
Can C++ Be Made as Safe as SPARK?

David Crocker
Escher Technologies Ltd.

Mallard House, Hillside Road
Ash Vale, Aldershot GU12 5BJ, UK

+44 20 8144 3265
dcrocker@eschertech.com

ABSTRACT
SPARK offers a way to develop formally-verified software in a
language (Ada) that is designed with safety in mind and is
further restricted by the SPARK language subset. However,
much critical embedded software is developed in C or C++. We
look at whether and how benefits similar to those offered by the
SPARK language subset and associated tools can be brought to a
C++ development environment.

Categories and Subject Descriptors
F.3.1 [Logics and meanings of programs]: Specifying and
Verifying and Reasoning about Programs – assertions,
invariants, mechanical verification, pre- and post-conditions,
specification techniques.

General Terms
Reliability, Security, Languages, Verification

Keywords
Formal methods; software verification; design by contract; C++;
high integrity software

1. INTRODUCTION
The Ada language is generally considered to be well-designed
from a safety perspective. The SPARK [1] subset, designed for
use in developing high-integrity software, restricts the Ada
language by removing constructs that are considered unsafe or
difficult to reason about, and adds notation for information flow,
function contracts, and other formal specifications. The SPARK
tool set allows the annotated program to be analyzed, in
particular it can generate verification conditions and attempt to
prove them. The most recent versions of the SPARK tools use
the function contract notation of Ada 2012 in preference to the
older notation involving comments that start with a special
character.

Despite the advantages of the Ada programming language and
the SPARK subset, much critical embedded software is today
written in C and there is an increasing use of C++ in this field. C
and C++ are both supported on a wide range of embedded
processors by a number of compilers and development

environments of good quality. However, in comparison with
Ada, from a correctness and safety perspective C is a poorly
designed language. To mitigate this, subsets of C are widely
used in developing high-integrity software, of which the best
known is MISRA-C, now in its third version [2]. Many
commercial static checking tools for C are available, and most
of these can be configured to enforce MISRA-C compliance to a
greater or lesser extent.

Unfortunately, C also lacks important features, such as
encapsulation at the object level, and generics. Lack of object
encapsulation makes it difficult to protect data from unintended
modification and enforce object invariants, except where there is
only a single instance of the type. Lack of generics means that
either the same code is written more than once to work on
different types, or type safety has to be sacrificed by using void
pointers for parameter passing, for example in the standard
library functions qsort and bsearch. C++ provides object-level
encapsulation by supporting classes, and generics by supporting
template declarations. So when developing critical software, a
subset of C++ could offer advantages over MISRA-C, given
suitable support from static checking and verification tools.

There are already subsets of C++ designed for high-integrity
software, notably MISRA-C++ 2008 [3] and JSF-C++ [4]. Both
are based on sets of rules that prohibit the use of various
features of C++. We have concerns over the use of these subsets
in the most critical software, for example at Safety Integrity
Level 4 which is where formal verification is most often
performed. Our concerns are these:

 C++ is a large and complicated language. It is
difficult to identify all the weaknesses in it that may
contribute towards inadvertent errors.

 Because of its size, it is difficult to develop formal
semantics and associated verification tool support for
the language in its entirety.

In practice, critical embedded software developers do not need
the full C++ language. Dynamic memory allocation is generally
prohibited in critical embedded software, and this in turn limits
the C++ features that can be used.

We therefore propose a different approach. Most well-written C
programs are also valid C++ programs, and programs that are
valid in both C and C++ have the same semantics in both
languages, provided that a small number of potential issues are
avoided. So our approach is:

 Start with the MISRA-C:2012 subset of C;

 Add selected features from C++ along with rules
limiting how they may be used;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
HILT 2014, October 18-21, 2014, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3217-0/14/10…$15.00
http://dx.doi.org/10.1145/2663171.2663179

 Further constrain the MISRA-C:2012 rules by banning
C constructs that are not needed because better C++
constructs can replace them, and by banning
constructs that can have different semantics in C and
C++;

 Add notation for adding SPARK-like function
contracts and other specifications to C++ source code;

 Implement formal verification of all constructs
permitted by the resulting C++ subset, using the
Verified Design-by-Contract paradigm [20].

Our aim was to produce a C++ language subset that is sufficient
for critical embedded software development, that addresses the
main safety-related limitations of C, that is amenable to formal
verification, and for which we can provide tool support in a
reasonable time frame.

