer is not an appropriate 
value. 

We have already solved two of these problems in our earlier tool 
[8]. When a pointer is declared using standard C syntax, our tool 
requires that every initialization of or assignment to that pointer  
is not the value NULL. Furthermore, use of the array index and 
pointer arithmetic operators on such a pointer is forbidden. To 
specify a pointer to an array of objects, the user adds the 
keyword array. Such a pointer may only be initialized or 
assigned to point to an array, not to a single object. To specify 
that NULL is an allowed value, the user adds the keyword null. 
For example: 

char * p1;            // pointer to a single 
                      // character 
char * array p2;      // pointer to an array 
                      // of characters 
char * null p3;       // pointer to a single 
                      // character, or NULL 
char * array null p4; // pointer to an array 
                      // of characters or 
NULL 
 

In order that the code may still be compiled by a standard C or 
C+� + compiler, we define C preprocessor macros that cause 
array and null to be expanded to nothing, except when the 
source code is being analyzed by our tool. These macros are 
defined in a header file that is referenced at the start of each C 
source file by a #include directive. We also provide a 
not_null(...) macro for asserting that a nullable pointer is not 
null and converting its type to the corresponding non-nullable 
pointer. 

Although C++ does not include bounds information in pointers 
to arrays, for verification purposes we pretend that it does. We 
do this by augmenting the array pointer type with 'ghost' fields. 
A ghost entity is one that can be used in a specification 
construct, but not in executable code. We provide a ghost field 
to yield the number of elements in the array, and another to 
yield the offset of the array pointer into the array (because a 
C++ array pointer can point part way into an array). These ghost 
fields can be referred to in function contracts and other formal 
specifications, allowing us (for example) to write preconditions 
to ensure that accesses to array elements are within the bounds 
of the array. 

Where the bounds of an array that is passed as a function 
parameter need to be available not just in the specification but in 
the code as well, we adopt the notion of a generic Array class 
that was recommended by the JSF-C++ standard. Unfortunately, 
the array.doc file describing the JSF-C++ Array class has not 
been put in the public domain. We therefore defined our own 
array_ref<T> class template for passing array parameters. This 
class is small enough to be passed by value, and it contains both 
the pointer to the start of the array and the number of array 
elements. It can also be configured to perform run-time bounds 
checks when indexing into the array, if this is desired. 

Another weakness of C is that there is a single type conversion 
syntax that is used not only for expressing relatively safe 
conversions (for example, converting between different integral 



types) but also for more dangerous conversions, such as 
converting between pointer types or casting away const. We 
avoid this issue by mandating use of the C++ type conversion 
operators for these more dangerous conversions, as described in 
the next section. 

2.2 C++ Constructs Included in our 
Subset 
Our C++ subset is focused on including those features of C++ 
that offer significant benefits over C to the writers of high-
integrity embedded software, while leaving out features that are 
of doubtful utility or safety, or for which we feel that the safety 
implications are not well understood. 

The first items in our list of C++ constructs to include are the 
C++ type conversion operators static_cast, reinterpret_cast 
and const_cast. The C++ conversion operators show what sort 
of conversion is intended, and are therefore safer to use than the 
single type casting notation of C. Therefore, we mandate the use 
of C++ type conversion notation for the more dangerous forms 
of conversion. We continue to allow the C type casting operator 
to be used where it has the same meaning as a static_cast to the 
same type. 

Next on our list are classes, in order to provide the object-level 
encapsulation that is missing from C. A further benefit of using 
classes is that if a class has at least one declared constructor, 
then it is impossible to declare or create an instance of that class 
without a constructor being called. Our subset requires all 
classes to have at least one constructor, and all constructors to 
initialize all member variables of the class. In this way, use of 
uninitialized or partially-initialized objects is avoided. 

Use of class inheritance and dynamic binding remains 
controversial in high-integrity software. However, there is 
increasing interest in using these techniques in some sectors, 
notably aviation. When doing formal verification of source code 
annotated with function contracts, it is relatively straightforward 
to ensure that local type consistency is satisfied as required by 
the DO-332 Object Oriented Supplement to DO-178C [9]. 
Furthermore, we consider that use of inheritance and dynamic 
binding is preferable to using function pointers, which is the 
usual solution adopted by C programmers faced with similar 
requirements. We therefore include single inheritance and 
virtual functions in our subset. 

