
Communication Environment

Richly

Restricted

Communicating Cores

Capability Communication Environment

Ecosystem

Radically Cool Coordination E-science

Research Cores Communication Environment

Rabble-of Communicating Cores Experiments

Rock Creek Communication Environment

Rorschach Core Communication Express

Rapidly Communicating Cores Environment

R C C E
A small library for many-core

communication

Reduced Compact

Rob van der Wijngaart
Software and Services Group

Tim Mattson
Intel Labs

Intel Labs Single-chip Cloud Computer Symposium
February 12, 2010

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

2

Top Level Hardware Architecture

•6x4 mesh 2 Pentium™ P54c cores per tile

•256KB L2 Cache, 16KB shared MPB per tile

•4 iMCs, 16-64 GB total memory

M
e
m

o
ry

 C
o
n
tr

o
lle

r

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

M
e
m

o
ry

 C
o
n
tr

o
lle

r

M
e
m

o
ry

 C
o
n
tr

o
lle

r
M

e
m

o
ry

 C
o
n
tr

o
lle

r

System I/F

Tile

Core 1

Core 0

L2$1

L2$0

Router MPB

Core 1

Core 0

R = router, iMC = integrated Memory Controller, MPB = message passing buffer

Tile area: ~17 mm2

SCC die area: ~567 mm2

3

Programmer’s view of SCC
• 48 x86 cores with the familiar x86 memory model for Private

DRAM
• 3 memory spaces, with fast message passing between cores

(/ means on/off-chip)

CPU_0

L
1

$

L
2

$

Private
DRAM

CPU_47

L
1

$

L
2

$

Private
DRAM

…

Shared on-chip Message Passing Buffer (8KB/core)

Shared off-chip DRAM (variable size)

t&s t&s

t&s Shared test and set register

4

SCC Software research goals

• Understand programmability and application
scalability of many-core chips.

• Answer question “what can you do with a many-core
chip that has (some) shared non-cache-coherent
memory?”

• Study usage models and techniques for software
controlled power management

• Sample software for other programming model and
applications researchers (industry partners, Flame
group at UT Austin, UPCRC, YOU …)

Our research resulted in a light weight, compact, low latency
communication library called RCCE (pronounced “Rocky”)

5
Third party names are the property of their owners.

SCC Platforms

• Three platforms for SCC and RCCE

– Functional emulator (on top of OpenMP)

– SCC board with two “OS Flavors” … Linux or Baremetal
(i.e. no OS)

SCC

Apps

Linux

RCCE

PC or server with
Windows or Linux

Apps

OpenMP

SCC

Apps

Baremetal C

RCCE_EMU

Driver

RCCE RCCE

Functional emulator,
based on OpenMP.

SCC board – NO OpenMP

icc
ifort
MKL

icc MKL icc fort MKL

RCCE supports greatest common denominator between the three platforms
6

Third party names are the property of their owners.

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

7

High level view of RCCE

• RCCE is a compact, lightweight communication
environment.

– SCC and RCCE were designed together side by side:
> … a true HW/SW co-design project.

• RCCE is a research vehicle to understand how
message passing APIs map onto many core chips.

• RCCE is for experienced parallel programmers
willing to work close to the hardware.

• RCCE Execution Model:

– Static SPMD:
> identical UEs created together when a program starts (this is a

standard approach familiar to message passing programmers)

UE: Unit of Execution … a software entity that advances a
program counter (e.g. process of thread).

8

How does RCCE work? Part 1

Consequences of MPBT properties:

 If data changed by another core and image still in L1, read returns stale data.

 Solution: Invalidate before read.

 L1 has write-combining buffer; write incomplete line? expect trouble!

 Solution: Don’t. Always push whole cache lines

 If image of line to be written already in L1, write will not go to memory.

 Solution: Invalidate before write.

Message passing buffer
memory is special … of
type MPBT

Cached in L1, L2
bypassed. Not coherent
between cores

Data cached on read, not
write. Single cycle op to
invalidate all MPBT in L1
… Note this is not a flush

Discourage user operations on data in MPB. Use only as a data
movement area managed by RCCE … Invalidate early, invalidate often

9

How does RCCE work? Part 2

…
0 1 2 473

• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

10

How does RCCE work? Part 2

…
0 1 2 473

• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

2

A = (double *) RCCE_malloc(size)
Called on all cores so any core can
put/get(A at Core_ID) without error-
prone explicit offsets

Flags allocated and
used to coordinate
memory ops

11

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
from the beginning of a core’s MPB.

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

12

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
from the beginning of a core’s MPB.

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

Put(A,0)

13

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
from the beginning of a core’s MPB.