In keeping with the theme of this conference, this paper
addresses the contribution to software safety that is made by the
programming language and the analysis techniques that it
supports. There are of course many other factors that contribute
to software safety.

2. DESIGN OF THE C++ LANGUAGE
SUBSET
2.1 C++ Safety Issues Inherited From C
The C++ language [5, 6] includes several features that do not fit
well with safety. Fortunately for us, most of them are inherited
from C, and the C language has been widely-studied in relation
to safety. Some known vulnerabilities in a number of
programming languages, including Ada, SPARK and C, are
listed in [7]. Unfortunately, that publication does not list
vulnerabilities in C+� +. Vulnerabilities in C are also listed in
the MISRA-C:2012 guidelines [2], along with rules to avoid
them. Examples of such vulnerabilities include: excessive
automatic type conversion, identifier re-use, accidental use of
'=' where '==' was intended, and operator precedence issues.
When the MISRA-C guidelines are enforced, these
vulnerabilities are for the most part avoided. Enforcing some of
them requires the use of formal techniques in the general case.
Almost all the MISRA-C 2012 guidelines can be mapped
directly or with only minor modifications to our subset of C++.

Many vulnerabilities of C fall into the categories of undefined,
unspecified and implementation-dependent behaviour. For the
most part, we can avoid these behaviours by defining
appropriate preconditions for the constructs concerned, and
using formal verification to ensure that these preconditions are
satisfied. This is akin to proving exception freedom in SPARK.
Some implementation-defined behaviours cannot be avoided,
and for those we provide tool configuration options to describe
the behaviour of the compiler and platform. For example, we
provide a means to specify the ranges of the built-in integral
types, and whether integer division of a negative by a positive
number rounds up or down.

There are some particular weaknesses in C that cannot be
mitigated simply by subsetting the language. Three of them are
concerned with pointers. Whereas SPARK bans the use of Ada
access types, in C it is necessary to use pointers at least for
passing array parameters between functions. However, the C
language does not distinguish between a pointer to an object and

a pointer to an array of objects. On receiving a pointer to an
array, it is not possible to inquire of the pointer how many
elements are in the array. Furthermore, C allows any pointer
type to take the value NULL; but in most instances of using
pointers to pass parameters, a null pointer is not an appropriate
value.

We have already solved two of these problems in our earlier tool
[8]. When a pointer is declared using standard C syntax, our tool
requires that every initialization of or assignment to that pointer
is not the value NULL. Furthermore, use of the array index and
pointer arithmetic operators on such a pointer is forbidden. To
specify a pointer to an array of objects, the user adds the
keyword array. Such a pointer may only be initialized or
assigned to point to an array, not to a single object. To specify
that NULL is an allowed value, the user adds the keyword null.
For example:

char * p1; // pointer to a single
 // character
char * array p2; // pointer to an array
 // of characters
char * null p3; // pointer to a single
 // character, or NULL
char * array null p4; // pointer to an array
 // of characters or
NULL

In order that the code may still be compiled by a standard C or
C+� + compiler, we define C preprocessor macros that cause
array and null to be expanded to nothing, except when the
source code is being analyzed by our tool. These macros are
defined in a header file that is referenced at the start of each C
source file by a #include directive. We also provide a
not_null(...) macro for asserting that a nullable pointer is not
null and converting its type to the corresponding non-nullable
pointer.

Although C++ does not include bounds information in pointers
to arrays, for verification purposes we pretend that it does. We
do this by augmenting the array pointer type with 'ghost' fields.
A ghost entity is one that can be used in a specification
construct, but not in executable code. We provide a ghost field
to yield the number of elements in the array, and another to
yield the offset of the array pointer into the array (because a
C++ array pointer can point part way into an array). These ghost
fields can be referred to in function contracts and other formal
specifications, allowing us (for example) to write preconditions
to ensure that accesses to array elements are within the bounds
of the array.

Where the bounds of an array that is passed as a function
parameter need to be available not just in the specification but in
the code as well, we adopt the notion of a generic Array class
that was recommended by the JSF-C++ standard. Unfortunately,
the array.doc file describing the JSF-C++ Array class has not
been put in the public domain. We therefore defined our own
array_ref<T> class template for passing array parameters. This
class is small enough to be passed by value, and it contains both
the pointer to the start of the array and the number of array
elements. It can also be configured to perform run-time bounds
checks when indexing into the array, if this is desired.

Another weakness of C is that there is a single type conversion
syntax that is used not only for expressing relatively safe
conversions (for example, converting between different integral

types) but also for more dangerous conversions, such as
converting between pointer types or casting away const. We
avoid this issue by mandating use of the C++ type conversion
operators for these more dangerous conversions, as described in
the next section.

