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ABSTRACTIn this paper we introdu
e the so-
alled Beliefs-Obligations-Intentions-Desires or BOID ar
hite
ture. It 
ontains feed-ba
k loops to 
onsider all e�e
ts of a
tions before 
ommit-ting to them, and me
hanisms to resolve 
on
i
ts betweenthe outputs of its four 
omponents. Agent types su
h as re-alisti
 or so
ial agents 
orrespond to spe
i�
 types of 
on
i
tresolution embedded in the BOID ar
hite
ture.
1. INTRODUCTIONVarious 
ompeting de
ision models for autonomous agentshave been proposed, and it is still un
lear whi
h type ofmodel should be used in whi
h type of appli
ation. For ex-ample, some de
ision models are based on goal-based plan-ning or on variants of de
ision theory like qualitative de
isiontheory [15, 3℄, other models are based on 
ognitive modelslike belief-desire-intention models [7, 16℄, and yet other mod-els are based on so
ial 
on
epts like obligations and norms[10, 23, 22℄, as in deonti
 a
tion programs [12℄. Typi
ally,the de
ision model is based on an attempt to rea
h goals,satisfy desires, ful�ll obligations et
. Here we 
onsider de-
ision models for an agent that is overloaded with input,and typi
ally lives in a 
omplex and noisy environment. Hismain problem is not to �nd a way to rea
h his goals, satisfyhis desires or ful�ll his obligations, but whi
h of the desiresand obligations he will follow given his beliefs and inten-tions. That is, his main problem is to resolve the 
on
i
tsamong his attitudes.In this paper we propose the Beliefs-Obligations-Intentions-Desires or BOID ar
hite
ture, an agent ar
hite
ture that
ontains at least four 
omponents. As these 
omponentsoutput beliefs, obligations, intentions and desires only for
ertain inputs, they represent 
onditional informational andmotivational attitudes. Con
i
ts between these outputs areeither resolved by the ar
hite
ture's 
ontrol loop or by a
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separate sele
tion 
omponent that outputs new intentions.� Agent types are represented by 
ontrol loops. In a re-alisti
 agent beliefs override obligations, intentions ordesires; in a single-minded or stable agent intentionsoverride desires and obligations; in an open-minded orunstable agent desires and obligations override inten-tions; in sel�sh agents desires override obligations andin so
ial agents obligations override desires.� For other 
on
i
ts so-
alled extensions are 
onstru
ted,and one extension is sele
ted. This idea is adoptedfrom Thomason's BDP logi
 [21℄, whi
h is again basedon Reiter's default logi
 [19℄. To represent all e�e
tsof a
tions before 
ommitting to them the ar
hite
tureis based on feedba
k loops, as is explained in detaillater in this paper using the Al-Bob-Chris example ofDignum et.al. [11℄.In the implementation of the BOID ar
hite
ture dis
ussedin this paper the 
ontent of the informational and motiva-tional attitudes is represented by propositional formulas. Inthe simplest BOID the four 
omponents have as input a setof formulas { 
alled an extension { and as output anotherextension, and in the full BOID the input and output aresets of extensions. To resolve the se
ond type of 
on
i
t weadd another 
omponent to sele
t an extension. The outputof this 
omponent, the new intentions, is the input for aplanning 
omponent.In this paper we fo
us on the implementation of the BOIDar
hite
ture. The BOID logi
 is dis
ussed in more detailelsewhere [5℄. We fo
us on a single autonomous agent forwhom other agents are only important in as far as theyare represented impli
itly in norms and so
ial 
ommitments.Further multi-agent extensions, su
h as for example 
on-ventions to 
oordinate joint plans and trust to 
ooperatebetween 
ompetitive agents, are outside the s
ope of thispaper. However, we are aware that use of the name `boid'
ompels us to deal with large 
o
ks of agents in future re-sear
h.The layout of the paper is as follows. In Se
tion 2 di�erenttypes of 
on
i
ts are dis
ussed and a 
lassi�
ation of agenttypes is introdu
ed. In Se
tion 3 the BOID ar
hite
ture,logi
, and a 
ontrol loop are introdu
ed. In Se
tion 4 exam-ples from Se
tion 2 are formalized in the BOID ar
hite
tureand implementation details are dis
ussed.



2. BELIEFS, OBLIGATIONS, INTENTIONS
AND DESIRESReasoning about beliefs, obligations, intentions and desireshas been dis
ussed in pra
ti
al reasoning in philosophy [24,4℄, and its formalization to build intelligent autonomousagents has more re
ently been dis
ussed in qualitative de-
ision making in arti�
ial intelligen
e [11, 12, 18, 21℄. On
loser inspe
tion ea
h of these four 
on
epts 
onsists of re-lated (though often quite distin
t) 
on
epts, for example re-spe
tively knowledge and defaults, prohibitions and permis-sions, 
ommitments and plans, wishes and wants. All these
on
epts are grouped into these four 
lasses due to their rolein the de
ision making pro
ess: beliefs are informational at-titudes { how the world is expe
ted to be { obligations anddesires are the external and internal motivational attitudes,and intentions are the results of de
ision making.In this se
tion we fo
us on the intera
tion between these
lasses. In parti
ular, we dis
uss �fteen types of 
on
i
tswhi
h 
an o

ur between these four 
on
epts, we dis
uss howdi�erent types of agent resolve these 
on
i
ts in di�erentways, and we dis
uss some of the problems related to 
on
i
tresolution. This se
tion provides the ne
essary ba
kgroundto understand the 
hoi
es made in the BOID ar
hite
ture,whi
h is presented in the Se
tion 3.