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

Put(A,0) Get(A, 0)

… and use flags to make the puts and gets “safe”

14

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
from the beginning of a core’s MPB.

The RCCE library

•RCCE API provides the basic message
passing functionality expected in a tiny
communication library:

– One + two sided interface (put/get
+ send/recv) with synchronization
flags and MPB management
exposed.

– The “gory” interface for
programmers who need the most
detailed control over SCC

– Two sided interface (send/recv)
with most detail (flags and MPB
management) hidden.

– The “basic” interface for typical
application programmers.

send() recv ()

put() get()

15

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

16

Linpack and NAS Parallel benchmarks

3. LU: Pencil decomposition
Define 2D-pipeline process

– await data (bottom+left)

– compute new tile

– send data (top+right)

4

4

4

4

4

4

4

3

3
3

3

3

2
2

2

1

x-sweep

z
-s

w
e

e
p

1. Linpack (HPL): solve dense system of linear equations
– Synchronous comm. with “MPI wrappers” to simplify porting

2. BT: Multipartition decomposition

– Each core owns multiple blocks (3 in this case)

– update all blocks in plane of 3x3 blocks

– send data to neighbor blocks in next plane

– update next plane of 3x3 blocks

17
Third party names are the property of their owners.

RCCE functional emulator vs. MPI
HPL implementation of

the LINPACK benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 21 41 61 81 101 121 141 161 181 201

G
F

lo
p

s

Case Number

MPI

RCCE

RCCE 1-bit flags

Low overhead synchronous
message passing pays off
even in emulator mode
(compared to MPI)

18

Standard HPL algorithm variant case numbers

G
F
L
O

P
S

*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information

on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

These results provide a comparison of RCCE and MPI on an older 4 processor Intel® Xeon® MP
SMP platform* using a tiny 4x4 block size. These are not official MP-LINPACK results.

Matrix Order fixed at 2200
4 Intel®Xeon® MP Processors

Third party names are the property of their owners.

Linpack, on the Linux SCC platform

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

cores

G
F

lo
p

s

Matrix order 1000

• Linpack (HPL)* strong scaling results:
– GFLOPS vs. # of cores for a fixed size problem (1000).
– This is a tough test … scaling is easier for large problems.

• Calculation Details:
– Un-optimized C-BLAS
– Un-optimized block size

(4x4)
– Used latency-optimized

whole cache line flags
– Performance dropped

~10% with memory
optimized 1-bit flags

19

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information

on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official LINPACK benchmark results.

Third party names are the property of their owners.

LU/BT NAS Parallel Benchmarks, SCC

0

400

800

1200

1600

2000

0 10 20 30 40

cores

M
F

lo
p

s

LU

BT

• Using latency
optimized,
whole cache
line flags

Problem size: Class A, 64 x 64 x 64 grid*

20

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information

on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official NAS Parallel benchmark results.

Third party names are the property of their owners.

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

21

RCCE Power Management API

• RCCE power management emphasizes safe control:
V/GHz changed together within each 4-tile (8-core)
power domain.

– A Master core sets V + GHz for all cores in domain.

> RCCE_istep_power():

• steps up or down V + GHz, where GHz is max for selected voltage.

> RCCE_wait_power():

• returns when power change is done

> RCCE_step_frequency():

• steps up or down only GHz

• Power management latencies

– V changes: Very high latency, O(Million) cycles.

– GHz changes: Low latency, O(few) cycles.

22

Conclusions

• RCCE software works
– RCCE’s restrictions (Symmetric MPB memory model and blocking

communications) have not been a fundamental obstacle

– Functional emulator is a useful development/debug device

• SCC architecture
– The on-chip MPB was effective for scalable message passing

applications

– Software controlled power management works … but it’s
challenging to use because (1) granularity of 8 cores and (2)
high latencies for voltage changes

– The Test&set registers (only one per core) will be a bottleneck.
> Sure wish we had asked for more!

• Future work
– Add shmalloc() to expose shared off-chip DRAMM (in progress).

– Move resource management into OS/drivers so multiple apps can
work together safely.

– We have only just begun to explore power management
capabilities … we need to explore additional usage models.