2.2 C++ Constructs Included in our
Subset
Our C++ subset is focused on including those features of C++
that offer significant benefits over C to the writers of high-
integrity embedded software, while leaving out features that are
of doubtful utility or safety, or for which we feel that the safety
implications are not well understood.

The first items in our list of C++ constructs to include are the
C++ type conversion operators static_cast, reinterpret_cast
and const_cast. The C++ conversion operators show what sort
of conversion is intended, and are therefore safer to use than the
single type casting notation of C. Therefore, we mandate the use
of C++ type conversion notation for the more dangerous forms
of conversion. We continue to allow the C type casting operator
to be used where it has the same meaning as a static_cast to the
same type.

Next on our list are classes, in order to provide the object-level
encapsulation that is missing from C. A further benefit of using
classes is that if a class has at least one declared constructor,
then it is impossible to declare or create an instance of that class
without a constructor being called. Our subset requires all
classes to have at least one constructor, and all constructors to
initialize all member variables of the class. In this way, use of
uninitialized or partially-initialized objects is avoided.

Use of class inheritance and dynamic binding remains
controversial in high-integrity software. However, there is
increasing interest in using these techniques in some sectors,
notably aviation. When doing formal verification of source code
annotated with function contracts, it is relatively straightforward
to ensure that local type consistency is satisfied as required by
the DO-332 Object Oriented Supplement to DO-178C [9].
Furthermore, we consider that use of inheritance and dynamic
binding is preferable to using function pointers, which is the
usual solution adopted by C programmers faced with similar
requirements. We therefore include single inheritance and
virtual functions in our subset.

Support for function templates is needed in order to allow
generic functions to be written without sacrificing strong typing,
as discussed earlier. Class templates are needed, both to support
the array_ref<T> class and to support other useful classes, such
as a bounded vector class. It is less obvious that template
specialization is needed and safe to use, so for the time being we
have not included it in our subset.

Our C++ subset also permits side-effect free user-defined
operator declarations (but not type conversion operators), and
reference types. These are needed to support the array_ref<T>
class as well as being useful features in their own right.

2.3 Mitigating Unsafe Features of C++
Although C++ inherits a lot of poorly-designed language
features from C, most of the new constructs it adds to C are
fairly well-designed, in our opinion. C++ strengthens the type
system of C a little, despite the issues with migrating C code to
C++ that this causes. However, C++ introduces a small number

of unsafe new features that require mitigation for high-integrity
software.

One such feature is the treatment of string literals. Although a
string literal yields type const char* in most C++ contexts, in
some contexts it can be implicitly converted to char*. This was
done to improve backwards-compatibility with C. We ban the
use of this conversion in our subset.

Another concerns the overloading of functions, operators and
constructors by argument number and type. We are forced to
support overloading in our C++ subset, because it is needed to
support class constructors and user-defined operators.
Unfortunately, overloading interacts badly with implicit type
conversion of actual parameters. A call to a function, operator or
constructor may potentially match more than one of the
overloaded declarations, depending on which implicit type
conversions are applied to the actual parameters. The C++ rules
for resolving such ambiguities are complex and occasionally
give surprising results. Therefore, our subset requires that if a
call potentially matches more than one overloaded declaration,
then it must match one of them without the use of automatic
type conversions.

When a class constructor is declared with a single parameter,
that constructor introduces an implicit type conversion from the
argument type to the class type, unless the constructor is flagged
explicit. So in common with MISRA-C++ and JSF-C++, we
require all single-argument constructors to be declared explicit.

When a derived class declares a function with the same name
and parameter types as a virtual function in the parent class, it
overrides the parent class function. Such overriding could be
inadvertent. The 2011 revision of the C++ language standard [6]
provides a way of indicating intentional overriding by adding
the reserved identifier override. We elevate override to the
status of a keyword and mandate its use. When using a C++
compiler that implements the older 2003 C++ standard, to
preserve compatibility we define override as a macro
expanding to nothing in the usual way.

Other safety-enhancing language additions in C++ 2011 include
the final reserved identifier and the nullptr keyword. Again, we
allow these in our subset and we define macros to make them
acceptable to older C++ compilers.