2.1 Four conceptsBeliefs and desires are informational and motivational at-titudes whi
h 
an be related to two stru
tures in all othermodels of de
ision making. For example, they 
an be re-lated to respe
tively probabilities and utilities in 
lassi
alde
ision theory. Our interpretation of beliefs and desires isinspired by the BD logi
 of Thomason [21℄, though otherinterpretations 
an be given as well.Intentions are introdu
ed to relate previous de
isions tonew de
isions. In the philosophi
al literature it has been ar-gued, among others by Bratman [4℄, that intentions deservea spe
ial status besides beliefs and desires: they 
annot beredu
ed to them. This spe
ial status is the 
entral fo
us ofthe 
omputational BDI approa
hes of Cohen and Levesque[7℄, and of Rao and George� [16, 17, 18℄. Prior intentionsare the a
tions the agent has 
ommitted to in his previousde
isions. The in
orporation of intentions makes the agent'sbehavior more stable [16, 17℄ and makes it possible to takebounded reasoning into a

ount [4℄.Obligations are the most 
ontroversial 
omponent in ourar
hite
ture. One reason to introdu
e this 
omponent isto in
orporate obligations, norms and 
ommitments of so-
ial agents and so
ial rationality. However, there is anotherargument taken from resear
h in deonti
 logi
 and 
om-puter s
ien
e [14℄. The question has been raised why normsare usually not implemented expli
itly in 
omputer systems.An easy answer is that 
omputer programs already model`ideal' behavior. They must never violate the rules, just asthey must never fail. This obje
tion 
an be 
ountered byDignum's argument [10℄ that obligations 
an be violated,be
ause agents are autonomous. In a typi
al example, anagent has a desire to do otherwise and the desire is strongerthan the obligation. Even so
ial agents 
an violate theirobligations if they intended earlier to do otherwise and arenot open-minded enough to re
onsider this intention. Ex-amples of su
h 
ases are given below. Finally, in order todeal with 
on
i
ts among norms, and agent must be able todrop some obligations in favor of others.

2.2 Possible ConflictsOne of the main tasks of deliberative agents is to solve pos-sible 
on
i
ts among informational and motivational atti-tudes. In this subse
tion we list �fteen di�erent types of
on
i
ts that may arise either within ea
h 
lass or between
lasses. Dependent on the exa
t interpretation of these
lasses, some of the 
on
i
t types may be more interest-ing or important than others. We distinguish two generaltypes of 
on
i
ts: internal and external 
on
i
ts. Internal
on
i
ts are 
aused within ea
h 
omponent while external
on
i
ts are 
aused between them. Internal 
on
i
ts 
an bedistinguished into four unary subtypes (B ; O ; I ; D).B 
on
i
t: [21℄ I have a reason to believe the por
h light iso�, be
ause I asked my daughter to turn it o�. I havea reason to believe the por
h light is on, be
ause thelast time I saw it, it was on.O 
on
i
t: It is obligatory to be honest. It is obligatory tobe polite. If I am honest about it, it will be impolite.I 
on
i
t: [2℄ I intend to �nish the paper on Sunday. I in-tend to go to the bea
h on Saturday. If I go to the bea
hon Saturday, I 
annot �nish the paper on Sunday.D 
on
i
t: [8℄ I desire to smoke. I desire to be healthy.However, smoking endangers my health.External 
on
i
ts 
an be distinguished into six binary 
on-
i
t subtypes (BO ; BI ; BD ; OI; OD ; ID), and four ternary
on
i
t types (BOI; BOD; BID; OID) and one quadrupli
ate
on
i
t type (BOID).BO 
on
i
t: It is obligatory to see my mother-in-law thisweekend. But I think I have no time to go.BI 
on
i
t: I have a plan to see my mother-in-law thisweekend. However, I �nd it is impossible for me now,for my 
ar is broken.BD 
on
i
t: [21℄ I'd like to take a long va
ation. I'd needto get time o� from work to take a long va
ation. ButI 
an't get time o� from work.OI 
on
i
t: It is obligatory to see my mother-in-law thisweekend. But, I already have a plan to go to a 
onfer-en
e. If I go to the 
onferen
e, I 
annot go to see mymother-in-law.OD 
on
i
t: It is obligatory not to smoke in a non-smokingarea. I desire to smoke in my oÆ
e. However, my of-�
e is a non-smoking area.ID 
on
i
t: [21℄ I'd like to take a nap. But I intend to
at
h a plane.BOI 
on
i
t: If I smoke, I should smoke in a smokingarea. I intend to smoke. However, I know that it is anon-smoking area here.BOD 
on
i
t: If I smoke, I should smoke in a smokingarea. I desire to smoke. However, I know that it is anon-smoking area here.BID 
on
i
t: I intend to go to a 
onferen
e. I desire thatthe travel 
ost is not too expensive. I know that if Igo to the 
onferen
e, then the travel 
ost would be veryexpensive.