23

SW Acknowledgements

Management Console software Michael Riepen

BareMetalC workflow Michael Riepen

Linux for SCC Thomas Lehnig

Paul Brett

System Interface FPGA development Matthias Steidl

TCP/IP network driver Werner Haas

RCCE library and apps Rob Van der Wijngaart
Tim Mattson

Developer tools
(Intel compilers and math libraries)

Patrick Kennedy

Mandelbrot app + visualization Michael Riepen

• SCC System software:

• SCC Application software:

24

25

2626

Backup slides

• Power Management

• Using RCCE and example RCCE code

• Additional RCCE implementation details

• RCCE and the MPI programmer

• SSC Literature reference

2727

Frequency

Voltage

MC

MC MC

MC R

Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

R

R

Tile

Tile

R

R

Tile

Tile

R

Tile

R

Tile

R

Tile Tile

R

Bus to
PCI

Tile

Tile

R

R

Tile

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R RR

RR

R

RRR

RC package

Power and memory-controller domains

Power ~ F V2

–Power Control domains
(RPC):

–7 voltage domains … 6 4-

tile blocks and one for on-
die network.

–1 clock divider register per
tile (i.e. 24 frequency
domains)

–One RPC register so can
process only one voltage
request at a time; other
requestors block

Memory

2828

• RCCE power management emphasizes safe control:
V/GHz changed together within each 4-tile (8-core)
power domain.

– A Master core sets V + GHz for all cores in domain.

– RCCE_istep_power():

– steps up or down V + GHz, where GHz is max for selected
voltage.

– RCCE_wait_power():

– returns when power change is done

– RCCE_step_frequency():

– steps up or down only GHz

• Power management latencies

– V changes: Very high latency, O(Million) cycles.

– GHz changes: Low latency, O(few) cycles.

RCCE Power Management API

2929

Independent tasks

(all different sizes)

Dependent, synchronized

subtasks; exchange

interface data each

iteration

Overall data space

Team

member

Team

member

Team

member

Team

lead

Power management test

xch xch xch

• A three-tier master-worker hierarchy,

– one overall master, one team-lead per power domain, Team-
members (cores) to do the work.

• Workload: A stencil computation to solve a PDE.

3030

3131

3232

3333

3434

Backup slides

• Power Management

• Using RCCE and example RCCE code

• Additional RCCE implementation details

• RCCE and the MPI programmer

• SSC Literature reference

3535

RCCE API: Writing and running RCCE programs

• We provide two interfaces for the RCCE programmer:

• Basic Interface (general purpose programmers):

• FLAGS and Message Passing Buffer memory management
hidden from the programmer.

• Gory interface (hard core performance programmers):

• One sided and two sided

• Message Passing Buffer management is explicit

• Flags allocated and managed by programmer.

• Build you job linking to the appropriate RCCE library, then run
with rccerun

rccerun –nue N [optional params] program[params]

–program executes on N UEs as if it were invoked as:
“program params” (no parameters allowed for Baremetal)

–Optional parameters

 -f hostfile: lists physical core IDs available to execute code

 -emulator: run on functional emulator

3636

for (int round=0; round<nrounds; round++) {

RCCE_wait_until(flag_ack, RCCE_FLAG_SET);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_UNSET, ID);
RCCE_put(cbuffer, buffer, size, ID_right);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_SET, ID_left);

RCCE_wait_until(flag_sent,
RCCE_FLAG_SET);

RCCE_flag_write(&flag_sent,
RCCE_FLAG_UNSET, ID);

RCCE_get(buffer, cbuffer, size, ID);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left);
}

#include "RCCE.h"
int RCCE_APP() {

RCCE_init(&argc, &argv);
NUES = RCCE_num_ues();
ID = RCCE_ue();

ID_right = (ID+1)%NUES;
ID_left = (ID-1+NUES)%NUES;
size = BUFSIZE*sizeof(double);
buffer = (double *) malloc(size);
cbuffer = (double *) RCCE_malloc(size);

/* create and initialize flag variables */
RCCE_flag_alloc(&flag_sent);
RCCE_flag_alloc(&flag_ack);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_UNSET, ID))
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left))

RCCE API: Circular Shift one sided

BUFSIZE must be divisible by 4
Message must fit inside Msg Buff

3737

for (int round=0; round<nrounds; round++) {

RCCE_wait_until(flag_ack, RCCE_FLAG_SET);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_UNSET, ID);
RCCE_put(cbuffer, buffer, size, ID_right);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_SET, ID_left);

RCCE_wait_until(flag_sent,
RCCE_FLAG_SET);

RCCE_flag_write(&flag_sent,
RCCE_FLAG_UNSET, ID);

RCCE_get(buffer, cbuffer, size, ID);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left);
}

#include "RCCE.h"
int RCCE_APP() {

RCCE_init(&argc, &argv);
NUES = RCCE_num_ues();
ID = RCCE_ue();

ID_right = (ID+1)%NUES;
ID_left = (ID-1+NUES)%NUES;
size = BUFSIZE*sizeof(double);
buffer = (double *) malloc(size);
cbuffer = (double *) RCCE_malloc(size);

