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Scientific theories and hypotheses make claims that go well beyond what we can immediately 

observe. How can we come to know whether such claims are true? The obvious approach is to 

see what a hypothesis says about the observationally accessible parts of the world. If it gets that 

wrong, then it must be false; if it gets that right, then it may have some claim to being true. Any 

sensible attempt to construct a logic that captures how we may come to reasonably believe the 

falsehood or truth of scientific hypotheses must be built on this idea. Philosophers refer to such 

logics as logics of confirmation or as confirmation theories. 

 

Among philosophers and logicians the most influential contemporary approach to the logic of the 

hypothesis confirmation is Bayesian Confirmation Theory. This approach employs probability 

functions to represent two distinct things: what a hypothesis says about how likely it is that 

specific evidential events will occur, and how strongly the hypothesis is confirmed or refuted by 

such evidence. The hypothesis-based probabilities of evidence claims are called likelihoods. 

When the evidence is more likely according to one hypothesis than according to an alternative, 

that increases the probabilistic degree of confirmation of the former hypothesis over the later. 

Any probabilistic confirmation theory that employs the same probability functions to represent 

both the likelihoods hypotheses confer on evidence claims and the degrees to which hypotheses 

are confirmed by these evidence claims will be a Bayesian confirmation theory, because a simple 

theorem of probability theory, called Bayes’ Theorem, expresses precisely how these likelihoods 

contribute to the confirmational probabilities of hypotheses. 

 

This article describes the essential features of Bayesian confirmation theory. Section 1 presents 

the probabilistic axioms for confirmation functions. Section 2 describes how this logic is applied 

via Bayes’ Theorem to represent the evidential support of hypotheses. Section 3 draws on a 

Bayesian Convergence Theorem to show why this logic may be expected to refute false 

hypotheses and support true ones. Section 4 generalizes the treatment of Bayesian likelihoods 

described in section 2. Section 5 concludes by briefly commenting on what confirmation 

functions are conceptually. 

 

 

1. The Axioms for Confirmation Functions 

 

A confirmation function is a binary function, Pα[A|B], on sentences of a language capable of 

expressing scientific hypotheses and theories. Logicians make this idea precise by taking the 

language and its deductive logic to be that of predicate logic (including the identity relation) 

because that language is known to have the expressive power needed to represent the deductive 

logic of any scientific theory. Such a language possesses a non-logical vocabulary consisting of 

names (and variables) and predicate and relation terms, and a logical vocabulary consisting of 

the standard logical terms: ‘~’ for “not”, ‘⋅’ for “and”, ‘∨’ for “inclusive or”, ‘⊃’ for truth-

functional “if-then”,  ‘≡’ for “if and only if”, ‘∀’ for “all”, ‘∃’ for “some”, and ‘=’ for the relation 
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“is the same thing as”. This language permits the expression of any scientific theory, including 

set theory and all the rest of mathematics employed by the sciences. 

 

The axioms for confirmation functions are essentially semantic rules that constrain each possible 

confirmation function to respect the meanings of the logical terms (not, and, or, etc.), much as 

the axioms for truth-value assignments in the semantics for deductive logic constrain each 

possible truth-value assignment to respect the meanings of the logical terms. These rules don’t 

determine which confirmation functions are correct (just as the semantic rules for truth-value 

assignments don’t determine which way of assigning truth-values to sentences captures the 

actual truths). The correctness of various measures of confirmation may depend on additional 

considerations, including what the non-logical terms and sentences of the language mean.  

 

Here are the axioms for the confirmation functions, treated as semantic rules on an object 

language L that’s powerful enough to express any scientific theory. 

 

Let L be a language whose deductive logic is predicate logic with identity – where ‘C|=B’ 

abbreviates ‘C logically entails B’, and ‘|=B’ abbreviates ‘B is a tautology’. A confirmation 

function is any function Pα from pairs of sentences of L to real numbers between 0 and 1 that 

satisfies: 

 

1.  Pα[D|E] < 1 for some D, E; 

 

for all A, B, C, 

 

2.  if B|=A, then Pα[A|B] =1; 

 

3.  If |=(B≡C), then Pα[A|B] = Pα[A|C]; 

 

4.  If C|=~(B⋅A), then either Pα[(A∨B)|C] = Pα[A|C]+Pα[B|C] or, for every D, Pα[D|C] = 1; 

 

5.  Pα[(A⋅B)|C] = Pα[A|(B⋅C)]  Pα[B|C]. 

 

Each function satisfying these rules is a possible confirmation function. The subscript ‘α’ 

reminds us that many alternative functions {Pβ,Pγ,...} obey these rules. All the usual theorems of 

probability theory follow from these axioms. 

 

Some Bayesian logicians have explored the idea that, like deductive logic, a logic of 

confirmation might be made to depend only on the logical structures of sentences. It’s now 

widely agreed that this project cannot be carried out in a plausible way. The logic of 

confirmation must also draw on the meanings of the sentences involved. Thus, one should also 

associate with each confirmation function Pα an assignment of meanings to non-logical terms, 

and thereby to sentences. This suggests two additional axioms (or rules). 

  

6. If A is analytically true (given the meanings that Pα associates with the language) or an 

axiom of set theory or pure mathematics employed by the sciences, then Pα[A|B] = 1 for 

each sentence B. 
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It follows that if a sentence C analytically entails A, then Pα[A|C] = 1. 

 

When a contingent sentence E is considered certainly true it’s common practice to employ a 

confirmation function that assigns it probability 1 on every premise B. This saves the trouble of 

writing E as an explicit premise, because when Pβ[E|C] = 1, Pβ[H|E⋅C] = Pβ[H|C]. But writing 

Pβ[H|C] = r instead of Pβ[H|E⋅C] = r when certain of E hides the confirmational dependence of H 

on E. This is a bad thing to do in a logic of confirmation, where the whole idea is to provide a 

measure of the extent to which premise sentences indicate the likely truth of conclusion 

sentences. It makes the logic enthymematic. In deductive logic one wouldn’t write ‘(E⊃A)|=A’ 

just because one’s already certain that E. One shouldn’t do this in a logic of confirmation either. 

The logic should represent E as maximally confirmed by every possible premise (including ~E) 

only in cases where E is logically or analytically true or an axiom of pure mathematics. This 

motivates the Axiom of Regularity. 

 

7. If A is neither logical nor analytically true, nor a consequence of set theory or some other 

piece of pure mathematics employed by the sciences, then Pα[A|~A] < 1. 