OID 
on
i
t: I intend to go to a 
onferen
e. I desire tostay in a luxury hotel. However, it is obligatory forme that if I go to the 
onferen
e, I should not stay ina luxury hotel.BOID 
on
i
t: I intend to go to a 
onferen
e. It is oblig-atory for me not to spend too mu
h money for the 
on-feren
e. Namely, either I should pay for a 
heap 
ightti
ket and stay in a better hotel, or I should pay foran expensive 
ight ti
ket and stay in a budget hotel. Idesire to stay in a better hotel. But, I know that these
retary has booked an expensive 
ight ti
ket for me.In the following subse
tion we stru
ture the resolution of
on
i
ts for these types. A 
lassi�
ation of 
on
i
t resolu-tion types is introdu
ed and dis
ussed. It is argued thatthese types of 
on
i
t resolutions 
orrespond with what inagent theories is 
alled agent types. Some well-known agenttypes are for example realisti
, sel�sh, so
ial, simple-minded,and open-minded agents.
2.3 Conflict resolution and agent typesA 
on
i
t resolution type is an order of overruling. Givenfour 
omponents, there are 24 possible orders of overruling.In this paper, we only 
onsider those orders a

ording towhi
h the belief 
omponent overrules any motivational atti-tude 
omponent. This redu
es the number of possible over-ruling orders to six. Some examples of 
on
i
t resolutionwith beliefs are given below.� A 
on
i
t between a belief and a prior intention meansthat an intended a
tion 
an no longer be exe
uted dueto the 
hanging environment. Beliefs therefore over-rule the prior intention, whi
h is retra
ted. Any de-rived 
onsequen
es of this prior intention are retra
tedtoo. Of 
ourse, one may allow prior intentions to over-rule beliefs, but this results in unrealisti
 behavior.� Analogously, a 
on
i
t between a belief and obligationor desire means that a violation has o

urred. As ob-served by Thomason [21℄, the beliefs must override thedesires or otherwise there is wishful thinking; the sameargument applies to obligations.Moreover, a 
on
i
t between a prior intention and an obli-gation or desire means that you now should or want to dosomething else than you intended before. Here prior inten-tions override the latter be
ause it is exa
tly this propertyfor whi
h intentions have been introdu
ed: to bring stabil-ity. Only in a 
all for intention re
onsideration su
h 
on
i
tsmay be resolved otherwise. For example, if I intend to go tothe 
inema but I am obliged to visit my mother, then I goto the 
inema unless I re
onsider my intentions.Using the order of string letters as the overruling order,these six ways of resolving 
on
i
ts 
an be represented asBOID, BODI, BDIO, BDOI, BIOD, and BIDO. Note thatwe overloaded the name BOID in this way, be
ause it be-
omes a 
ertain type of agent as well as the general namefor the agent ar
hite
ture.Realisti
. The six 
on
i
t resolution types (agent types) inwhi
h beliefs override all other 
omponents are 
alledrealisti
.Simple-minded. BIDO and BIOD are 
alled simple-mindedor stable, be
ause prior intentions overrule desires andobligations.

Sel�sh. BDIO and BDOI are 
alled sel�sh, be
ause desiresoverrule obligations.So
ial. BIOD, BOID and BODI are 
alled so
ial, be
auseobligations overrule desires.Other 
lassi�
ations are also possible. For example, we may
all agents super-sel�sh or super-so
ial if they are respe
-tively sel�sh and so
ial but not simple-minded. This meansthat super-sel�sh and super-so
ial agents start with respe
-tively BD and BO. Moreover, we 
an have partial prioritiza-tion 
onstraints. Examples of those are dis
ussed in Se
tion3.3. Summarizing, 
on
i
ts 
an be resolved a