/* create and initialize flag variables */
RCCE_flag_alloc(&flag_sent);
RCCE_flag_alloc(&flag_ack);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_UNSET, ID))
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left))

RCCE API: Circular Shift one-sided

RCCE_FLAG flg;

RCCE_flag_alloc(&flg);

RCCE_flag_set(flg, RCCE_FLAG_SET, ID); or RCCE_FLAG_UNSET

RCCE_wait_until(flg, RCCE_FLAG_SET,ID); or RCCE_FLAG_UNSET

RCCE_put(cbuffer, buffer, size, ID);

Put my private memory (buffer) into the msg buffer (cbuffer) of core ID

RCCE_get(buffer, cbuffer, size, ID));

Get cbuffer from core ID and move it into my private memory (buffer)

BUFSIZE must be divisible by 4
Message must fit inside Msg Buff

3838

RCCE_wait_until(flag_ack, RCCE_FLAG_SET);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_UNSET, ID);
RCCE_put(cbuffer, buffer, size, ID_right);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_SET, ID_left);

RCCE API: “Basic” interface, two sided

• flags needed to
make transfers
safe.

• Large messages
must be broken up
to fit into the Msg
Buff.

• We can hide these details by letting library manage flags +MPB:

RCCE_send(buffer, size, ID);

Send private memory (buffer) to core ID

RCCE_recv(buffer, size, ID));

Receive into private memory (buffer) from core ID

• This is Synchronous message passing … the send and receive do
not return until the communication is complete on both sides.

3939

for (int round=0; round<nrounds; round++) {

for (int c = 0; c<2; c++) {
if ((ID+c)%2)

RCCE_send(buffer, size, ID_right);
else

RCCE_recv(buffer2, size, ID_left);
}
memcpy(buffer, buffer2, size);

}

#include <string.h>
#include "RCCE.h"
int RCCE_APP() {

RCCE_init(&argc, &argv);
NUES = RCCE_num_ues();

ID = RCCE_ue();

ID_right = (ID+1)%NUES;
ID_left = (ID-1+NUES)%NUES;
int size = BUFSIZE*sizeof(double);
buffer = (double *) malloc (size);
buffer2 = (double *) malloc (size);

RCCE API: Circular Shift with 2-sided Basic interface

BUFSIZE may be anything
Message need not fit inside Msg Buf

Hides buffer and flag allocation,
messages “packetizing”, and flag
synchronization.

Anticipate most programmers will use
this RCCE version

4040

Backup slides

• Power Management

• Using RCCE and example RCCE code

• Additional RCCE implementation details

• RCCE and the MPI programmer

• SSC Literature reference

4141

offsets to “remote” MPB

RCCE_MPB[ID] = start of MPB for UE “ID”
RCCE_IAM = library shorthand for calling UE
target/source cache line aligned, size%32=0, data fits inside MPB

RCCE Implementation details:
One-sided message passing; safely but blindly transport
data between private memories

RCCE_put(char *target, char *source, size_t size, int ID)

{

target = target + (RCCE_MPB[ID]-RCCE_MPB[RCCE_IAM]);

RCCE_cache_invalidate();

memcpy(target, source, size);

}

RCCE_get(char *target, char *source, size_t size, int ID)

{

source = source + (RCCE_MPB[ID]-RCCE_MPB[RCCE_IAM]);

RCCE_cache_invalidate();

memcpy(target, source, size);

}

4242

HANDSHAKES

sent, ready:

synchronization

flags stored in MPB

RCCE Implementation details:
Two-sided message passing; safely transport data between
private memories, with handshake.

• Body gets called in a loop (+ padding if necessary) for large messages

• send and recv asymmetric: needed to avoid deadlock

• No size or alignment restrictions

• We get rid of these parameters in our “basic” interface (MPI)

RCCE_send(char *privbuf, char *combuf, RCCE_FLAG *ready,

RCCE_FLAG *sent, size_t size, int dest) {

RCCE_put(combuf, privbuf, size, RCCE_IAM);

RCCE_flag_write(sent, SET, dest);

RCCE_wait_until(*ready, SET);

RCCE_flag_write(ready, UNSET, RCCE_IAM);}

RCCE_recv(char *privbuf, char *combuf, RCCE_FLAG *ready,

RCCE_FLAG *sent, size_t size, int source) {

RCCE_wait_until(*sent, SET);

RCCE_flag_write(sent, UNSET, RCCE_IAM);

RCCE_get(privbuf, combuf, size, source);

RCCE_flag_write(ready, SET, source); }

4343

• Flags implemented two ways

1. whole MPB memory line (96 flags, 30% of MPB)

2. single bit (1 MPB memory line for all flags)

 Control write access through atomic test&set register, implementing
lock.