 

Taken together, axioms 6 and 7 imply that a confirmation function assigns probability 1 on every 

possible premise to precisely the sentences that are non-contingently true according to its 

associated meaning assignment.
1
 

 

Perhaps additional axioms should further constrain confirmation functions. In particular, when 

hypotheses describe chance situations, a rule like David Lewis’s (1980) Principal Principle 

seems appropriate. Consider a hypothesis that says systems in state Y have objective chance (or 

propensity) r to acquire an attribute X – Ch(X,Y) = r. When c is a system in state Y (i.e., c∈Y), 

this should give rise to a direct inference likelihood: Pα[c∈X|Ch(X,Y)=r ⋅ c∈Y] = r. One might 

add an axiom requiring that confirmation functions satisfy this principle. A general axiom of this 

kind would also specify precisely what sorts of information B should interfere with these 

likelihoods: when should Pα[c∈X|Ch(X,Y)=r ⋅ c∈Y⋅B] continue to equal r, and for what B may 

degree r no longer hold? Spelling out such a direct inference likelihood axiom in full generality 

turns out to be quite difficult, so we’ll not pursue it here. Nevertheless, chancy claims in 

scientific theories should often lead to objective values for likelihoods, on which all confirm 

functions should agree. 

 

That’s the axiomatic basis for the logic of confirmation functions. However, this characterization 

leaves two important questions untouched: (1) what, conceptually, is a confirmational 

probability function?; and (2) why should we consider a confirmation function to be a good way 

of measuring evidential support?  These issues can only be adequately addressed after we see 

how the logic applies evidence to the confirmation of hypotheses. However, the subjectivist 

reading of Bayesian confirmation functions has become so prominent in the literature that I will 

say something about it before proceeding. 

                                                 
1
 Pα[A|C] = 1 for all C just when Pα[A|~A] = 1. So Pα[A|C] = 1 for all C implies A is either 

logical or analytically true, or a consequence of set theory or some other piece of pure 

mathematics employed by the sciences. Axiom 6 yields the converse implication. 
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The subjectivist interpretation takes Pα[A|B] to express the degree of belief (or confidence) an 

agent α would have in A were she to become certain that B but possess no other information 

that’s relevant to A. Although this kind of belief-strength interpretation may be appropriate for 

probabilities in decision theory, it faces very significant difficulties as a way of understanding 

confirmation functions. I’ll discuss some of these difficulties later, but please forgo this reading 

for now, since it can be very misleading. Instead think of a confirmation function as a kind of 

truth-indicating index. Later I’ll bolstered this idea with an account of how evidence can bring 

confirmation functions to point towards the truth-values of hypotheses. Because of this feature, 

confirmation functions should influence one’s belief-strengths regarding the truth of hypotheses, 

although they are not themselves measures of belief-strength. 

 

 

2. The Bayesian Logic of Evidential Support 

 

Let’s see how the logic of confirmation functions represents evidential support for scientific 

hypotheses. Let <H1,H2,…,Hm,...> be an exhaustive list of alternative hypotheses about some 

specific subject. The list may contain a simple pair of alternatives – e.g., <Joe is infected by HIV, 

Joe is not infected by HIV> – or it may be a long list of competitors (e.g., of alternative ailments 

that may be responsible for the patient’s symptoms). The competitors may make claims about 

some single event (e.g. about what disease(s) afflicts Joe), or they may be grand theories (e.g., 

about what laws of nature govern the universe). The list of alternative hypotheses or theories 

may, in principle, be infinitely long. The idea of testing infinitely many alternatives may seem 

extraordinary, but nothing about the logic itself forbids it. The alternative hypotheses need not be 

entertained all at once. They may be constructed and assessed over millennia. 

 

Practically speaking, in order for the list of competing hypotheses to be exhaustive it may need 

to contain a catch-all hypothesis HK that says none of the other hypotheses is true (e.g., “the 

patient has an unrecognized disease”). When only a finite number m of explicit alternative 

hypotheses is under consideration, the catch-all alternative HK will be equivalent to the sentence 

that denies each explicit alternative. Thus, if the list of alternatives, including the catch-all, is 

<H1,H2,…,Hm,HK>, then HK is equivalent to (~H1⋅…⋅~Hm). 

 

The evidence employed to test hypotheses consists of experiments or observations that each 

hypothesis says something about. On the older hypothetico-deductive account of confirmation 

each hypothesis Hi speaks about observations by deductively entailing evidence claims. 

However, hypotheses cannot usually accomplish this on their own. They usually draw on 

statements C that describe the conditions under which evidential outcome E occurs. In addition, 

hypotheses often rely on background knowledge and auxiliary hypotheses B (e.g. about how 

measuring devices function) to connect them via experimental circumstances C to evidential 

outcomes E.
2
 So the deductive logical relationship through which a hypothesis speaks about 

evidence takes the form: Hi⋅B⋅C|=E. If the observation condition and evidential outcome (C⋅E) 

                                                 
2
 B may itself contain hypotheses that are subject to confirmation via the same kind of treatment 

described for hypotheses Hi and Hj below (though their confirmation may be relative to some 

simpler auxiliaries B*; perhaps even tautological B*). 



 5

occurs, this may provide good evidence for Hi, provided B holds up. On the other hand, if C 

holds but E is observed to be false, then deductive logic alone gives us B⋅C⋅~E|=~Hi, and 

hypothesis Hi is falsified by B⋅C⋅~E. Thus a hypothesis Hi usually fails to entail evidential claims 

on its own, but only speak about evidence deductively with the assistance of background and 

auxiliary claims together with descriptions of the experimental or observational circumstances. 

Similarly, when hypotheses speak about evidence probabilistically via likelihoods, conditions C 

and background B play a comparable enabling role. 

 

In Bayesian confirmation theory the degree to which a hypothesis Hi is confirmed on evidence 

C⋅E, relative to background B, is represented by the posterior probability of Hi, Pα[Hi|B⋅C⋅E]. 

Bayes’ Theorem shows how this posterior probability depends on two kinds of probabilistic 

factors. It depends on the prior probability of Hi, Pα[Hi|B], and on the likelihood of evidential 

outcome, E, according to Hi together with B and C, Pα[E|Hi⋅B⋅C]. Let’s consider the nature of 

each. Then we’ll see how they come together in the logic of hypothesis evaluation. 