Support for function templates is needed in order to allow 
generic functions to be written without sacrificing strong typing, 
as discussed earlier. Class templates are needed, both to support 
the array_ref<T> class and to support other useful classes, such 
as a bounded vector class. It is less obvious that template 
specialization is needed and safe to use, so for the time being we 
have not included it in our subset. 

Our C++ subset also permits side-effect free user-defined 
operator declarations (but not type conversion operators), and 
reference types. These are needed to support the array_ref<T> 
class as well as being useful features in their own right. 

2.3 Mitigating Unsafe Features of C++ 
Although C++ inherits a lot of poorly-designed language 
features from C, most of the new constructs it adds to C are 
fairly well-designed, in our opinion. C++ strengthens the type 
system of C a little, despite the issues with migrating C code to 
C++ that this causes. However, C++ introduces a small number 

of unsafe new features that require mitigation for high-integrity 
software. 

One such feature is the treatment of string literals. Although a 
string literal yields type const char* in most C++ contexts, in 
some contexts it can be implicitly converted to char*. This was 
done to improve backwards-compatibility with C. We ban the 
use of this conversion in our subset. 

Another concerns the overloading of functions, operators and 
constructors by argument number and type. We are forced to 
support overloading in our C++ subset, because it is needed to 
support class constructors and user-defined operators. 
Unfortunately, overloading interacts badly with implicit type 
conversion of actual parameters. A call to a function, operator or 
constructor may potentially match more than one of the 
overloaded declarations, depending on which implicit type 
conversions are applied to the actual parameters. The C++ rules 
for resolving such ambiguities are complex and occasionally 
give surprising results. Therefore, our subset requires that if a 
call potentially matches more than one overloaded declaration, 
then it must match one of them without the use of automatic 
type conversions. 

When a class constructor is declared with a single parameter, 
that constructor introduces an implicit type conversion from the 
argument type to the class type, unless the constructor is flagged 
explicit. So in common with MISRA-C++ and JSF-C++, we 
require all single-argument constructors to be declared explicit. 

When a derived class declares a function with the same name 
and parameter types as a virtual function in the parent class, it 
overrides the parent class function. Such overriding could be 
inadvertent. The 2011 revision of the C++ language standard [6] 
provides a way of indicating intentional overriding by adding 
the reserved identifier override. We elevate override to the 
status of a keyword and mandate its use. When using a C++ 
compiler that implements the older 2003 C++ standard, to 
preserve compatibility we define override as a macro 
expanding to nothing in the usual way. 

Other safety-enhancing language additions in C++ 2011 include 
the final reserved identifier and the nullptr keyword. Again, we 
allow these in our subset and we define macros to make them 
acceptable to older C++ compilers. 

When a C++ program declares statically-allocated variables that 
need to be constructed, the order in which these initializations 
are performed is defined for the declarations within a single 
translation unit, but not between different translation units. This 
raises the possibility that the initialization of a statically-
allocated object in one translation unit could depend on the 
value of another statically-allocated object in another translation 
unit that has not yet been initialized. Our subset therefore 
prohibits the declaration of any statically-initialized object 
whose initialization is non-trivial and whose value depends on 
the value of an object with non-trivial initialization in another 
translation unit. In contrast, the Ada language requires the 
translator to determine a suitable elaboration order for all the 
packages that make up the program. 

2.4 Expressing Contracts and Other 
Specifications 
Unlike Ada 2012, C++ does not have built-in language 
constructs for expressing function contracts or other 



specifications, apart from a macro for declaring assertions. 
Fortunately, such constructs can be readily added to C++ by 
choosing suitable keywords such as pre and post, following the 
keyword by a bracketed list of expressions, and once again 
defining these in a header file as macros that expand to nothing. 
The C++ preprocessor discards the entire specification construct 
when the source file is processed by a standard C++ compiler. 
We prefer this approach over the alternative custom of 
expressing specifications as specially-formatted comments, 
because it gives specifications the visual impact associated with 
source code rather than comments, and text editors that 
understand C++ will perform their usual syntax highlighting on 
the expressions in the specifications. Many text editors for C++ 
can also be configured to treat pre, post etc. as additional 
keywords and highlight them appropriately. 

A minor annoyance is that macros in C++ 2003 must have a 
fixed number of parameters, so comma cannot be used as a 
separator in specification expression lists. We use semicolon 
instead. 

The main specification constructs we support are listed in Table 
1. Where a construct supports a list of Boolean expressions, the 
individual expressions are conjoined implicitly by 'and', 
although separate verification conditions are generated for each 
expression. 