When a C++ program declares statically-allocated variables that
need to be constructed, the order in which these initializations
are performed is defined for the declarations within a single
translation unit, but not between different translation units. This
raises the possibility that the initialization of a statically-
allocated object in one translation unit could depend on the
value of another statically-allocated object in another translation
unit that has not yet been initialized. Our subset therefore
prohibits the declaration of any statically-initialized object
whose initialization is non-trivial and whose value depends on
the value of an object with non-trivial initialization in another
translation unit. In contrast, the Ada language requires the
translator to determine a suitable elaboration order for all the
packages that make up the program.

2.4 Expressing Contracts and Other
Specifications
Unlike Ada 2012, C++ does not have built-in language
constructs for expressing function contracts or other

specifications, apart from a macro for declaring assertions.
Fortunately, such constructs can be readily added to C++ by
choosing suitable keywords such as pre and post, following the
keyword by a bracketed list of expressions, and once again
defining these in a header file as macros that expand to nothing.
The C++ preprocessor discards the entire specification construct
when the source file is processed by a standard C++ compiler.
We prefer this approach over the alternative custom of
expressing specifications as specially-formatted comments,
because it gives specifications the visual impact associated with
source code rather than comments, and text editors that
understand C++ will perform their usual syntax highlighting on
the expressions in the specifications. Many text editors for C++
can also be configured to treat pre, post etc. as additional
keywords and highlight them appropriately.

A minor annoyance is that macros in C++ 2003 must have a
fixed number of parameters, so comma cannot be used as a
separator in specification expression lists. We use semicolon
instead.

The main specification constructs we support are listed in Table
1. Where a construct supports a list of Boolean expressions, the
individual expressions are conjoined implicitly by 'and',
although separate verification conditions are generated for each
expression.

Table 1. Primary specification constructs

pre(expression-list) Declares preconditions

post(expression-list) Declares postconditions

returns(expression)

Declares the value returned by a
function. Equivalent to post(result ==
expression) except that recursion is
permitted in expression

assert(expression-list) Asserts conditions

invariant(expression-list)
Used in class declarations to declare
class invariants, and in typedef
declarations to declare constraints

keep(expression-list) Declares loop invariants

decrease(expression-list)
Declares loop variant or recursion
variant expressions

writes(lvalue-expression-
list)

Declares what non-local variables the
function modifies. If a function is
declared without a writes-clause, then
a default writes-clause is constructed
based on the signature of the function.

assume(expression-list)
Declares predicates to be assumed
without proof

ghost(declaration-list)
Declares ghost variables, functions,
parameters etc.

2.5 Specification Expressions
Within specification macros such as pre(...) we allow side-
effect-free C++ expressions. Of course this is not sufficient, and
we add syntax for additional forms of expression. The main
ones are listed in Table 2.

We add ghost members to a number of standard C++ types. For
the array pointer types, the fundamental ones are offset (which
returns the offset of the pointer from start of the array that it
points into), lim (which returns the number of elements that can
be addressed in a non-negative direction), and all (which yields
the entire array addressed by the array pointer). For convenience

we also provide lwb (lower bound i.e. lowest valid index, equal
to -offset) and upb (upper bound, equal to lim-1), isndec (is-non-
decrementing according to the < operator for the type) and
isninc.

Table 2. Additional specification expressions

exists identifier in
expression :- predicate

Existential quantification over the
elements of expression, which must be
an array or an abstract collection type

exists type identifier :-
predicate

Existential quantification over all
values of type

forall identifier in
expression :- predicate

Universal quantification over the
elements of expression, which must be
an array or an abstract collection type

forall type identifier :-
predicate

Universal quantification over all
values of type

for identifier in expression1
yield expression2

Applies the mapping function
expression2 to each element of
collection expression1, yielding a new
collection

those identifier in
expression1 :- predicate

Selects those elements of collection
expression1 for which predicate is
true

that identifier in
expression1 :- predicate

Selects the single element of the
collection expression1 for which
predicate is true

expression1 in expression2
Shorthand for exists id in expression2
:- id == expression1, where id is a new
identifier

expression holds member

expression must have union type, and
member must be a member of that
type. Yields true if and only if the
value of expression was defined by
assignment or initialization through
member.

disjoint(lvalue-expression-
list)

Yields true if and only if no two
objects in the expression list have
overlapping storage. Typically used in
preconditions to state that parameters
passed by pointer or reference refer to
distinct objects.

operator over expression

Left-fold operator over collection
expression. Used to express e.g.
summation of the elements of an
array.

old(expression)

When used in a postcondition, this
refers to the value of expression when
the function was entered. When used
in a loop invariant, it refers to the
value of expression just before the
first iteration of the loop.