ording to apriority ordering.
2.4 Minimality + conditionals = complicationsThere are several 
ompli
ations to further spe
ify and im-plement the 
on
i
t types and their asso
iated agent types.It may seem that we 
an use one of the many approa
hesto 
on
i
t resolution developed in other areas of arti�
ialintelligen
e like for example diagnosis [20℄, default reason-ing or fusion of knowledge and databases. However, there isa problem. Regardless of the exa
t de�nition of a 
on
i
t,in these approa
hes a 
on
i
t is always de�ned as a min-imal set, in the sense that if two sets are 
on
i
ting thenone of the sets 
annot be a stri
t subset of the other one.Whereas minimal sets may be the obvious 
hoi
e in diag-nosis and other appli
ations, it is problemati
 in de
isionmaking with 
onditionals.An example has been given by Dignum et.al. [11℄, whodis
uss an extension of the BDI ar
hite
ture with obliga-tions. In this example, there is a guy 
alled Al who has anobligation to perform a task for Bob and another in
ompat-ible obligation to perform a task for Chris. Moreover, Alhas the norm that he should tell Bob if he does not intendto meet this obligation. The problem dis
ussed in the paperis that the existen
e of the norm should a�e
t Al's de
isionon whether to intend to ful�ll his obligation:\Consider Al's obligation above, until he a
tually
ommits to not meeting his obligation to Bob,the need to tell Bob does not exist, yet the po-tential for it may have a signi�
ant impa
t onhis de
ision on whether to do the task for Bob.For example, imagine that the task is trivial (i.e.,the dire
t 
onsequen
es of not doing the task aresmall), but the so
ial 
onsequen
es of not inform-ing Bob are very high (i.e., Al is per
eived asunreliable)." [11, p.115℄The point is thus that to resolve the 
on
i
t we 
annot re-stri
t ourselves to the minimal set (the two obligations), butwe have to 
onsider the whole set. In general, agents should
onsider the e�e
ts of a
tions before they 
ommit to it. Thisis the reason why in the BOID ar
hite
ture dis
ussed next
omplete extensions are 
onstru
ted before one is sele
ted,instead of solving a 
on
i
t as one is en
ountered.



3. AGENT ARCHITECTUREIn this se
tion we dis
uss the BOID ar
hite
ture. We �rstdis
uss the 
ase in whi
h all 
on
i
ts 
an be resolved bythe agent type, like the examples in Se
tion 2.2. Thus itneeds to build only a single set of formulas as output: asingle extension (Se
tion 3.2). After that, we dis
uss thefull BOID whi
h also 
overs more 
omplex 
ases like theexample in Se
tion 2.4. This se
ond ar
hite
ture 
al
ulatesmultiple extensions as output of the 
omponents (Se
tion3.3). We introdu
e an additional 
omponent that sele
tsone �nal extension, whi
h represents the agent's intentions.
3.1 ComponentsIn general, an agent 
an be seen as a bla
k box with obser-vations as input and intended a
tions as output, whi
h arerelated to the environment by dete
tors and e�e
tors. In theBOID ar
hite
ture these attitudes are mapped to four 
om-ponents within the agent ar
hite
ture, in the sense that ea
h
omponent outputs one of the attitudes. The 
omponentsasso
iated with an attitude 
an be implemented in a vari-ety of di�erent ways. For example, the Beliefs 
omponentmay maximize 
ross entropy or apply AGM belief revision[1℄, and its output may be a probability distribution, a setof them, plausibility measures, a belief set, et
. Moreover,the Desires 
omponent may be based on a quantitative util-itarian model and maximize expe
ted utility to determinegoals. The Obligations and Intentions 
omponents reasonwith personal as well as so
ial obligations and 
ommitmentsto sele
t goals and plans to rea
h sele
ted goals.In the BOID ar
hite
ture dis
ussed in this paper, the be-havior of ea
h 
omponent is spe
i�ed by propositional logi-
al formulas, often in the form of defeasible rules. The inputand output of the 
omponents is represented by sets of log-i
al formulas, 
losed under logi
al 
onsequen
e. FollowingThomason [21℄ these are 
alled extensions. We distinguishbetween the agent's stati
 ar
hite
ture and its dynami
 be-havior. In our approa
h, the former only 
on
erns the agentwhereas the latter 
on
erns the agent with its environment.
3.2 Single Extension BOIDWe start with a BOID ar
hite
ture that builds only one ex-tension. The logi
 that spe
i�es the behavior of the ar
hite
-ture is parameterized with an ordering fun
tion � to resolve
on
i
ts. It 
onstraints the order in whi
h derivation stepsfor di�erent 
omponents are undertaken and 
hara
terizesthe type of BOID. We �rst dis
uss the BOID logi
, thenthe agent types and �nally the dynami
 
ontrol loop thatdetermines how the BOID intera
ts with its environment.
3.2.1 Logic or calculation schemeEa
h 
al
ulation starts with a set of observationsW . Unlikenormal beliefs, whi
h may have a default 
hara
ter, obser-vations 
an not be overridden. We assume initial sets ofdefeasible rules for the other 
omponents: B,O, I�, D. Wewrite I� to emphasize that the set I 
ontains prior inten-tions.We �rst de�ne an ordering fun
tion � on rules that repre-sents the type of agent. In 
ase of multiple appli
able rules,the one with the lowest � value is applied. In this version �is 
omplete: it assigns a unique value to ea
h rule. Thereforeit not only resolves 
on
i
ts between 
omponents, but alsoamong rules within 
omponents. Given �, the 
al
ulationfor building extensions 
an now be de�ned as follows.