 

Likelihoods. Likelihoods express what hypotheses say about observationally accessible parts of 

the world. If a hypothesis together with auxiliaries and observation conditions deductively entails 

an evidence claim, axiom 2 guarantees that every confirmation function Pα assigns the likelihood 

value 1 – i.e., if Hi⋅B⋅C|=E, then Pα[E|Hi⋅B⋅C] = 1. Similarly, if Hi⋅B⋅C|=~E and Hi⋅B⋅C is 

contingent, the axioms yield Pα[E|Hi⋅B⋅C] = 0. However, quite often the hypothesis Hi will only 

imply the evidence to some probabilistic degree. For instance, Hi may itself be an explicitly 

statistical or chance hypothesis, or Hi may be a non-statistical hypothesis that’s probabilistically 

related to the evidence by statistical auxiliary hypotheses that reside within background B. In 

either case the likelihoods may be the kind of direct inference likelihoods described near the end 

of section 1. That is, when Hi⋅B|= Ch(X,Y)=r (the chances of acquiring X for systems having Y 

is r) and C is of form c∈Y and E is of form c∈X, we should have Pα[E|H⋅B⋅C] = r (provided Hi⋅B 

doesn’t also entail some relevant defeater of this direct inference).
3
 Such likelihoods should be 

completely objective in that all confirmation functions should agree on their values, just as all 

confirmation functions agree on likelihoods when evidence is logically entailed. Functions Pα 

that satisfy the confirmation function axioms but get such direct inference likelihoods wrong 

should be discarded as illegitimate. 

 

Not all scientific likelihoods are warranted deductively or by explicitly stated chance claims. 

Nevertheless, the likelihoods that relate hypotheses to evidence in scientific contexts will often 

have widely recognized objective or intersubjectively agreed values. For, likelihoods represent 

the empirical content of hypotheses – what hypotheses say about the observationally accessible 

parts of the world. So the empirical objectivity of a science relies on a high degree of agreement 

among scientists on their values.  

 

Consider what a science would be like if scientists disagreed widely about the values of 

likelihoods for important hypotheses? Whereas expert α takes H1 to say E is much more likely 

                                                 
3
 See David Lewis’s (1980) argument for the objectivity of likelihoods based on chance 

statements. His Principal Principle is a direct inference principle governing such likelihoods. 

Lewis maintains that objective chance is a purely theoretical concept, and that the Principal 

Principle captures “all we know about chance.” 
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than does H2 (Pα[E|H1⋅B⋅C] >> Pα[E|H2⋅B⋅C]), her colleague β sees it just the opposite way 

(Pβ[E|H1⋅B⋅C] << Pβ[E|H2⋅B⋅C]). Thus, whereas α considers C⋅E (given B) to be powerful 

evidence for H1 over H2, β takes the very same evidence to forcefully support H2 over H1. If this 

kind of disagreement occurs often or for important hypotheses in a scientific discipline, the 

empirical objectivity of that discipline would be a shambles. Each scientist understands the 

empirical import of these hypotheses so differently that each Hj as understood by α is an 

empirically different hypothesis than Hj as understood by β. Thus, the empirical objectivity of 

the sciences requires that experts understand significant hypotheses in similar enough ways that 

the values of their likelihoods are closely aligned. 

 

For now let’s suppose that each hypothesis Hj in the list of alternatives has precise, objective or 

intersubjectively agreed values for its likelihoods (relative to appropriate background and 

auxiliaries).
4
 We’ll mark this agreement by dropping the subscript ‘α’, ‘β’, etc., from expressions 

that represent likelihoods, because all confirmation functions under consideration agree on them. 

Nevertheless, there are perfectly legitimate scientific contexts where precise agreement on the 

values of likelihoods isn’t realistic; so later, in section 4, we’ll see how the present supposition of 

precise agreement may be relaxed. But for now the main ideas will be more easily explained if 

we focus on cases where all confirmation functions precisely agree on the values of likelihoods. 

 

Scientific hypotheses are usually tested by a stream of evidence: C1⋅E1, C2⋅E2, …, Cn⋅En. Let’s 

use the expression ‘C
n
’ to represent the conjunction (C1⋅C2⋅…⋅Cn) of descriptions of the first n 

observation conditions, and use ‘E
n
’ to represent the conjunction (E1⋅E2⋅…⋅En) of descriptions of 

their outcomes. So a likelihood for a stream of n observations and their outcomes will take the 

form ‘P[E
n
|Hi⋅B⋅Cn

] = r’. Furthermore, the evidence should be representable as probabilistically 

independent components relative to a given hypothesis Hi⋅B:  

 P[E
n
|Hi⋅B⋅Cn

] = P[E1|Hi⋅B⋅C1] P[E2|Hi⋅B⋅C2]...P[En|Hi⋅B⋅Cn].
5
 

 

Prior and Posterior Probabilities. The degree to which a hypothesis is confirmed on the 

evidence, Pα[Hi|B⋅Cn⋅En
], is called the posterior probability of the hypothesis – its probabilistic 

degree of confirmation posterior to taking account of the evidence. Bayes’ Theorem will show 

that posterior confirmation depends on two kinds of factors: likelihoods, P[E
n
|Hi⋅B⋅Cn

], and prior 

probabilities Pα[Hi|B]. Prior probabilities represent the degree to which a hypothesis Hi is 

supported by non-evidential plausibility considerations, prior to taking the evidence into 

account. The notion of priority for prior probabilities isn’t temporal – it might make better sense 

to call them non-evidential probabilities. Though non-evidential, the plausibility considerations 

that inform values for priors may not be purely a priori. They may include both conceptual and 

broadly empirical considerations not captured by the likelihoods. 

 

Because plausibility assessments are usually less objective than likelihoods, critics sometimes 

                                                 
4
 The only exception is the catch-all hypothesis HK, which seldom yields objective likelihoods. 

5
 If the evidence were not parsible into independent parts in this way, then hypothesis Hi⋅B would 

always have to consult a large number of past evidential results, (C
n⋅En

), in order to say how 

likely the various outcomes E of the next experiment C are – since P[E|Hi⋅B⋅C⋅(Cn⋅En
)] would 

differ from P[E|Hi⋅B⋅C].  
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brand priors as merely subjective, and take their role in the evaluation of hypotheses to be highly 

problematic. But plausibility assessments often play a crucial role in the sciences, especially 

when evidence is insufficient to distinguish among some alternative hypotheses. Furthermore, 

the epithet “merely subjective” is unwarranted. Plausibility assessments are often backed by 

extensive arguments that draw on forceful conceptual and empirical considerations not captured 

by likelihoods. That’s the epistemic role of the thought experiment, for example. 