Recursion is usually prohibited by safety-critical software
standards, however it is sometimes useful to write recursive
specifications. In particular, it is useful to be able to specify the
return value of a function recursively, and it is useful to be able
to write a loop invariant that calls the containing function. We
therefore allow recursion in these two specification contexts and
forbid it elsewhere. The recursion is constrained to be finite in
the usual way by means of a variant expression.

We support the use of C union types to implement variant
records, but not for conversion between different types. We give
each variable of union type a ghost discriminant, which records
the name of the union type member through which it was last
initialized or assigned. The holds expression allows this ghost
discriminant to be queried.

2.6 Constrained Types
The Ada language includes subrange types, which is a very
useful feature. For example, if an array is indexed using a
variable of a type whose range is constrained to be exactly the
valid indices into the array, then an error can be reported (either
during formal verification or at run-time) as soon as the variable
is assigned an out-of-range value, rather than when it is used to
access the array (at which point it may not be straightforward to
determine how it came to have that value). To provide similar
facilities in C++, it would be possible to use class templates to
provide subrange types for all the common numerical types.
However, since our primary interest is formal verification rather
than run-time checks, we chose a simpler approach. We extend
the syntax of the C/C+� + typedef declaration to include an
optional invariant(...) clause. As usual, we define invariant as
a macro such that it and its argument expand to nothing when
the program is compiled. The invariant clause can be used to
define range constraints – or other forms of constraint – on the
permitted values for the type name being declared. For example:

typedef double invariant(value >= 0.0
 && value <= 100.0) percentage;
typedef double invariant(value >= -20.0
 && value <= 200.0)
temperature;

Although our tool allows implicit conversions between these
types and the types they are based on (with appropriate
verification conditions generated), it considers the pointer types
percentage* and temperature* to be incompatible. Not only is
this a safety feature, but it also reduces the amount of pointer
alias analysis that the verifier has to do.

2.7 Abstract Data Types and Data
Refinement
Use of dynamic memory allocation is generally not permitted in
high-integrity real-time embedded systems. The collection types
in the C++ standard library (set<T>, vector<T>, map<T1, T2>
etc.) rely on dynamic memory allocation for their
implementation, so they are not available to us. Nevertheless, it
is useful to be able to write specifications in terms of abstract
data of these or similar types, even if the concrete representation
uses only lower-level types such as arrays. We support this by
providing a small number of abstract unbounded collection
types. When declaring a class, the user can declare a retrieve
function that returns a value of one of these types, or of some
user-defined ghost type based on one of them, calculated from
the concrete data. The specifications of the class member
functions and operators can then refer to the value returned by
the retrieve function, providing a higher-level view of the effect
of calling those members.

2.8 An Example
The annotated C++ code in Listing 1 describes a generic Queue
class. The data held by the queue is specified as an abstract
sequence, with elements being added to the tail and removed
from the head. The concrete implementation is a fixed-length
buffer with head and tail indices into it (i.e. a ring buffer). The

retrieve function for the sequence is member abstractData() and
it returns a value of the predefined abstract data type
_ecv_seq<T>. This type describes an unbounded sequence
whose elements are of type T. It declares the usual sequence
member functions head, tail, take and drop along with concat
for sequence concatenation, and these are used in the
specification.

2.9 Generating Verification Conditions
The tool generates 32 different kinds of verification condition
from the source code. The most common categories are:

 Preconditions: the preconditions of all function calls,
operator applications and other expression constructs
must be met.

 Assertions and postconditions: an assertion must be
true whenever it is reached, and a function
postcondition must be satisfied at every return point in
the function.

 Type constraints: whenever a variable is assigned, the
constraints for the type of the variable must be
satisfied by the value being assigned. This applies to
built-in constraints (for example, the ranges of the
built-in integral types) and user-defined constrained
types. It also applies to other assignment-like contexts,
such as passing function parameters and returning
function results, and to initializations.

 Write permissions: any variable or part of a variable
being assigned must either be a local variable or must
be declared in the writes-clause of the containing
function. In most cases it is obvious whether an
assignment is permitted, but where a value is written
through a pointer, this requires a verification
condition.

 Liskov substitution principle [10]: where a function in
a derived class overrides a function in the base class,
the LSP must be satisfied. That is, the precondition
may not be strengthened in the derived class function,
the postcondition may not be weakened, and no
additional variables may be written other than fields
declared in the derived class. The LSP also applies
when values of function pointer types are assigned.