Definition 1 (BOID Cal
ulation S
heme). Let L bea propositional language, a tuple � = hW;B;O; I�; Di a BOIDtheory with W a subset of L and B, O, I� and D sets ofordered pairs of L written as � ,! w, and � be a fun
tionfrom B [ O [ I� [D to the integers.We say that a rule (� ,! w) is appli
able to an extensionE, i� � 2 E and :w 62 E.De�neE0 =W and for i � 0Ei+1 = ThL(Ei [ fw j (� ,! w) 2 B [O [ I� [D and(� ,! w) is appli
able to Ei and6 9(� ,! v) 2 B [O [ I� [D appli
able to Eisu
h that �(� ,! v) < �(� ,! w) g ):Then E � L is an extension for � i� E = [1i=0Ei.In pra
ti
e not the whole extension is 
al
ulated in the ar-
hite
ture (sin
e this may be in�nite), but only the set ofoutputs w or the set of rules � ,! w that 
an be 
al
ulatedbefore the agent runs out of resour
es.
3.2.2 Agent typesIn the BOID ar
hite
ture, we start with the observationsand 
al
ulate a belief extension by iteratively applying be-lief rules. When no belief rule is appli
able anymore, basedon the agent type (i.e. 
on
i
t resolution type), either theO, the I�, or the D 
omponent is 
hosen from whi
h oneappli
able rule is sele
ted and applied. When a rule froma 
hosen 
omponent is applied su

essfully, the belief 
om-ponent is attended again and belief rules are applied. Ifthere is no rule from the 
hosen 
omponent appli
able, thenagain based on the agent type the next 
omponent is 
hosen.If there is no rule from any of the 
omponents appli
able,then the pro
ess terminates { a �xed point is rea
hed { andone extension is 
al
ulated. For the 
al
ulation s
heme inDe�nition 1 this approa
h means that � is 
onstru
ted asfollows.Definition 2 (Agent Types). Let B;O; I�; and D bethe mutually ex
lusive sets of rules for beliefs, obligations,prior intentions, and desires, respe
tively. Let also X and Ybe any of these sets. An agent type is de�ned as a fun
tion� : B [ O [ I� [ D ! N that assigns a unique integer toea
h rule from B [O [ I� [D su
h that for X 6= Y :8rx 2 X 8ry 2 Y �(rx) < �(ry) _8rx 2 X 8ry 2 Y �(ry) < �(rx).Note that � assigns unique values to the rules of all 
ompo-nents su
h that the values of all rules from one 
omponentare either smaller or greater than the values of all rules fromanother 
omponent. The agent types of se
tion 2 
an nowbe 
hara
terized as follows.so
ial simple-minded or stable agent�(rb) < �(ri�) < �(ro) < �(rd)sel�sh simple-minded agent�(rb) < �(ri�) < �(rd) < �(ro)so
ial open-minded agent�(rb) < �(ro) < �(rd) < �(ri�)sel�sh open-minded agent�(rb) < �(rd) < �(ro) < �(ri�)



3.2.3 Specialized architecturesAn agent ar
hite
ture spe
i�es the 
omponents of an agent,how they are related, and how the information 
ows around.The 
ombination of the 
al
ulation s
heme with an agenttype indu
es a 
ertain agent ar
hite
ture. For example, 
on-sider the so
ial simple-minded agent type, with � de�ned asabove. This agent type indu
es the ar
hite
ture illustratedin Figure 1. It should be interpreted as follows. Ea
h 
om-ponent re
eives an input extension and generates an outputextension. If the input and output extensions are identi-
al (i.e. no new rules 
an be applied), the output extension
ows to the next 
omponent, otherwise it 
ows ba
k throughthe feedba
k loop. The initial extension is based on a setof observations, whi
h 
an be empty. Then, belief rules areapplied iteratively, indi
ated by the feedba
k loop aroundthe B 
omponent. If no more belief rules are appli
able,then the 
al
ulated extension is sent to the I� 
omponent.If possible, one prior intention is applied and the extensionis sent ba
k to the B 
omponent via the feedba
k loop fromI� to B; otherwise the extension goes to the O 
omponent,et
.
B I O D-

Obs.
Act.Figure 1: so
ial simple minded

3.2.4 General architectureAs we have seen, all six realisti
 agent types share one 
har-a
teristi
: there are indefeasible observations, and the belief
omponent overrules all other 
omponents. The order inwhi
h the other 
omponents are applied depends on the �parameter. That means that, when � is 
onsidered as aparameter of the underlying logi
 of extension 
al
ulations,a general agent ar
hite
ture 
an be proposed for all agenttypes.In addition to de
ision making, also the planning pro-
ess plays an important role. Planning is needed to de
idewhi
h a
tions should be performed in order to a
hieve theintentions represented by the 
al
ulated extension. For thisreason, an additional 
omponent P is added to determinewhi
h a
tions should be performed. The input to the plan-ning 
omponent is an extension; the output is set of a
tionss
heduled to be performed. The resulting general agent ar-
hite
ture is illustrated in Figure 2. The ar
hite
ture shouldbe interpreted as above: if the output extension of a 
ompo-nent di�ers from the input extension, it 
ows ba
k throughthe feedba
k loop; otherwise it 
ows to one of a

essible
omponents determined by the � fun
tion.
3.2.5 Control loopConsider a BOID agent, 
on�gured by a 
ertain �, in a dy-nami
 environment. It re
eives input from the environment,
al
ulate an extension, de
ides whi
h a
tions should be per-formed, updates all 
omponents, and starts observing theenvironment again. The agent type � together with thisorder of pro
esses de�ne the 
ontrol loop for the BOID ar-
hite
ture, whi
h determines the behavior of the agent in

B

O

D

I - PObs. Act.