 

Indeed, we often have good reasons besides the evidence to strongly reject some logically 

possible alternatives as just too implausible, or as at least as much less plausible than better 

conceived candidates. In evaluating hypotheses we often bring such considerations to bear, at 

least implicitly. For, given any hypothesis, logicians can always cook up numerous alternatives 

that agree with it on all the evidence available thus far. Any reasonable scientist will reject most 

such inventions immediately, because they look ad hoc, contrived, or plain foolish. Such reasons 

for rejection appeal to neither purely logical characteristics of these hypotheses, nor to evidence. 

All such reasons are “mere” plausibility assessments, not part of the evidential likelihoods.  

 

Prior plausibilities are “subjective” in the sense that scientists may disagree on the relative merits 

of plausibility arguments, so disagree on the values for priors. Furthermore, the plausibility of a 

hypothesis is usually somewhat vague or imprecise. So it’s reasonable to represent priors by an 

interval of values, a plausibility range, rather than by specific numbers.
6
 We’ll see more about 

how that works a bit later. The main point is that plausibility assessments in the sciences are far 

from mere subjective whims. They play an important role in the epistemology of the sciences. So 

it’s a virtue of Bayesian confirmation theory that it provides a place for such assessments to 

figure into the logic of hypothesis evaluation. 

 

Forms of Bayes’ Theorem. Let’s now examine several forms of Bayes’ Theorem, each derivable 

from our axioms. Here is the simplest: 

 

(6) Simple Form of Bayes’ Theorem: 

 

      P[E
n
|Hi⋅B⋅Cn

]  Pα[Hi|B]  Pα[C
n
|Hi⋅B]  

 Pα[Hi|B⋅Cn⋅En
]  = ——————————————— 

      Pα[E
n
|B⋅Cn

]  Pα[C
n
|B] 

 

      P[E
n
|Hi⋅B⋅Cn

]  Pα[Hi|B]  

      = —————————  provided  Pα[C
n
|Hi⋅B] = Pα[C

n
|B]  

      Pα[E
n
|B⋅Cn

] 

 

Here the posterior probability of a hypothesis is seen to depend on the likelihood it assigns the 

evidence, its prior probability, and the simple probability of the evidence, Pα[E
n
|B⋅Cn

]. If an 

outcome Ek occurs with likelihood P[Ek|Hi⋅B⋅Ck] = 0, then the cumulative likelihood 

P[E
n
|Hi⋅B⋅Cn

] = 0 as well. As a result the posterior degree of confirmation of Hi crashes to 0; Hi 

is falsified by the evidence. 

                                                 
6
 I.e., vague prior plausibilities may be represented by a set of confirmation functions that jointly 

cover the plausibility ranges for hypotheses. 
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This version of Bayes’ Theorem includes the terms Pα[C
n
|Hi⋅B] and Pα[C

n
|B], which express how 

likely it is that the conditions for the experiments or observations actually hold. These factors are 

often suppressed in presentations of Bayes’ Theorem, perhaps by hiding conditions C
n
 in the 

background B. However, that approach makes B continually change as new evidence is 

accumulated. So it’s preferable to make these factors explicit, and deal with them directly. That’s 

easy because in realistic cases the ratio (Pα[C
n
|Hi⋅B]/Pα[C

n
|B]) should be 1, or nearly 1, because 

the truth of the hypothesis should not be relevant to whether the observation conditions hold. 

 

The simple probability of the evidence represents a weighted average of likelihoods across all the 

alternative hypotheses: Pα[E
n
|B⋅Cn

] = ∑j Pα[E
n
|Hj⋅B⋅Cn

] Pα[Hj|B⋅Cn
] = ∑j Pα[E

n
|Hj⋅B⋅Cn

] Pα[Hj|B] 

when Pα[C
n
|Hi⋅B] = Pα[C

n
|B]. This factor is hard to assess if one isn’t aware of all hypotheses 

worthy of consideration. So, in most cases another form of Bayes’ Theorem is more useful – a 

form that compares one pair of hypotheses at a time. 

 

(7) Ratio Form of Bayes’ Theorem: 

 

  Pα[Hj|B⋅Cn⋅En
]   P[E

n
|Hj⋅B⋅Cn

]  Pα[Hj|B]  Pα[C
n
|Hj⋅B] 

  —————— = —————— ————  ————— 

  Pα[Hi|B⋅Cn⋅En
]   P[E

n
|Hi⋅B⋅Cn

]  Pα[Hi|B]  Pα[C
n
|Hi⋅B] 

  

        P[E
n
|Hj⋅B⋅Cn

]  Pα[Hj|B] 

       = ——————    ———— for Pα[C
n
|Hj⋅B] = Pα[C

n
|Hi⋅B]. 

        P[E
n
|Hi⋅B⋅Cn

]  Pα[Hi|B] 

 

The second line follows when neither hypothesis makes the occurrence of the observation 

conditions more likely than the other: Pα[C
n
|Hj⋅B] = Pα[C

n
|Hi⋅B]. This should hold for most real 

applications, so let’s suppose it holds throughout the remaining discussion.
7
 

 

This form of Bayes’ Theorem is the most useful for many scientific applications, where few 

alternative hypotheses are considered. It shows that likelihood ratios carry the full import of the 

evidence. Evidence influences the evaluation of hypotheses in no other way. Although this 

version has not received much attention in the philosophical literature, it’s so central to a 

realistic Bayesian Confirmation Theory that I’ll discuss it in detail. 

 

Notice that the ratio form of the theorem easily accommodates situations where we don’t have 

precise values for prior probabilities. For one thing, it only depends on our ability to assess how 

much more or less plausible alternative Hj is than Hi – the ratio Pα[Hj|B]/Pα[Hi|B]. Such relative 

plausibilities are much easier to judge than are specific numerical values for individual 

hypotheses. This results in assessments of ratios of posterior confirmational probabilities – e.g. 

Pα[Hj|B⋅C⋅E]/Pα[Hi|B⋅C⋅E] = 1/10 says “on the evidence, Hi is a ten times more plausible than 

Hj”. Although such posterior ratios don’t supply values for the individual posterior probabilities, 

                                                 
7
 This supposition also avoids inessential complexity. Nothing I’ll say below changes much 

when ratios Pα[C
n
|Hj⋅B]/Pα[C

n
|Hi⋅B] don’t get exceptionally far from 1. If they did, the 

experimental conditions themselves would count as significant evidence. 
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they place an important constraint on the posterior confirmation of Hj, since logically 

Pα[Hj|B⋅C⋅E] ≤ Pα[Hj|B⋅C⋅E]/Pα[Hi|B⋅C⋅E]. 