Table 1. Primary specification constructs 

pre(expression-list) Declares preconditions 

post(expression-list) Declares postconditions 

returns(expression) 

Declares the value returned by a 
function. Equivalent to post(result == 
expression) except that recursion is 
permitted in expression 

assert(expression-list) Asserts conditions 

invariant(expression-list) 
Used in class declarations to declare 
class invariants, and in typedef 
declarations to declare constraints 

keep(expression-list) Declares loop invariants 

decrease(expression-list) 
Declares loop variant or recursion 
variant expressions 

writes(lvalue-expression-
list) 

Declares what non-local variables the 
function modifies. If a function is 
declared without a writes-clause, then 
a default writes-clause is constructed 
based on the signature of the function. 

assume(expression-list) 
Declares predicates to be assumed 
without proof 

ghost(declaration-list) 
Declares ghost variables, functions, 
parameters etc. 

 

2.5 Specification Expressions 
Within specification macros such as pre(...) we allow side-
effect-free C++ expressions. Of course this is not sufficient, and 
we add syntax for additional forms of expression. The main 
ones are listed in Table 2. 

We add ghost members to a number of standard C++ types. For 
the array pointer types, the fundamental ones are offset (which 
returns the offset of the pointer from start of the array that it 
points into), lim (which returns the number of elements that can 
be addressed in a non-negative direction), and all (which yields 
the entire array addressed by the array pointer). For convenience 

we also provide lwb (lower bound i.e. lowest valid index, equal 
to -offset) and upb (upper bound, equal to lim-1), isndec (is-non-
decrementing according to the < operator for the type) and 
isninc. 

Table 2. Additional specification expressions 

exists identifier in 
expression :- predicate 

Existential quantification over the 
elements of expression, which must be 
an array or an abstract collection type 

exists type identifier :- 
predicate 

Existential quantification over all 
values of type 

forall identifier in 
expression :- predicate 

Universal quantification over the 
elements of expression, which must be 
an array or an abstract collection type 

forall type identifier :- 
predicate 

Universal quantification over all 
values of type 

for identifier in expression1 
yield expression2 

Applies the mapping function 
expression2 to each element of 
collection expression1, yielding a new 
collection 

those identifier in 
expression1 :- predicate 

Selects those elements of collection 
expression1 for which predicate is 
true 

that identifier in 
expression1 :- predicate 

Selects the single element of the 
collection expression1 for which 
predicate is true 

expression1 in expression2 
Shorthand for exists id in expression2 
:- id == expression1, where id is a new 
identifier 

expression holds member 

expression must have union type, and 
member must be a member of that 
type. Yields true if and only if the 
value of expression was defined by 
assignment or initialization through 
member.  

disjoint(lvalue-expression-
list) 

Yields true if and only if no two 
objects in the expression list have 
overlapping storage. Typically used in 
preconditions to state that parameters 
passed by pointer or reference refer to 
distinct objects. 

operator over expression 

Left-fold operator over collection 
expression. Used to express e.g. 
summation of the elements of an 
array. 

old(expression) 

When used in a postcondition, this 
refers to the value of expression when 
the function was entered. When used 
in a loop invariant, it refers to the 
value of expression just before the 
first iteration of the loop. 

 

Recursion is usually prohibited by safety-critical software 
standards, however it is sometimes useful to write recursive 
specifications. In particular, it is useful to be able to specify the 
return value of a function recursively, and it is useful to be able 
to write a loop invariant that calls the containing function. We 
therefore allow recursion in these two specification contexts and 
forbid it elsewhere. The recursion is constrained to be finite in 
the usual way by means of a variant expression. 

We support the use of C union types to implement variant 
records, but not for conversion between different types. We give 
each variable of union type a ghost discriminant, which records 
the name of the union type member through which it was last 
initialized or assigned. The holds expression allows this ghost 
discriminant to be queried. 