Figure 2: BOID Ar
hite
turedynami
 environment. This 
ontrol loop 
an be written asfollows:set �;repeatE := 
al
ulate extension(Observations,�);plan extension(E);update(B;O; I�; D)until foreverNote that the extension 
al
ulation whi
h is a part of the
ontrol loop is itself a 
omplex pro
ess whi
h is explained inDe�nition 1.
3.3 Multiple Extension BOIDTo a

ount for the general situation, in this subse
tion wepropose the multiple extension BOID ar
hite
ture, whi
h
al
ulates a set of extensions instead on one single extension.There 
an be two reasons for multiple extensions. First,there 
an be larger sets than the one dis
ussed in Se
tion2.2, like for example the examples dis
ussed in Se
tion 2.4.Se
ond, the examples dis
ussed in Se
tion 2.2 
an lead tomultiple extensions if the agent type is less spe
i�
 than theones dis
ussed thus far.
3.3.1 More agent typesLet rx 2 X where X is either B;O; I�; or D. Then, basedon De�nition 2 some agent types that are introdu
ed in theprevious se
tion 
an be de�ned as a � fun
tion with 
ertainproperties.simple-minded agent�(rb) < �(ri�) < �(ro) and �(rb) < �(ri�) < �(rd)super-so
ial agent�(rb) < �(ro) < �(ri�) and �(rb) < �(ro) < �(rd)super-sel�sh agent�(rb) < �(rd) < �(ri�) and �(rb) < �(rd) < �(ro)The super-sel�sh agent type, for whi
h the � fun
tion is de-�ned above, indu
es the agent ar
hite
ture illustrated in Fig-ure 3. In this ar
hite
ture, the extension generated by the D
omponent goes ba
k to the B 
omponent by the feedba
kloop if one desire rule is su

essfully applied. Otherwise, itgoes either to the I� 
omponent or to the O 
omponent.This non-determinism indi
ates a 
hoi
e of the super-sel�shagent. For example, 
onsider the OI 
on
i
t in whi
h itis obligatory to see my mother-in-law this weekend, but Ialready have an intention to go to a 
onferen
e. A sel�shagent 
annot resolve this 
on
i
t automati
ally by his type,and has to de
ide in some other way.



B

I

O

D

-

Obs.
Act.Figure 3: super-sel�sh

3.3.2 Calculation schemeOf 
ourse, in order to 
al
ulate multiple extensions, theBOID logi
, the � fun
tion, and the 
ontrol loop need tobe adapted as well. For example, the � fun
tion will notassign unique numbers to the rules of one 
omponents su
hthat more than one rule 
an be applied at a 
ertain stage ofextension 
al
ulation.Definition 3 (BOID Cal
ulation S
heme). Let� = hW;B;O; I�; Di be a BOID theory and � be an agenttype fun
tion.De�neS0 = fWg, and for i � 0Si+1 = f ThL(E [ fwg) j E 2 Si;(� ,! w) 2 B [O [ I� [D and(� ,! w) is appli
able to E and6 9(� ,! v) 2 B [O [ I� [D appli
able to Esu
h that �(� ,! v) < �(� ,! w);if su
h (� ,! w) exist; otherwise w = > g ) g:Then E � L is an extension for � i� S = [1i=0Si.
3.3.3 Extension selectionAn additional 
omponent, 
alled new intention 
omponent(I+) is added resulting in the BOID ar
hite
ture illustratedin Figure 4. This 
omponent sele
ts one extension from the
al
ulated set of extensions and sends it to the planning 
om-ponent. The OI 
on
i
t above 
an then be modeled by anintera
tion between the I+ and the planning 
omponents.In fa
t, the I+ 
omponent is assumed to impose an order-ing on the input extensions (based on an extension sele
tionstrategy ) su
h that it 
an sele
t and send the best extensionto the planning 
omponent. If for any reason the sele
tedextension 
annot be translated to a feasible plan, the I+
omponent sends the next best extension to the planning
omponent.
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Figure 4: Multiple Extension BOIDThe update of the 
omponent in the 
ontrol loop needs tobe modi�ed as well. A spe
i�
 update is based on the fa
tthat the sele
ted extension indi
ates new intentions, whi
hforms the prior intentions for the next round of deliberation.