 

Furthermore, this form of Bayes’ Theorem tolerates a good deal of vagueness or imprecision in 

assessments of the ratios of prior plausibilities. In practice one need only assess bounds for the 

prior plausibility ratios to achieve meaningful results. Given a prior ratio in a specific interval, q 

≤ Pα[Hj|B]/Pα[Hi|B] ≤ r, a likelihood ratio P[E
n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] = sn produces a posterior 

confirmation ratio in the interval sn⋅q ≤ Pα[Hj|B⋅Cn⋅En
]/Pα[Hi|B⋅Cn⋅En

] ≤ sn⋅r. As the likelihood 

ratio value sn approaches 0, the interval value for the posterior ratio gets smaller, and its upper 

bound sn⋅r approaches 0; so the absolute degree of confirmation of Hj, Pα[Hj|B⋅Cn⋅En
], also must 

approach 0. This is really useful because it can be shown that when Hi⋅B⋅Cn
 is true and Hj is 

empirically distinct from Hi, the values of likelihood ratios P[E
n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] will very 

likely approach 0 as the amount of evidence increases. (I’ll discuss this Likelihood Ratio 

Convergence result below.) When that happens, the upper bound on the posterior probability 

ratio also approaches 0, driving the posterior probability of Hj to approach 0, effectively refuting 

Hj. Thus, false competitors of a true hypothesis are eliminated. 

 

Relative to each hypothesis, evidential events should be probabilistically independent of one 

another (or at least parsible into independent clusters). So the likelihood ratio for the total 

evidence decomposes into a product of likelihood ratios for each observation: 

 

 P[E
n
|Hj⋅B⋅Cn

]   P[E1|Hj⋅B⋅C1]  P[En−1|Hj⋅B⋅C n−1] P[En|Hj⋅B⋅Cn]  

 ——————  = ——————  ... ——————— —————— 

 P[E
n
|Hi⋅B⋅Cn

]  P[E1|Hi⋅B⋅C1]   P[En−1|Hi⋅B⋅C n−1] P[En|Hi⋅B⋅Cn] 

 

It follows from (7) that a previous confirmation ratio (based on the previous evidence) is updated 

on new evidence via multiplication by the likelihood ratio for the new evidence: 

 

(8) Ratio Bayesian Updating Formula: 

 

  Pα[Hj|B⋅Cn⋅En
]   P[En|Hj⋅B⋅Cn]  Pα[Hj|B⋅Cn−1⋅En−1

] 

  —————— = ——————  ——————— 

  Pα[Hi|B⋅Cn⋅En
]   P[En|Hi⋅B⋅Cn]  Pα[Hi|B⋅Cn−1⋅En−1

] 

 

        P[En|Hj⋅B⋅Cn]   P[E1|Hj⋅B⋅C1]  Pα[Hj|B] 

       = ——————   ⋅...⋅ —————— ———— 

        P[En|Hi⋅B⋅Cn]   P[E1|Hi⋅B⋅C1]  Pα[Hi|B] 

  

The second line of (8) shows how the contribution of any individual piece of evidence may be 

reassessed (even tossed out) if it comes into doubt. Similarly, prior probability ratios (or intervals 

for them) may be reassessed and changed to reflect additional plausibility considerations.
8
 

 

                                                 
8
 Technically, changing the value of the (interval covering the) prior plausibility ratio means 

switching to a different confirmation function (or different set of functions with priors that span 

the new interval). 
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From a Bayesian perspective, when scientists report on their experimental findings in research 

journals, they should indicate the impact of the evidence on various hypotheses by reporting the 

values of the likelihood ratios, P[E|Hj⋅B⋅C]/P[E|Hi⋅B⋅C], for the evidence C⋅E obtained from their 

research.
9
 Although they may say little or nothing about the (ratios of) prior plausibilities, some 

conception of the plausibility of the hypotheses must be in play, at least implicitly, because if no 

one in the relevant scientific community takes hypothesis Hj at all seriously (i.e. if the relevant 

scientific community takes Pα[Hj|B] to be almost 0 to begin with), then no one will care about an 

experimental study that “finds strong new evidence against Hj” by establishing some result (C⋅E) 

that makes the likelihood ratio P[E|Hj⋅B⋅C]/P[E|Hi⋅B⋅C] extremely small. No respectable 

scientific journal would bother to publish such results. If prior plausibility played no role, such 

results would deserve as much consideration as any. 

 

Bayesian confirmation is a version of eliminative induction. Suppose Hi is a true hypothesis, and 

consider what happens to each of its false competitors, Hj, if enough evidence becomes available 

to drive each of the likelihood ratios P[E
n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] toward 0. Equation (7) shows 

that each alternative Hj is effectively refuted because Pα[Hj|B⋅C⋅E] ≤ Pα[Hj|B⋅C⋅E]/Pα[Hi|B⋅C⋅E] 

approaches 0. As this happens the posterior probability of Hi must approach 1, as the next two 

forms of Bayes’ Theorem show. 

 

The odds against A given B is, by definition, Ωα[~A|B] = Pα[~A|B]/Pα[A|B]. If we sum the ratio 

versions of Bayes’ Theorem over all alternatives to hypothesis Hi (including the catch-all HK, if 

needed), we get an Odds Form of Bayes’ Theorem: 

 

(9) Odds Form of Bayes’ Theorem 

 

        Pα[Hj|B⋅Cn⋅En
]  Pα[HK|B⋅Cn⋅En

] 

 Ωα[~Hi|B⋅Cn⋅En
] =  ∑j≠i  ——————  + —————— 

        Pα[Hi|B⋅Cn⋅En
]  Pα[Hi|B⋅Cn⋅En

]  

  

        P[E
n
|Hj⋅B⋅Cn

]  Pα[Hj|B]  Pα[E
n
|HK⋅B⋅Cn

] Pα[HK|B] 

      =  ∑j≠i  ——————  ————  + —————— ———— 

        P[E
n
|Hi⋅B⋅Cn

]  Pα[Hi|B]  P[E
n
|Hi⋅B⋅Cn

]  Pα[Hi|B] 

  

If the catch-all alternative isn’t needed, just drop the expression after the ‘+’ sign. We represent 

the term for the catch-all hypothesis separately because the likelihood of evidence relative to it 

will not generally enjoy the kind of objectivity possessed by likelihoods for specific hypotheses. 

We indicate this by leaving the subscript ‘α’ on catch-all likelihoods. 