2.6 Constrained Types 
The Ada language includes subrange types, which is a very 
useful feature. For example, if an array is indexed using a 
variable of a type whose range is constrained to be exactly the 
valid indices into the array, then an error can be reported (either 
during formal verification or at run-time) as soon as the variable 
is assigned an out-of-range value, rather than when it is used to 
access the array (at which point it may not be straightforward to 
determine how it came to have that value). To provide similar 
facilities in C++, it would be possible to use class templates to 
provide subrange types for all the common numerical types. 
However, since our primary interest is formal verification rather 
than run-time checks, we chose a simpler approach. We extend 
the syntax of the C/C+� + typedef declaration to include an 
optional invariant(...) clause. As usual, we define invariant as 
a macro such that it and its argument expand to nothing when 
the program is compiled. The invariant clause can be used to 
define range constraints – or other forms of constraint – on the 
permitted values for the type name being declared. For example: 

typedef double invariant(value >= 0.0 
               && value <= 100.0) percentage; 
typedef double invariant(value >= -20.0 
               && value <= 200.0) 
temperature; 
 

Although our tool allows implicit conversions between these 
types and the types they are based on (with appropriate 
verification conditions generated), it considers the pointer types 
percentage* and temperature* to be incompatible. Not only is 
this a safety feature, but it also reduces the amount of pointer 
alias analysis that the verifier has to do. 

2.7 Abstract Data Types and Data 
Refinement 
Use of dynamic memory allocation is generally not permitted in 
high-integrity real-time embedded systems. The collection types 
in the C++ standard library (set<T>, vector<T>, map<T1, T2> 
etc.) rely on dynamic memory allocation for their 
implementation, so they are not available to us. Nevertheless, it 
is useful to be able to write specifications in terms of abstract 
data of these or similar types, even if the concrete representation 
uses only lower-level types such as arrays. We support this by 
providing a small number of abstract unbounded collection 
types. When declaring a class, the user can declare a retrieve 
function that returns a value of one of these types, or of some 
user-defined ghost type based on one of them, calculated from 
the concrete data. The specifications of the class member 
functions and operators can then refer to the value returned by 
the retrieve function, providing a higher-level view of the effect 
of calling those members. 

2.8 An Example 
The annotated C++ code in Listing 1 describes a generic Queue 
class. The data held by the queue is specified as an abstract 
sequence, with elements being added to the tail and removed 
from the head. The concrete implementation is a fixed-length 
buffer with head and tail indices into it (i.e. a ring buffer). The 

retrieve function for the sequence is member abstractData() and 
it returns a value of the predefined abstract data type 
_ecv_seq<T>. This type describes an unbounded sequence 
whose elements are of type T. It declares the usual sequence 
member functions head, tail, take and drop along with concat 
for sequence concatenation, and these are used in the 
specification. 

2.9 Generating Verification Conditions 
The tool generates 32 different kinds of verification condition 
from the source code. The most common categories are: 

 Preconditions: the preconditions of all function calls, 
operator applications and other expression constructs 
must be met. 

 Assertions and postconditions: an assertion must be 
true whenever it is reached, and a function 
postcondition must be satisfied at every return point in 
the function. 

 Type constraints: whenever a variable is assigned, the 
constraints for the type of the variable must be 
satisfied by the value being assigned. This applies to 
built-in constraints (for example, the ranges of the 
built-in integral types) and user-defined constrained 
types. It also applies to other assignment-like contexts, 
such as passing function parameters and returning 
function results, and to initializations. 

 Write permissions: any variable or part of a variable 
being assigned must either be a local variable or must 
be declared in the writes-clause of the containing 
function. In most cases it is obvious whether an 
assignment is permitted, but where a value is written 
through a pointer, this requires a verification 
condition. 

 Liskov substitution principle [10]: where a function in 
a derived class overrides a function in the base class, 
the LSP must be satisfied. That is, the precondition 
may not be strengthened in the derived class function, 
the postcondition may not be weakened, and no 
additional variables may be written other than fields 
declared in the derived class. The LSP also applies 
when values of function pointer types are assigned. 

 Loops: loop invariants must be satisfied at the head of 
a loop and preserved by the loop body. The integer 
components of loop variants must be non-negative at 
the head of the loop or the while-condition must be 
false, and the loop body must preserve this condition 
and either decrease the loop variant or no longer 
satisfy the while-condition. 

2.10 Proving the Verification Conditions 
To prove the verification conditions, our theorem prover uses 
the standard first-order techniques of resolution and 
paramodulation, along with a term rewriting system. Our 
specification notation uses only a small number of higher-order 
functions, and these are handled effectively by term rewriting. 