Therefore, beside updating all 
omponents, the I� 
ompo-nent is updated based on the sele
ted extension.As noted the I+ 
omponent imposes an ordering on inputextensions based on an extension sele
tion strategy. Here aresome options, whi
h all have their drawba
ks. But remem-ber, the agent has to a
t so even if the extension sele
tionis problemati
, he has to 
hose something.1. Sele
t an extension randomly;2. First sele
t the beliefs, then sele
t the desires;3. Choose desires su
h that it minimizes the 
on
i
ts be-tween beliefs;4. Sele
t maximal or minimal extensions;5. Sele
t extensions with more beliefs, or more desires,et
;6. Sele
t extensions that have larger interse
tion withmost other extensions.There are two more important issues whi
h have to be ad-dressed in a study of de
ision-making as 
hoosing extensions.First, apart from 
hoosing an extension we 
an also de
idea 
on
i
t between beliefs by simply making an observation,and 
he
k in the world whi
h belief is true. This leads usto the well-known problems of planning with partial obser-vations. In general, we 
an use an ora
le to test whether aproposition is in or out of the extension. Se
ond, in pra
ti
ewe have to add some mathemati
al stru
ture to the rules,with for example priorities as in prioritized rule logi
. Wenow have mu
h more 
omplexity due to our 
omponents!Another option is to go more de
ision-theoreti
 and asso-
iate losses and gains with the rules. This is by itself a lineof resear
h with many interesting problems [9℄. These issuesof extension sele
tion are left for further resear
h.
4. IMPLEMENTATION AND EXAMPLESThe idea behind the BOID ar
hite
ture is very general; 
om-ponents 
an be implemented by any me
hanism that 
anprodu
e a 
ertain input-output behavior. In the des
riptionabove we assumed that 
omponents are des
ribed by simpleprodu
tion rules. However, this assumption is not 
ru
ial.
4.1 Prolog PrototypeNevertheless we found it useful to implement a prototype ofthe BOID in Prolog, along with the examples of se
tion 2.In this way one 
an try out di�erent agent types, and see iftheir behavior on the examples 
omes out as expe
ted. Thesour
e 
ode 
an be found at http://www.
s.vu.nl/~boid/. Wemade the following implementation 
hoi
es.1. Components are implemented by produ
tion rules ofthe form x rule(Index, A |> W), where is x is eitherB;D; I or O, and where Index is a variable that indi-
ates the parti
ular example or situation that is mod-eled. A andW are both formulas of propositional logi
,where the 
onsequent W does not 
ontain any disjun
-tions. Rules with disjun
tions in the 
onsequent 
anbe repla
ed by two rules with the same ante
edent; onefor ea
h disjun
t. Un
onditional beliefs, desires, inten-tions or obligations are represented by a rule with >or true in the ante
edent.



2. Extensions are represented by sets of literals: atomi
formulas or negated atomi
 formulas. In order to testif a rule applies to a 
ertain extension, the ante
edentof the rule is broken down into its literal parts usingDe Morgan rules, and for these parts it is then 
he
kedif they are satis�able by the extension. When a ruleis applied, the 
onsequent of the rule is also brokendown into its literal subparts, and these are added tothe extension.Currently, there are two versions of the implementation.The �rst implements a single-extension BOID. It is a simpleprioritized produ
tion system, whi
h iterates through thefollowing loop. First, �nd all rules that are appli
able tothe 
urrent extension: the 
on
i
t set. Se
ond, sele
t therule with a minimal � value from the 
on
i
t set. Third,apply the sele
ted rule to the extension, resulting in a newextension. This loop is repeated until either no more appli-
able rules are found, or until a �xed point has been rea
hed.Be
ause � assigns a unique priority to ea
h rule, a single ex-tension results.The se
ond implementation approximates a multi-extensionBOID. This version does not make expli
it use of the � pri-ority value for ea
h rule, but uses a four-letter ranking on
omponents as in se
tion 2.3. For example, in a `BIDO' typeagent, the beliefs 
omponent is applied, followed by one in-tention rule, feeding ba
k the result to the B 
omponentagain. Then D rules 
an be applied, ea
h time feeding ba
kthe results to the I and B 
omponents as well. Finally, theO rules are applied, ea
h time feeding ba
k the results tothe B, I and D 
omponents as well. Con
i
ts among ruleswithin one 
omponent are solved by the top-to-bottom or-der of appli
ation used in Prolog. It is possible to ba
k-tra
kover these 
hoi
es, produ
ing di�erent possible extensions.In a similar way, also partial agent types 
an be dealt with,produ
ing even more alternative possible extensions.There are alternative ways of implementing the prototype.Sin
e the single-extension BOID makes use of a rather stan-dard prioritization me
hanism to deal with 
on
i
t resolu-tion, many produ
tion systems woud be suitable to imple-ment a BOID. An example is the CLIPS expert system shell,whi
h uses the fast RETE algorithm for mat
hing appli
ablerules [13℄. For su
h imlementations, the BOID be
omes a de-sign heuristi
, whi
h helps the knowledge engineer to 
lusterrules into 
omponents and sele
t a prioritization me
hanismbased on the desired agent type.
4.2 ExamplesIn this se
tion, we illustrate how 
on
i
ts between attitudes
an be solved within the BOID ar
hite
ture and its 
orre-sponding 
ontrol loop. To this end, we work out two ex-amples presented in Se
tion 2. Consider the example of abinary BD 
on
i
t introdu
ed by Thomason [21℄. This ex-ample 
an be represented by the following rules:b rule(ex1, true |> �time o�).b rule(ex1, �time o� |> �va
ation).d rule(ex1, true |> va
ation).Let the observations of a realisti
 agent be empty. We �rstderive all beliefs resulting in the following extension:[ �time o�, �va
ation ℄