 

Although the catch-all hypothesis lacks objective likelihoods, the influence of the whole catch-

all term should diminish as additional specific hypotheses become articulated. When a new 

hypothesis Hm+1 is made explicit, the old catch-all HK is replaced by a new one, HK*, of form 

(~H1⋅…⋅~Hm⋅~Hm+1). The prior probability for the new catch-all hypothesis is peeled off the prior 

of the old catch-all: Pα[HK*|B] = Pα[HK|B]−Pα[Hm+1|B]. So the influence of the catch-all term 

                                                 
9
 Here Bayesian Confirmation Theory agrees with the view about how statistical hypotheses 

should be tested called Likelihoodism. See (Edwards, 1972) and (Royall, 1997). 
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should diminish towards 0 as new alternative hypotheses are developed.
10

 Thus, if increasing 

evidence drives the likelihood ratios that test Hi against each rival towards 0, and if the influence 

of the catch-all term also approaches 0, then the posterior odds against Hi must approach 0. As 

Ωα[~Hi|B⋅Cn⋅En
] approaches 0, the posterior probability of Hi goes to 1. The relationship between 

the odds against Hi and its posterior probability is this: 

 

(10) Bayes’ Theorem: From Posterior Odds to Posterior Probability 

 

  Pα[Hi|B⋅Cn⋅En
]  =  1/(1+Ωα[~Hi|B⋅Cn⋅En

]). 

 

For scientific contexts where not all significant alternative hypotheses can be surveyed, the 

formulas for posterior odds and posterior probabilities provided by equations (9) and (10) are 

only of conceptual interest. They tell us about the nature of the logic, but may not permit us to 

compute actual posterior probabilities of hypotheses that remain unrefuted by likelihood ratios. 

In practice the best we can usually do in such contexts is compare pairs of hypotheses, and find 

evidence enough to drive one of each pair to near extinction via extreme likelihood ratios. Thus, 

Bayesian confirmation is fundamentally a variety of eliminative induction, where the hypothesis 

that remains unrefuted is our best candidate for the truth. 

 

If we are fortunate enough to develop the true alternative, then each of its evidentially distinct 

rivals may be laid low by evidence via the likelihood ratios. As that happens the true hypothesis 

will climb to the top of the list of alternatives and remain there – its posterior plausibility 

Pα[Hi|B⋅Cn⋅En
] will become many times larger than the posterior plausibilities of alternatives. In 

principle it’s posterior probability heads towards 1, but in practice we merely recognize such a 

hypothesis as very strongly confirmed – superior to all alternatives considered thus far. Thus, this 

Bayesian logic is a formal representation of how the theoretical sciences actually operate. 

 

 

3. The Likelihood Ratio Convergence Theorem 

 

When Hi⋅B is true, the series of likelihood ratios P[E
n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] will very probably 

favor Hi over empirically distinct alternatives Hj by heading towards 0 for as the evidence 

accumulates (as n increases). A Bayesian Convergence Theorem establishes this fact. Before 

stating the theorem I’ll first explain some notation. 

 

For observation sequence C
n
, consider each of the possible outcomes sequences E

n
. Some would 

result in likelihood ratios for Hj over Hi that are less than ε, for some chosen small increment ε > 

0 (e.g. you might choose ε = 1/1000). For specific ε, the set of all possible such outcome 

sequences is expressed by ‘{E
n
 : P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε}’. This will be some particular 

finite set of sentences. Now, consider the disjunction of all sentences in that set; the resulting 

disjunctive sentence asserts that one of the outcome sequences, described by one of the sentences 

in the set, is true. We indicate this disjunctive sentence by placing the “or” symbol ‘∨’ in front of 

the expression for the set: ∨{E
n
 : P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε}. How likely is it, if Hi⋅B⋅Cn
 is 

true, that this disjunctive sentence will be true? – i.e., how likely is it, if Hi⋅B⋅Cn
 is true, that “one 

                                                 
10

 Pα[HK|B] = Pα[~H1⋅…⋅~Hm⋅(Hm+1∨~Hm+1)|B] = Pα[~H1⋅…⋅~Hm⋅~Hm+1|B]+Pα[Hm+1|B]. 
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of the outcome sequences E
n
 will occur that makes P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε”? The 

Likelihood Ratio Convergence Theorem answers this question by providing a lower bound on 

how likely this is, and that lower bound approaches 1 as n increases. The Theorem expresses this 

in terms of a likelihood:  P[∨{E
n
 : P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε}|Hi⋅B⋅Cn
].  

 

The full statement of the theorem comes in two parts. The first part encompasses cases where Hj 

says some outcome is impossible that Hi counts as possible; the second part encompasses 

evidential sequences where such extreme disagreement doesn’t happen.  
 

Likelihood Ratio Convergence Theorem:
11

 

 

1. Suppose a subsequence C
m
 of the whole evidence stream consists of observations where for 

each one, Ck, there is some possible outcome Ek deemed possible by Hi⋅B to at least some 

small degree δ > 0 but deemed impossible by Hj⋅B – i.e. for each Ck there is a possible Ek such 

that P[Ek|Hi⋅B⋅Ck] ≥ δ > 0 but P[Ek|Hj⋅B⋅Ck] = 0. Then, 

 

  P[∨{E
m 

: P[E
m
|Hj⋅B⋅Cm

] = 0}|Hi⋅B⋅Cm
]  ≥  1−(1−δ)

m
 , which approaches 1 for large m. 

 

2. Suppose the evidence stream C
n
 consists of observations where for each one, Ck, each 

possible outcome Ek deemed possible by Hi⋅B is also deemed possible by Hj⋅B – i.e. for each 

Ek, if P[Ek|Hi⋅B⋅Ck] > 0, then P[Ek|Hj⋅B⋅Ck] > 0. And further suppose that for each Ek such that 

P[Ek|Hi⋅B⋅Ck] > 0, P[Ek|Hj⋅B⋅Ck] ≥ γ⋅P[Ek|Hi⋅B⋅Ck], for some small positive γ ≤ 1/3 – i.e. there 

is some positive γ ≤ 1/3 such that no such possible Ek disfavors the competitor Hj so much as 

to make P[Ek|Hj⋅B⋅Ck]/P[Ek|Hi⋅B⋅Ck] < γ. Then for any small positive ε < 1 you might choose 

(but large enough that for the number of observations n being contemplated, the value of 

(1/n)∑k=1
n 
EQI[Ck|Hi/Hj|B] > −(log ε)/n), 

 

P[∨{E
n
 : P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε}|Hi⋅B⋅Cn
]   > 

 

          1 (log γ)
2 

       1 – — ————————————————  

           n ((1/n)∑k=1
n 

EQI[Ck|Hi/Hj|B] + (log ε)/n)
2
 

 

which approaches 1 for large n, provided (1/n)∑k=1
n 
EQI[Ck|Hi/Hj|B] has a positive lower 

bound – i.e., provided the sequence of observation C
n
 has an average expected quality of 

information (average EQI) for empirically distinct Hj, given Hi, that doesn’t get arbitrarily 

near 0 as the evidence sequence increases.
12

 (The base of the log doesn’t matter, but let’s 

take it to be 2; then for ε = 1/2
k
, log ε = −k; and for γ = 1/2

u
, (log γ)

2
 = u

2
.) 

