
Position Paper: Handling “Out Of Memory”
Errors ?

John Boyland??

University of Wisconsin-Milwaukee, USA
boyland@cs.uwm.edu

Abstract. An “out of memory” error can be catastrophic for a program,
especially one written in a language such as Java that uses memory
allocation frequently. Handling such an error can easily lead to its re-
occurrence. A handler will often need memory while it is freeing resources
(by persisting data to secondary storage, or clearing caches). A simple
technique involves pre-allocating a large chunk of memory that is then
freed at the start of the handler. I report some experience using this
technique and discuss some of the problems that arise when reasoning
about the behavior of memory error handlers.

1 Introduction

A running program may encounter several kinds of severe conditions that re-
sult, not from errors in program logic, per se, but from over use of resources.
Typically there is no hard bound on the time that can be used, but increas-
ing the bounds for memory use (either stack or heap) can have disastrous and
long-term performance problems (swapping). Thus even with a 64-bit address
space, a Java program may be limited to (say) 2 GB of memory. If more mem-
ory is needed than is available, an OutOfMemoryError or a StackOverflowError is
thrown. The latter case typically results from infinite or inappropriate recursion,
but the former can occur easily.

Techniques are available for statically determining the required heap size of a
program (see this year’s FTJP for at least one paper), but these are typically not
applicable for complex programs, and indeed one may wish to run a program that
may exceed memory limits for some inputs. Furthermore, it is not always best
practice to run a program to use the least space possible. Caching a computation
exchanges space for time performance. Later if it becomes known that space is
tight, the cache can be jettisoned with little semantic cost.

One argument against handling OutOfMemoryError is that one should in-
stead simply check whether there is sufficient memory before continuing with a

? This work is partially supported by the National Aeronautics and Space Adminis-
tration (NASA) under the HRT program

?? The author wishes to acknowledge support through the NASA High Dependability
Computing Program under cooperative agreement NCC-2-1298.



memory expensive operation. This alternative suffers from all the same porta-
bility problems (one cannot be sure that one actually has all the memory one
needs, and one cannot be sure that the recovery technique won’t actually have its
own memory problems) and additionally slows down the program by constantly
checking for memory sufficiency. Exceptions are designed precisely to handle this
sort of infrequently occurring behavior; it’s easier to thrown an exception at the
point an error is found rather than always to try to detect problems that might
occur ahead of time.

I have been investigating importing large Java code bases (up to a million
LOC) into our versioned persistent representation. The persistence mechanism
can only be invoked once per “era” and for various reasons, one wishes to create
as few eras as possible. Thus the desired process is to load as much code as will
fit in memory, create an “era,” persist the lot and then continue. Unfortunately
it can be difficult to predict exactly how memory a given Java file will take in
the code base before it is loaded, and thus the safest way to avoid a memory
error is to create one “era” for every file. A less conservative solution is desired:
creating “eras” on demand.

Creating an “era” and saving the code base takes memory itself, and thus I
wrote a simple hook to allocate a large (16 MB) array and when the memory
error is thrown during an import, the outer loop catches the error, frees the array
(through the simple expedient of nulling out the global variable that points to
it) and then creates the “era” and so on. After the cleanup is done, an new
array is allocated and the process of importing code continues. I have used
this code to import the source that came with JDK 1.4.2 (45 Mbytes) into our
(verbose) intermediate form. With a maximum heap size set at 300 Mb (on a
512 Mb system), the program used only 12 eras (handling 11 OutOfMemoryError
exceptions) to load 4500 files. The final result was stored in a custom serialization
format that, in compressed form, is 150 Mb.

Reasoning about such code, and in particular finding errors (debugging) can
be difficult. This paper discusses some of the problems that arise. Some language
design issues are also touched upon.

2 Reasoning about Memory Error Handlers

Excepting program analysis for finding maximum heap requirements, “out of
memory” errors are typically ignored when reasoning about a program; this
exception could arise at almost any point. It is considered an unpredictable fatal
event. Here we consider alternate approaches.

2.1 After Running out of Memory

If one doesn’t just treat a memory error as a catastrophic event that kills the en-
tire program, one needs to examine what happens after the exception is thrown.
At the point that the error is determined, the program is left in a precarious
state: unable to allocate any memory at all. It may seem no different than in any



other program state (where one could always been just one step away from an
out-of-memory disaster), but a particular problem are “finally” clauses. These
are used to simulate dynamic binding of global context variables (such as the cur-
rent “version” of the state in our case). Such a “finally” clause must be written
carefully to require no heap allocation.

Avoiding memory allocation in “finally” clauses is made harder since the Java
specification does not indicate exactly which language constructs cause memory
allocation (at least as far as I know). Some limited experience with JDK 1.4.2
seems to indicate that even a non-final instance method call can cause an out-
of-memory error. It would be easier to write more portable handling of these
errors if the language specification was able to guarantee certain operations as
safe in low-memory conditions.

If a “finally” clause cannot avoid allocation of memory, then it is better
to allocate the memory before performing the task that needs to be unwound.
Alternatively, a buffer can be allocated, and then the pointer to it is nulled at
the start of the finally clause. The latter case is less desirable, because then it
may be necessary to “fool” the compiler into not freeing the memory earlier. In
any case, this should be a general rule for “finally” clauses, since such cleanup
actions should be runnable in all situations, including low-memory.

2.2 The “Hedge” Technique

Once the stack is safely unwound to the point where the error is caught, the
memory error must be handled. Since so many operations in Java (e.g. opening
a file output stream) involve creating new objects on the heap, it is essential that
an out-of-memory error handler keep a safety “hedge” of memory. This is freed
before we do whatever we can to free memory. In a garbage-collected system,
“freeing” memory means to make it unreachable so that the garbage collector
will reclaim it. The recovery process is the attempt to free normal program
data, before returning to normal program execution. Since the last operation
was aborted due to memory shortage, typically after recovery is complete, one
attempts to redo the task that was interrupted by the out-of-memory error.