 Loops: loop invariants must be satisfied at the head of
a loop and preserved by the loop body. The integer
components of loop variants must be non-negative at
the head of the loop or the while-condition must be
false, and the loop body must preserve this condition
and either decrease the loop variant or no longer
satisfy the while-condition.

2.10 Proving the Verification Conditions
To prove the verification conditions, our theorem prover uses
the standard first-order techniques of resolution and
paramodulation, along with a term rewriting system. Our
specification notation uses only a small number of higher-order
functions, and these are handled effectively by term rewriting.

#include "ecv.h" // for annotation macros
#include "stddef.h" // for size_t

const size_t capacity = 64;

template<class T> class Queue final
{
 T ring[capacity + 1u]; // storage for the data
 typedef size_t invariant(value <= capacity) RingPointer;
 // range-limited type for head and tail pointers
 RingPointer hd, tl; // indices of the first and last elements of the buffer

public:
 ghost(
 _ecv_seq<T> abstractData() const // retrieve function for data in the queue
 returns(
 (tl >= hd) ? ring.take(tl).drop(hd)
 : ring.drop(hd).concat(ring.take(tl))
);
)

 bool empty() const // test if the queue is empty
 returns(abstractData().lim == 0)
 {
 return hd == tl;
 }

 bool full() const // test if the queue is full
 returns(abstractData().lim == capacity)
 {
 return (tl + 1u) % (capacity + 1u) == hd;
 }

 void add(T x) writes(*this) // add an element to the queue
 pre(!full())
 post(abstractData() == old(abstractData()).append(x))
 {
 ring[tl] = x;
 tl = (tl + 1u) % (capacity + 1u);
 }

 T remove() writes(*this) // remove an element from the queue
 pre(!empty())
 returns(abstractData().head())
 post(abstractData() == old(abstractData()).tail())
 {
 T temp = ring[hd];
 hd = (hd + 1u) % (capacity + 1u);
 return temp;
 }

 explicit Queue(T initVal) // constructor to build an empty queue
 post(empty())
 {
 // Dummy initialization to satisfy the complete-initialization rule
 for (size_t i = 0; i <= capacity; ++i)
 writes(i; ring)
 keep(i <= capacity + 1)
 keep(forall k in 0..(i - 1) :- ring[k] == initVal)
 decrease(capacity + 1 - i)
 {
 ring[i] = initVal;
 }
 hd = 0;
 tl = 0;
 }
};

Listing 1: Annotated C++ code example

A complication is that standard first-order logic requires that all
functions are total, which is not the case in programming
languages. One solution to this is to use three-valued logic and
write a theorem prover to work with it. The more common
solution (which we adopt) is to use classical two-valued logic
and to prove separately that the preconditions of all calls to
partial functions are met. Even this is not sufficient, because
some transformations to quantified expressions that are valid in
classical first-order predicate calculus are no longer valid if the
quantified expression includes calls to partial functions, even
when the precondition of the expression as a whole is satisfied.

Our reasons for using a theorem prover rather than a constraint
solver are largely historical. A constraint solver has the
advantage that when a verification condition cannot be shown to
be true, the constraint solver will often generate a counter-
example. This can be translated back to the programming
language to help the user understand the problem. On the other
hand, from failed proof attempts our prover is sometimes able to
infer additional preconditions and loop invariants that would
make a proof possible, and we feed these back to the user as
suggestions.

For the example in Listing 1 our tool generates 68 verification
conditions and proves them all in less than three seconds. The
proofs are saved to file so that they could, in principle, be
checked by an independent tool.

3. FUTURE WORK
3.1 Namespaces
Although our present subset of C++ is sufficient to overcome
the main limitations of C, we plan to add a few more C++
features. For example, C++ supports namespaces to help
partition large projects and to avoid clashes between identifiers
with external linkage declared by different modules.
Namespaces are popular with C++ developers and are used in
the C++ standard library. We intend to add namespaces to our
C++ subset, subject to the results of an analysis of the safety
implications of the argument-dependent name lookup, which is
triggered when namespaces are used.

3.2 Template Instantiation Preconditions
It is often the case that C++ templates can often only be
meaningfully instantiated when the types with which they are
instantiated have applicable operators with certain semantics.
For example, a sorting function may require the type to
implement operator< in a way that defines at least a partial
ordering. Early drafts of C++ 0x included a proposal [11] to
declare these instantiation preconditions in the form of
“template concept” declarations, but this feature did not make it
into the C++ 2011 standard. Therefore we intend to add our own
syntax to express them. Not only do instantiation preconditions
guard against incorrect instantiation of class and function
templates, they are also essential to allow such templates to be
verified using formal techniques.