 
#include "ecv.h"         // for annotation macros 
#include "stddef.h"      // for size_t 
 
const size_t capacity = 64; 
 
template<class T> class Queue final 
{ 
  T ring[capacity + 1u];   // storage for the data 
  typedef size_t invariant(value <= capacity) RingPointer; 
                             // range-limited type for head and tail pointers 
  RingPointer hd, tl;        // indices of the first and last elements of the buffer 
 
public: 
  ghost( 
  _ecv_seq<T> abstractData() const  // retrieve function for data in the queue 
    returns( 
        (tl >= hd) ? ring.take(tl).drop(hd) 
                   : ring.drop(hd).concat(ring.take(tl)) 
   ); 
  ) 

   
  bool empty() const   // test if the queue is empty 
  returns(abstractData().lim == 0) 
  { 
    return hd == tl; 
  } 
 
  bool full() const    // test if the queue is full 
  returns(abstractData().lim == capacity) 
  { 
    return (tl + 1u) % (capacity + 1u) == hd; 
  } 

   
  void add(T x) writes(*this)  // add an element to the queue 
  pre(!full()) 
  post(abstractData() == old(abstractData()).append(x)) 
  { 
    ring[tl] = x; 
    tl = (tl + 1u) % (capacity + 1u); 
  } 

   
  T remove() writes(*this)       // remove an element from the queue 
  pre(!empty()) 
  returns(abstractData().head()) 
  post(abstractData() == old(abstractData()).tail()) 
  { 
    T temp = ring[hd]; 
    hd = (hd + 1u) % (capacity + 1u); 
    return temp; 
  } 

   
  explicit Queue(T initVal)       // constructor to build an empty queue 
  post(empty()) 
  { 
    // Dummy initialization to satisfy the complete-initialization rule 
    for (size_t i = 0; i <= capacity; ++i) 
    writes(i; ring) 
    keep(i <= capacity + 1) 
    keep(forall k in 0..(i - 1) :- ring[k] == initVal) 
    decrease(capacity + 1 - i) 
    { 
      ring[i] = initVal; 
    } 
    hd = 0; 
    tl = 0; 
  } 
}; 

 
Listing 1: Annotated C++ code example 



A complication is that standard first-order logic requires that all 
functions are total, which is not the case in programming 
languages. One solution to this is to use three-valued logic and 
write a theorem prover to work with it. The more common 
solution (which we adopt) is to use classical two-valued logic 
and to prove separately that the preconditions of all calls to 
partial functions are met. Even this is not sufficient, because 
some transformations to quantified expressions that are valid in 
classical first-order predicate calculus are no longer valid if the 
quantified expression includes calls to partial functions, even 
when the precondition of the expression as a whole is satisfied. 

Our reasons for using a theorem prover rather than a constraint 
solver are largely historical. A constraint solver has the 
advantage that when a verification condition cannot be shown to 
be true, the constraint solver will often generate a counter-
example. This can be translated back to the programming 
language to help the user understand the problem. On the other 
hand, from failed proof attempts our prover is sometimes able to 
infer additional preconditions and loop invariants that would 
make a proof possible, and we feed these back to the user as 
suggestions. 

For the example in Listing 1 our tool generates 68 verification 
conditions and proves them all in less than three seconds. The 
proofs are saved to file so that they could, in principle, be 
checked by an independent tool. 

3. FUTURE WORK 
3.1 Namespaces 
Although our present subset of C++ is sufficient to overcome 
the main limitations of C, we plan to add a few more C++ 
features. For example, C++ supports namespaces to help 
partition large projects and to avoid clashes between identifiers 
with external linkage declared by different modules. 
Namespaces are popular with C++ developers and are used in 
the C++ standard library. We intend to add namespaces to our 
C++ subset, subject to the results of an analysis of the safety 
implications of the argument-dependent name lookup, which is 
triggered when namespaces are used. 

3.2 Template Instantiation Preconditions 
It is often the case that C++ templates can often only be 
meaningfully instantiated when the types with which they are 
instantiated have applicable operators with certain semantics. 
For example, a sorting function may require the type to 
implement operator< in a way that defines at least a partial 
ordering. Early drafts of C++ 0x included a proposal [11] to 
declare these instantiation preconditions in the form of 
“template concept” declarations, but this feature did not make it 
into the C++ 2011 standard. Therefore we intend to add our own 
syntax to express them. Not only do instantiation preconditions 
guard against incorrect instantiation of class and function 
templates, they are also essential to allow such templates to be 
verified using formal techniques. 