 

The term on the right-hand side of the inequality is a worst case lower bound. The actual value 

of P[∨{E
n
 : P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε}|Hi⋅B⋅Cn
] will in all but the most extreme cases be much 

                                                 
11

 For proof see (Hawthorne 2009, supplements 4-7). 
12

 This provision can fail only if new observations Cn can only produce ever weaker evidence 

(whose likelihood ratio values have to be ever closer to 1 for all possible outcomes of Cn) as 

more evidence is obtained (as n is increased). 
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larger than this bound. That is, given two specific hypotheses Hi and Hj (and their associated 

likelihoods for possible outcomes), one can actually compute the precise value of 

P[∨{E
n
 : P[E

n
|Hj⋅B⋅Cn

]/P[E
n
|Hi⋅B⋅Cn

] < ε}|Hi⋅B⋅Cn
]. For most hypotheses and types of possible 

evidence the value of this likelihood is much larger than the lower bound given by this worst 

case theorem. 

 

The term (1/n)∑k=1
n 

EQI[Ck|Hi/Hj|B] is an information theoretic measure of how good, on 

average, the range of all possible outcomes of Ck are at distinguishing between Hi and Hj, if Hi⋅B 

is true. The formula for each EQI[Ck|Hi/Hj|B] is 

 EQI[Ck|Hi/Hj|B] = ∑{Okx:Ck} log(P[Okx|Hi⋅B⋅Ck]/P[Okx|Hj⋅B⋅Ck]) P[Okx|Hi⋅B⋅Ck] 

where the sum ranges over all the possible outcomes Okx of observation Ck that Hi takes to be 

possible (i.e. for which P[Okx|Hi⋅B⋅Ck] > 0).
13

 

 

Thus, the Likelihood Ratio Convergence Theorem establishes that if Hi (together with B⋅Cn
) is 

true, as the sequence of observations C
n
 increases, it becomes highly likely (as near 1 as you like) 

that its outcomes will provide likelihood ratios as close to 0 as you wish.
14

 This theorem is not 

subject to the usual criticisms of Bayesian convergence results. The theorem (and its proof) does 

not rely on prior probabilities in any way. It doesn’t suppose that the evidence is “identically 

distributed” – it applies to any pair of empirically distinct hypotheses. It’s a “weak law of large 

numbers” result that gives explicit lower bounds on the rate of convergence – so there’s no need 

to wait for the infinite long run. It’s a “convergence to truth” result (not merely “convergence to 

agreement”). It doesn’t depend on countable additivity.
15

 

 

Furthermore, because this theorem doesn’t depend on prior probabilities, it’s not undermined by 

if they are reassessed and changed as new conceptual and broadly empirical considerations are 

introduced. Provided that the series of reassessments of prior plausibilities doesn’t push the prior 

of the true hypothesis ever nearer to zero, the Likelihood Ratio Convergence Theorem implies 

(via equation (7)) that the evidence will very probably bring the posterior probabilities of its 

empirically distinct rivals to approach 0 via decreasing likelihood ratios; and as this happens, the 

posterior probability of the true hypothesis will head towards 1 (via equations (9) and (10)).
16

 

 

 

                                                 
13

 EQI[Ck|Hi/Hj|B] is the expected value of the logs of the likelihood ratios. Each EQI[Ck|Hi/Hj|B] 

is greater than 0 if some Okx has P[Okx|Hj⋅B⋅Ck] ≠ P[Okx|Hi⋅B⋅Ck]; otherwise EQI[Ck|Hi/Hj|B] = 0. 
14

 A short evidence sequence may suffice if the average expected quality of information is large. 
15

 For a nice presentation of the most prominent Bayesian convergence results and a discussion 

of their weaknesses see (Earman, 1992, Ch. 6). Earman doesn’t consider the Likelihood Ratio 

Convergence Theorem, which was first published in (Hawthorne, 1993). 
16

 This claim depends on Hi being empirically distinct from each alternative – i.e., that the Ck 

have possible outcomes Ek such that P[Ek|Hi⋅B⋅Ck]  ≠ P[Ek|Hj⋅B⋅Ck]. If the true hypothesis has 

empirically equivalent rivals, then convergence implies posterior probability of their disjunction 

goes to 1. Among the equivalent rivals, Pα[Hj|B⋅Cn⋅En
]/Pα[Hi|B⋅Cn⋅En

] = Pα[Hj|B]/Pα[Hi|B]. So the 

true hypothesis can obtain a posterior probability near 1 (after evidence drives the posteriors of 

empirically distinct rivals near 0) just in case plausibility considerations result its prior 

plausibility being much higher than the sum of those of its empirically equivalent rivals. 
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4. When Likelihoods are not Precise 

 

For some important contexts it’s unreasonable to expect likelihoods to possess precise, agreed 

values, but the evidence remains capable of sorting among hypotheses in a reasonably objective 

way. Here’s how that works.
17

 

 

Consider the following continental drift hypothesis: the land masses of Africa and South 

America were once joined, then split and have drifted apart over the eons. Let’s compare it to an 

alternative contraction hypothesis: the continents have fixed positions acquired when the earth 

first formed, cooled and contracted into its present configuration. On each of these hypotheses 

how likely is it that: (1) the shape of the east coast of South America should match the shape of 

the west coast of Africa as closely as it in fact does?; (2) the geology of the two coasts should 

match up so well?; (3) the plant and animal species on these distant continents should be as 

closely related as they are? One may not be able to determine anything like precise numerical 

values for such likelihoods. But experts may readily agree that each of these observations is 

much more likely on the drift hypothesis than on the contraction hypothesis, and jointly 

constitute very strong evidence in favor of drift over contraction. On a Bayesian analysis this is 

due to the fact that even though these likelihoods do not have precise values, it’s obvious to 

experts that the ratio of the likelihoods is pretty extreme, strongly favoring drift over contraction 

(according to the Ratio Form of Bayes’ Theorem), unless contraction is taken to be much more 

plausible than the drift on other grounds.
18

 

 

I argued earlier that disagreement on likelihoods among members of a scientific community 

would be disastrous to the scientific enterprise were it to result in desperate assessments of which 

hypotheses are favored by evidence. However, precise values for likelihoods are not crucial to 

the way evidence sorts among hypotheses. Rather, ratios of likelihoods do all the heavy lifting. 