3.3 Semantics of Volatile Variables
C and C++ both support the volatile qualifier in variable
declarations. These are variables whose values may change in
ways that are not predictable by the compiler, and for which the
order in which they are read and written must be strictly
preserved. Our verifier implements the semantics of volatile
variables as defined in the C++ language standard. However,
when we attempted to perform formal verification on one

particular embedded controller program, it became apparent that
different sorts of volatile variables require different semantic
treatment. For example, one use of volatile is to flag variables
that are modified by an interrupt service routine and read by the
main program thread. In the main program thread, these
variables change unpredictably. Within the interrupt service
routine, they do not, and it is desirable to treat them as normal
variables so that their values can meaningfully be used within
specifications. Another use of volatile is for variables that
represent output ports. The value stored in the output port may
be entirely predictable (unlike an input port) and it would be
useful to refer to it in specifications; but the variable must still
be declared volatile because the order in which it and other I/O
ports are accessed must be preserved.

To resolve these issues, we plan to introduce some additional
keyword macros, each of which expands to volatile but means
something slightly different to our verifier. So we would be able
to declare a variable that represents an output port whose value
only changes when the program assigns it, and can therefore be
used in specification expressions. Likewise, we would be able to
declare a variable that is used to communicate between an
interrupt service routine and the rest of the program. For such a
variable, we would also provide a means to declare that it is
effectively not volatile within a particular block of code, such as
a block in which interrupts are disabled, or the interrupt service
routine itself.

SPARK 2014 addresses a similar issue via the concept of
external state [21].

3.4 Concurrency
Until recently, one of the biggest limitations of C and C++ was
its lack of a standard for concurrency. The 2011 C++ language
standard finally introduced concurrency primitives. The
concurrency model has been formalized by Batty et al [12].

Shared-variable concurrency remains a big challenge for formal
verification. We are delighted to be supporting the Taming
Concurrency research project [22].

We have not yet attempted to model concurrency in our
verification tool. This has not been a serious limitation so far.
Developers generally apply formal verification only where the
software has to meet the most demanding safety standards such
as IEC61508 SIL 4, and such software typically runs single-
threaded.

3.5 Floating Point Arithmetic
Target platforms for C++ and the associated libraries generally
adopt the IEEE-754 floating-point standard [13]. From the
perspective of formal verification, this standard defines the
treatment of NaN (not-a-number) values in a very unhelpful
way. In particular, a NaN is not equal to itself; so equational
reasoning breaks down.

Our solution is to avoid allowing the program to generate NaNs.
Our C++ subset forbids the use of the standard library functions
that are provided to supply NaNs, and we put preconditions on
functions such as sqrt() and inverse trigonometric functions so
as to forbid input values that give rise to NaN outputs.

Another issue with floating point arithmetic is its inexact nature,
which is at variance with the real arithmetic generally assumed
by theorem provers. Our tool is currently unsound if floating-
point arithmetic is used. For example, the theorem prover might

consider that if x can be proved to be nonzero, then x * (1.0 / x)
== 1.0, but this is not true at execution time when x = 3.0. It
would be possible to model IEEE arithmetic more accurately in
the theorem prover by removing axioms for real arithmetic that
are not valid for practical floating point arithmetic, but this
greatly reduces the ability to prove useful things about the
program. Range arithmetic may provide a partial solution to this
issue.

4. RELATED WORK
The Larch/C++ project [14] defines an alternative annotation
language for C++ modules. It is supported by tools for syntax
and type checking, but does not appear to have been used to
perform formal verification of critical C++ programs.

Several tools are available for performing formal verification of
annotated C programs. These include the Jessie plugin [15] for
Frama-C, Vcc [16], our own Escher C Verifier [17], and
VeriFast [18]. The Vcc tool supports multithreaded C programs
with variables shared between threads. Some of these tools have
been compared by Rainer-Harbach [19].

5. CONCLUSION
As a starting point for a programming language subset for
developing high-integrity software, C++ is less suitable than
Ada 2012 because of its language design deficiencies and lack
of function contracts. Nevertheless, we have demonstrated that
it is possible to define a subset of C++ that is based on the
MISRA-C 2012 subset of C while at the same time enhancing
safety by including sufficient features of C++ to provide object
encapsulation, generics, and other useful facilities. Along with
this we have designed an annotation language to express
function contracts and other specifications, and implemented a
tool to generate and prove the associated verification conditions.