 No need to protect read access.

• Implications of the two types of flags:

─ Single bit saves MPB memory but you pay with a higher latency.

─ Whole cache line wastes memory but lowers latency.

RCCE Implementation Details:
Flags

4444

void RCCE_flag_write(RCCE_FLAG *flag, RCCE_FLAG_STATUS val, int ID) {

volatile unsigned char val_array[RCCE_LINE_SIZE];

/* acquire lock so nobody else fiddles with the flags on the target core */

RCCE_acquire_lock(ID);

/* copy line containing flag to private memory */

RCCE_get(val_array, flag->line_address, RCCE_LINE_SIZE, ID);

/* write “val” into single bit corresponding to flag */

RCCE_write_bit_value(val_array, flag->location, val);

/* copy line back to MPB */

RCCE_put(flag->line_address, val_array, RCCE_LINE_SIZE, ID);

/* release write lock for the flags on the target core */

RCCE_release_lock(ID);

}

void RCCE_acquire_lock(int ID) {

while (!((*(physical_lockaddress[ID])) & 0x01));

}

void RCCE_release_lock(int ID) {

*(physical_lockaddress[ID]) = 0x0;

}

RCCE Implementation Details:
RCCE flag write scenario (single bit)

physical_lockaddress[ID]: address of test&set register on core with rank ID.
RCCE_flag_read does not need lock protection.

4545

Backup slides

• Power Management

• Using RCCE and example RCCE code

• Additional RCCE implementation details

• RCCE and the MPI programmer

• SSC Literature reference

4646

RCCE vs MPI

• No opaque data types in RCCE, so no MPI-style
handles, only pointers

• No RCCE_datatype, except for reductions

• No communicators, except in collective
communications

• Only synchronous communications
+ No message bookkeeping
─ No overlap of computations/communications
─ Deadlock?

• RCCE has low overhead due short communication
stack:
– RCCE_sendRCCE_putmemcpy

4747

RCCE vs MPI: Avoiding deadlock

• If sending and receiving UE sets overlap, deadlock is possible.
Cause: cycles in communication graph (cyclic dependence).

• If no cycles, communication may serialize

• Solution:

─ Divide communication pattern into disjoint send-receive UE
sets (bipartite graphs), execute in phases.

─ Number of phases depends on pattern.

─ For permutation pattern, two phases min, three max:

1. Each permutation can be divided into cycles (length L)

2. If L even, red/black coloring suffices.

3. If L odd (2n+1), apply 2. to 2n UEs, then finish
communications for last UE. Each cycle takes O(1)
time.

– Note: coloring is wrt position in cycle, not UE rank; may need
different phase colorings for different patterns.

4848

RCCE vs MPI: Avoiding deadlock
you
are
here

you
are
here

MPI

RCCE
send recv

recv send

Programmer just
posts (i)sends and
(i)receives as needed

Programmer
must pair all
sends and
receives

4949

RCCE vs MPI: Avoiding deadlock

– Notes:

– MPI version cell based; RCCE version interface based

– RCCE fairly easy to grok, but requires restructuring to
interleave sends/recvs

RCCE: if (!IAM_LEFTMOST)
for (phase = 0; phase < 3; phase++) {

if (send_color==phase) RCCE_send(to_right);
if (recv_color==phase) RCCE_recv(from_left);

}
compute;

– pseudo-code example from HPC application:

MPI: if (!IAM_LEFTMOST) {
MPI_irecv(from_left);
MPI_wait(on_isend);
MPI_wait(on_irecv);

}
compute;

if (!IAM_RIGHTMOST) MPI_isend(to_right);

5050

Backup slides

• Power Management

• Using RCCE and example RCCE code

• Additional RCCE implementation details

• RCCE and the MPI programmer

• SSC Literature reference

5151

Official SSC reference

“A 48-Core IA-32 Message Passing Processor
with DVFS in 45nm CMOS”, ISSCC 2010.

• Abstract:
– A 567mm2 processor in 45nm CMOS integrates 48 IA-32 cores

and 4 DDR3 channels in a 6×4 2D-mesh network. Cores

communicate through message passing using 384KB of on-die
shared memory. Fine grain power management takes advantage
of 8 voltage and 28 frequency islands to allow independent
DVFS of cores and mesh. As performance scales, the processor
dissipates between 25W and 125W.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.
Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P.
Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M.
Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der
Wijngaart, T. Mattson