3.3 Semantics of Volatile Variables 
C and C++ both support the volatile qualifier in variable 
declarations. These are variables whose values may change in 
ways that are not predictable by the compiler, and for which the 
order in which they are read and written must be strictly 
preserved. Our verifier implements the semantics of volatile 
variables as defined in the C++ language standard. However, 
when we attempted to perform formal verification on one 

particular embedded controller program, it became apparent that 
different sorts of volatile variables require different semantic 
treatment. For example, one use of volatile is to flag variables 
that are modified by an interrupt service routine and read by the 
main program thread. In the main program thread, these 
variables change unpredictably. Within the interrupt service 
routine, they do not, and it is desirable to treat them as normal 
variables so that their values can meaningfully be used within 
specifications. Another use of volatile is for variables that 
represent output ports. The value stored in the output port may 
be entirely predictable (unlike an input port) and it would be 
useful to refer to it in specifications; but the variable must still 
be declared volatile because the order in which it and other I/O 
ports are accessed must be preserved. 

To resolve these issues, we plan to introduce some additional 
keyword macros, each of which expands to volatile but means 
something slightly different to our verifier. So we would be able 
to declare a variable that represents an output port whose value 
only changes when the program assigns it, and can therefore be 
used in specification expressions. Likewise, we would be able to 
declare a variable that is used to communicate between an 
interrupt service routine and the rest of the program. For such a 
variable, we would also provide a means to declare that it is 
effectively not volatile within a particular block of code, such as 
a block in which interrupts are disabled, or the interrupt service 
routine itself. 

SPARK 2014 addresses a similar issue via the concept of 
external state [21]. 

3.4 Concurrency 
Until recently, one of the biggest limitations of C and C++ was 
its lack of a standard for concurrency. The 2011 C++ language 
standard finally introduced concurrency primitives. The 
concurrency model has been formalized by Batty et al [12]. 

Shared-variable concurrency remains a big challenge for formal 
verification. We are delighted to be supporting the Taming 
Concurrency research project [22]. 

We have not yet attempted to model concurrency in our 
verification tool. This has not been a serious limitation so far. 
Developers generally apply formal verification only where the 
software has to meet the most demanding safety standards such 
as IEC61508 SIL 4, and such software typically runs single-
threaded.  

3.5 Floating Point Arithmetic 
Target platforms for C++ and the associated libraries generally 
adopt the IEEE-754 floating-point standard [13]. From the 
perspective of formal verification, this standard defines the 
treatment of NaN (not-a-number) values in a very unhelpful 
way. In particular, a NaN is not equal to itself; so equational 
reasoning breaks down. 

Our solution is to avoid allowing the program to generate NaNs. 
Our C++ subset forbids the use of the standard library functions 
that are provided to supply NaNs, and we put preconditions on 
functions such as sqrt() and inverse trigonometric functions so 
as to forbid input values that give rise to NaN outputs. 

Another issue with floating point arithmetic is its inexact nature, 
which is at variance with the real arithmetic generally assumed 
by theorem provers. Our tool is currently unsound if floating-
point arithmetic is used. For example, the theorem prover might 



consider that if x can be proved to be nonzero, then x * (1.0 / x) 
== 1.0,  but this is not true at execution time when x = 3.0. It 
would be possible to model IEEE arithmetic more accurately in 
the theorem prover by removing axioms for real arithmetic that 
are not valid for practical floating point arithmetic, but this 
greatly reduces the ability to prove useful things about the 
program. Range arithmetic may provide a partial solution to this 
issue. 

4. RELATED WORK 
The Larch/C++ project [14] defines an alternative annotation 
language for C++ modules. It is supported by tools for syntax 
and type checking, but does not appear to have been used to 
perform formal verification of critical C++ programs. 

Several tools are available for performing formal verification of 
annotated C programs. These include the Jessie plugin [15] for 
Frama-C, Vcc [16], our own Escher C Verifier [17], and 
VeriFast [18]. The Vcc tool supports multithreaded C programs 
with variables shared between threads. Some of these tools have 
been compared by Rainer-Harbach [19]. 

5. CONCLUSION 
As a starting point for a programming language subset for 
developing high-integrity software,  C++ is less suitable than 
Ada 2012 because of its language design deficiencies and lack 
of function contracts. Nevertheless, we have demonstrated that 
it is possible to define a subset of C++ that is based on the 
MISRA-C 2012 subset of C while at the same time enhancing 
safety by including sufficient features of C++ to provide object 
encapsulation, generics, and other useful facilities. Along with 
this we have designed an annotation language to express 
function contracts and other specifications, and implemented a 
tool to generate and prove the associated verification conditions.  

We therefore believe that where political or other considerations 
force the use of C++ rather than Ada, this choice of 
programming language need not of itself compromise safety, at 
least in single-threaded programs. 
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