We therefore believe that where political or other considerations
force the use of C++ rather than Ada, this choice of
programming language need not of itself compromise safety, at
least in single-threaded programs.

6. REFERENCES
[1] Barnes, John. “SPARK - The Proven Approach to High

Integrity Software”. ISBN 978-0-957290-50-1, 2012.

[2] MIRA . “Guidelines for the Use of the C Language in
Critical Systems”, ISBN 978-1-906400-10-1 (paperback),
ISBN 978-1-906400-11-8 (PDF), 2013.

[3] MIRA. “Guidelines for the Use of the C++ Language in
Critical Systems”, ISBN 978-906400-03-3 (paperback),
ISBN 978-906400-04-0 (PDF), 2008.

[4] Lockheed Martin. “Joint Strike Fighter Air Vehicle C++
Coding Standards for the System Development and
Demonstration Program”, Document Number 2RDU00001
Rev C, December 2005.

[5] ISO/IEC 14882:2003, “Programming languages – C++”,
2003.

[6] ISO/IEC 14882:2011, “Programming languages – C++”,
2011.

[7] ISO/IEC TR 24772:2013 “Guidance to avoiding
vulnerabilities in programming languages through language
selection and use”, second edition.

[8] Crocker, David, and Judith Carlton. "Verification of C
programs using automated reasoning." Software
Engineering and Formal Methods, 2007. SEFM 2007. Fifth
IEEE International Conference on. IEEE, 2007.

[8] Crocker, David, and Judith Carlton. "Verification of C
programs using automated reasoning." Software
Engineering and Formal Methods, 2007. SEFM 2007. Fifth
IEEE International Conference on. IEEE, 2007.

[9] RTCA. DO-332 Object-Oriented Technology and Related
Techniques Supplement to DO-178C and DO-278A,
RTCA, 2011.

[10] Liskov, Barbara H., and Jeannette M. Wing. "A behavioral
notion of subtyping." ACM Transactions on Programming
Languages and Systems (TOPLAS) 16.6 (1994): 1811-
1841.

[11] Dos Reis & Stroustrup. “Specifying C++ concepts”, Dos
Reis, Gabriel, and Bjarne Stroustrup. ACM SIGPLAN
Notices 41.1 (2006): 295-308.

[12] Batty, Mark, et al. "Mathematizing C++ concurrency."
ACM SIGPLAN Notices. Vol. 46. No. 1. ACM, 2011.

[13] IEEE 754-2008, “IEEE Standard for Floating-Point
Arithmetic”, ISBN 978-0-7381-5752-8, 2008.

[14] Leavens, Gary T. "An overview of Larch/C++: Behavioral
specifications for C++ modules." Object-Oriented
Behavioral Specifications. Springer US, 1996. 121-142.

[15] Moy, Yannick, and Claude Marché. "The Jessie plugin for
Deduction Verification in Frama-C—Tutorial and
Reference Manual. INRIA & LRI, 2011."

[16] Dahlweid, Markus, et al. "VCC: Contract-based modular
verification of concurrent C." Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009. 31st
International Conference on. IEEE, 2009.

[17] Carlton, Judith, and David Crocker. "Escher Verification
Studio: Perfect Developer and Escher C Verifier."
Industrial Use of Formal Methods: Formal Verification:
155-193, 2013. ISBN 13: 9781848213630

[18] Jacobs, Bart, et al. "VeriFast: A powerful, sound,
predictable, fast verifier for C and Java." NASA Formal
Methods. Springer Berlin Heidelberg, 2011. 41-55.

[19] Rainer-Harbach, Marian. "Methods and Tools for the
Formal Verification of Software", Technische Universität
Wien, 2011. Retrieved from
http://aragorn.ads.tuwien.ac.at/publications/bib/pdf/rainer-
harbach_11.pdf, 12 June 2014.

[20] Crocker, David. "Safe object-oriented software: the
verified design-by-contract paradigm." Proceedings of the
Twelfth Safety-Critical Systems Symposium (ed.
F.Redmill & T.Anderson) 19-41, Springer-Verlag, London,
2004. ISBN 1-85233-800-8

[21] Spark 2014 Reference Manual, section 7.1.2. Retrieved
from http://docs.adacore.com/spark2014-
docs/html/lrm/packages.html#external-state, 31 August
2014.

[22] http://www.ncl.ac.uk/computing/research/project/4519,
retrieved 31 August 2014.