Recovery can fail in several ways:

1. Memory is exhausted while running the recovery: the hedge was not big
enough.

2. After the recovery is done, the hedge cannot be reallocated: the recovery
actually consumed memory rather than freeing it.

3. After recovery is done, not a sufficient amount of memory has been freed: if
no memory has been freed then the retry of last task will simply fail again.

The third condition can be imperfectly tested by requiring that a minimum
number of bytes are freed by the recovery. But this cannot ensure that the task
will successfully complete this time; in fact it may simply not be possible to
complete. Thus an interactive program should not blindly repeat any memory-
error-interrupted task after recovery. My Java code importer suffers from this



problem; if the imported file simply cannot fit in memory, even by itself, the
system tries over and over. This is a fine for my purposes now, but will need to
be changed at some point.

Debugging in such situations is tricky. For obvious reasons, the OutOfMem-
oryError object does not keep a copy of the run-time stack at the time of the
fault, and in handlers one must avoid the string concatenation operator. Thus
it is difficult to determine precisely where the error was raised.

2.3 Systematizing the “Hedge”

It would seem attractive to have a system function keep track of the hedge so it
could be freed right at the point the memory fault happens. A program could
tell the system to reserve a certain amount of heap for low-memory recovery.
This memory would be made available at the time the next OutOfMemoryError
is thrown.

Unfortunately it is confusing to build this ability directly into the run-time
system. Presumably after the first OutOfMemoryError is thrown, the reserve
memory would be brought out. The problem is that the code is not necessar-
ily immediately ready to start recovery, and in fact may catch the error, not
to recover, but rather to change the behavior of later code. The hidden reserve
simply confuses clients. There is also the issue of which module of the program
“owns” the reserve memory.

Rather, the recovery process must be explicit. I have implemented an abstract
class with instances that reserve memory. Such an instance can be asked to
handle an OutOfMemoryError. It handles the bookkeeping (including releasing
the reserve) and then calling an abstract method to perform the recovery.

2.4 Multi-Threading Issues

When multiple threads are active (as in any interactive Java program), the low-
memory condition affects all threads, not simply the one that is using the most
and is (presumably) capable of recovering by freeing currently held memory. In
particular, the thread that first receives the exception may have no useful way
to recover. If one is writing a multi-threaded program, then some co-operation
is needed, so that the offending thread can be notified. In the meanwhile, it will
be necessary to make some hedge memory be available for the other threads.

Such a situation may indicate a need for different memory resource bounds
to be assigned to different threads. Real-Time Java has a way to configure per-
thread heap restrictions, but I am not aware that standard Java has any such
restriction; it seems that such an extension would be a good idea.

2.5 Optimization

A compiler can determine when memory allocation is unnecessary or may move
allocation to a later point. Unfortunately both actions can defeat the attempt to



reserve a memory hedge for recovery purposes. A language specification should
provide for a way to indicate that a particular memory allocation must not be
moved or removed.

2.6 Summary

An out of memory error need not be fatal, but recovery is tricky.

3 Related Work

A recent paper by Biswas and others [1] discusses the importance of checking for
memory overflow in embedded systems where one cannot rely on the hardware
to avoid (say) the stack and heap overlapping. They use program analysis to
determine a small set of points at which the stack can be tested for overflow at
runtime. At such points, if the stack is “about” to overflow, a special (unspecified)
handler can be called, so as to avoid a serious error when the stack and heap
overlap. The authors also provide techniques for using existing memory more
efficiently when a memory overflow happens, by finding dead global variables or
by compressing heap or global variable data. The intent is that this additional
space wrung out of the existing situation can be used by the handler to cleanly
shut down the embedded system. There is no discussion of using exceptions, or
of “finally” blocks in Java.

For the most part, there is little published about handling OutOfMemoryError
exceptions. The few discussions on this topic I found (on the web) have one of
two viewpoints:

– Don’t catch it; it’s just a fatal random event you can’t do anything about;
or

– Use it to check how much memory is really free by repeatedly allocating
successively smaller arrays (starting with some unreasonably large size) until
the error doesn’t happen.

The last trick is much safer than it looks because, of course, the new array whose
allocation causes the problem is not in fact allocated, and thus there remains a
“lot” of memory. On the other hand, since Java provides a method to check the
remaining memory, it seems like an unnecessary hack.

Contra this common Java advice, a user-friendly program such as Eclipse
must make some attempt to handle OutOfMemoryError exceptions. There does
not seem to be a public specification for when and where to handle such errors,
although this area is one of the areas that Eclipse is tested for. One of my hopes
is that others in the workshop can propose good principles to follow for this case.
This position paper merely reports my own uninformed thoughts and experience.

4 Conclusion

Low memory conditions must be handled by an interactive program and yet
they are particularly difficult to handle. These conditions need not be fatal if



the program is able to substitute less memory intensive algorithms. I am looking
forward to discussions at the workshop for how to handle these situations. Some
preliminary observations can be made in the mean time:

– A “finally” handler should allocate no memory;
– A per-thread memory limit would help protect threads from each other;
– Compiler writers need to know whether they can delay or elimination allo-

cations;
– There is a need for a well-distributed “best practice” for handling low mem-

ory conditions.

References

1. Biswas, S., Simpson, M., Barua, R.: Memory overflow protection for embedded
systems using run-time checks, reuse and compression. In: Proceedings of the 2004
international conference on Compilers, architecture, and synthesis for embedded
systems table of contents, New York, NY, USA, ACM Press (2004) 280–291