This extension is input to the desire 
omponent. Be
ausethe only D-rule is not appli
able, the �nal result remainsthe same. A non-realisti
 agent on the other hand wouldprodu
e [ va
ation, �time o� ℄ as the �nal result. Su
h anagent 
learly su�ers from `wishful thinking'.Now, 
onsider the more 
omplex example of a quadrupli-
ate 
on
i
t as given in Se
tion 2. This example 
an berepresented as follows.b rule(ex2, true |> expensive ti
ket).b rule(ex2, �too mu
h money|> 
heap hotel &�expensive ti
ket).b rule(ex2, �too mu
h money|> �
heap hotel &expensive ti
ket).i rule(ex2, true |> 
onferen
e).o rule(ex2, 
onferen
e |> �too mu
h money).d rule(ex2, true |> �
heap hotel).Lets examine a so
ial simple minded agent, of type `BIOD'.Let the input of the agent be empty. Then, following the
ontrol loop, we �rst derive all beliefs and intentions, result-ing in the following extension:[ 
onferen
e, expensive ti
ket ℄Be
ause it is a so
ial agent, the obligation rule is applied�rst. This results in the following intermediate extension:[ �too mu
h money, 
onferen
e, expensive ti
ket ℄This extension is fed ba
k into the B 
omponent where ittriggers the third rule, be
ause the se
ond rules is not ap-pli
able as we already have expensive ti
ket. This produ
esthe following �nal extension:[ 
heap hotel, �too mu
h money, 
onferen
e,expensive ti
ket ℄However, in a sel�sh agent of type `BIDO', the D-rule wouldbe applied �rst, resulting in the following �nal extension:[ �
heap hotel, 
onferen
e, expensive ti
ket ℄Note that sending the results ba
k to the belief 
omponentdoes not make any di�eren
e here.
5. RELATED RESEARCHPrevious theoreti
al resear
h has often negle
ted to show apossible implementation. Like [11, 6℄ we not only providea theoreti
al framework, but we also provide an ar
hite
-ture whi
h in
ludes a 
ontrol pro
edure in the style of Raoand George�'s BDI interpreter [17℄. We extend BDI withobligations and 
on
i
t resolution.Thomason [21℄ proposes a so-
alled BDP-logi
 for beliefs,desires and planning whi
h is 
apable of modeling a widerange of 
ommon-sense pra
ti
al arguments, and whi
h 
anserve as a more general and 
exible model for agent ar
hi-te
tures. In Thomason's approa
h it is expli
itly de�nedwhen desires override beliefs, whereas in our approa
h thisis determined by the 
ontrol loop. A detailed 
omparison
an be found in [5℄.Dignum et.al. [11℄ propose an alternative extension ofBDI with obligations. It is based on on extension of theBDI interpreter with potential a
tions to reason about thesee�e
ts.



6. CONCLUDING REMARKSWe have dis
ussed possible 
on
i
t types that may arisewithin or among informational and motivational attitudesand we explained how these 
on
i
ts 
an be resolved withinthe BOID ar
hite
ture. The resolution of 
on
i
ts is basedon Thomason's idea of prioritization, whi
h is implementedin the BOID ar
hite
ture as the order of derivations fromdi�erent types of attitudes. We have shown that the orderof derivations determines the type of an agent. For exam-ple, deriving desire before beliefs produ
es wishful think-ing agents and deriving obligations before desires produ
essuper-so
ial agents. In general, the order of derivation 
anbe used to identify di�erent types of agents.An important ingredient in the BOID ar
hite
ture is thepresen
e of feedba
k loops. Through these feedba
k loopsalready derived beliefs, obligations, desires and intentionsare sent ba
k (at several stages) as new input to the BOID.These feedba
ked inputs may trigger new beliefs, obliga-tions, desires and even intentions. For example, an obliga-tion to go to the assistan
e of your neighbors may indu
ethe obligation to tell them you will 
ome, and a desire to goto the dentist may indu
e the belief that pain will result {but of 
ourse not the desire that pain results.Issues for further resear
h are the methods for extensionsele
tion and its relation with planning and s
heduling. Itis possible that an intention is not immediately realized andthat the future deliberations of the BOID 
an be in
uen
edby these s
heduled intentions. In the presented version ofthe BOID, all prior intentions are sent ba
k via the feedba
kloop as well. These intentions 
an be overridden by othermotivational attitudes su
h that the early derived intentionsmay need to be removed from the s
heduled plans (inten-tion re
onsideration). Note also that adding a s
hedulingand planning 
omponent in the BOID ar
hite
ture may giverise to the so-
alled delayed stimulus response behavior, inthe sense that the BOID may be responding to an earlierobserved stimulus. For example, agent A intends to go onva
ation. He re
eives the information that his mother inlaw is hospitalized and therefore he has to visit her. Aftervisiting her, he 
an return to the old intention and go onva
ation.In our opinion the gap between our proposed ar
hite
turesand their underlying logi
s is mu
h smaller than the verylarge gap between modal BDI logi
s and BDI ar
hite
tures.We believe that the presented ar
hite
ture and ben
hmarkexamples already provides some material to 
lose the gapbetween theory and pra
ti
e of agent design.
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