So when two confirmation functions Pα and Pβ disagree on the values of likelihoods, they’ll 

agree well enough on the refutation and support for hypotheses if they yield directionally 

agreeing likelihood ratios. 

 

 Directional Agreement Condition for Likelihoods Ratios: 

The likelihood ratios for a pair of confirmation functions Pα and Pβ directionally agree on 

the possible outcomes of observations relevant to a pair of hypotheses just in case 

 for each possible outcome Ek of the conditions Ck in the evidence stream, 

Pα[Ek|Hj⋅B⋅Ck]/Pα[Ek|Hi⋅B⋅Ck] < 1 just when Pβ[Ek|Hj⋅B⋅Ck]/Pβ[Ek| Hi⋅B⋅Ck] < 1, and 

Pα[Ek|Hj⋅B⋅Ck]/Pα[Ek|Hi⋅B⋅Ck] > 1 just when Pβ[Ek|Hj⋅B⋅Ck]/Pβ[Ek| Hi⋅B⋅Ck] > 1, and 

                                                 
17

 Technically an imprecise likelihood is represented by a set of confirmation functions with 

likelihood values that span the interval of the imprecision. 
18

 Historically, geologists largely dismissed the evidence described above until the 1960s. The 

strength of this evidence didn’t suffice to overcome non-evidential (though broadly empirical) 

considerations that made the drift hypothesis seem much less plausible than the traditional 

contraction view. Chiefly, there appeared to be no plausible mechanisms that could move the 

continents through the ocean floor. Such objections were overcome when a plausible enough 

“convection mechanism” was articulated and evidence favoring it over the “embedded in 

bedrock” model was acquired. 
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 each of these likelihood ratios is either close to 1 for both functions or for neither. 

 

When this condition holds, the evidence supports Hi over Hj according to Pα just when it does so 

for Pβ. Furthermore, although the rate at which the likelihood ratios increase or decrease as 

evidence accumulates may differ for these confirmation functions, the total impact of the 

cumulative evidence will affect the refutation and support of hypotheses in the same way. 

Indeed, the Likelihood Ratio Convergence Theorem still applies. The proof of the theorem 

doesn’t depend on likelihoods being objective. It applies to each confirmation function Pα 

individually. Thus, when a family of confirmation functions satisfy the Directional Agreement 

Condition and enough empirically distinguishing observations are forthcoming, each will very 

probably yield likelihood ratios for empirically distinct false competitors of a true hypothesis 

that become extremely small. Directional Agreement guarantees that if such convergence 

towards 0 happens for one of the agreeing confirmation functions, it must happen for them all. 

As that happens, the posterior confirmation of the true hypothesis must rise to become highly 

confirmed according to each confirmation function in the family. 

 

 

5. What is Confirmational Probability? 

 

Now that we understand how confirmational probabilities may come to indicate the falsehood or 

truth of hypotheses, perhaps it’s not so important to try to interpret them. But, let’s briefly 

consider some prominent views about how to understand what these functions are. 

 

5.1 The Syntactic Logical Interpretation 

 

Early on some Bayesian logicists attempted to explicate confirmation functions that depend only 

on the syntactic structures of sentence, in the same way that deductive logical entailment 

depends only on syntactic structures.
19

 Most logicians now take this project to be fatally flawed. 

On this view hypotheses with the same syntactic structure should have the same prior probability 

values. But given any hypothesis, logicians can easily construct an infinite number of 

alternatives with the same syntactic structure. Most such alternatives would be quickly rejected 

by scientists as ad hoc and ridiculously implausible, but such assessments are based on semantic 

content, not logical structure. So semantic content should matter. Moreover, how are we 

supposed to implement this syntactic approach in real cases? Are we to compare the syntactic 

structures of the various interpretations of quantum theory to see which has the higher prior 

probability? The defenders of the syntactic-structural view owe us credible reasons to base non-

evidential plausibility assessments on syntactic structure alone. 

 

5.2 Subjective Degrees of Belief 

 

Think of α, β, γ, etc., as logically ideal agents, each having his or her own degrees of belief in 

various propositions. We may represent each agent’s belief-strengths in terms of a belief-strength 

function, Pα, Pβ, Pγ, etc, defined on statement. Taking unconditional probability as basic, read 

‘Pα[A] = r’ as saying “the strength of α’s belief that A is r”; and read Pα[A|B] = r as saying “the 

                                                 
19

 Keynes (1921) and Carnap’s (1950) are the most widely known proponents of this idea.  
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strength of α’s belief that A, were she to become newly certain of B (and nothing more than B) 

would be r.” This is the widely subscribed Subjectivist or Personalist interpretation of 

confirmational probabilities.
20

 Subjectivists intend this to be the same notion of probability 

employed in Bayesian decision theory. 

 

A major difficulty for this view are versions of the problem of old evidence.
21

 They show that 

belief-function likelihoods cannot maintain the kind of objective values that confirmation-

function likelihoods should have. This problem is much worse than usually realized. 

 

Suppose ‘E’ says “the coin lands heads on the next toss”, H says “the coin is fair” and C says 

“the coin is tossed in the usual way on the next toss”, so that the confirmational likelihood should 

be P[E|H⋅C] = 1/2. However, if the agent is already certain that E, then her belief function 

likelihood should be P[E|Hj⋅C] = 1 for every hypothesis Hj, which undermines the role of the 

likelihood in testing any hypothesis. Furthermore, even when the agent isn’t certain of E, but 

becomes certain of trivial disjunctions involving E – e.g., “either the outcome of the next toss 

will be heads, or Jim won’t like the outcome of the next toss”, (E∨F) – it can be shown that 

belief function likelihoods become radically altered from their objective values. 

 

The problem is that an agent’s belief-function likelihood has to represent her belief strength in 

the evidence statement when the hypothesis is added to everything else the agent already holds. 

But other beliefs and partial beliefs (even hunches) the agent has will almost always severely 

interfere with the objective values the likelihoods should have for confirmational purposes. Thus, 

a Bayesian account of confirmation and belief will require confirmation functions that are 

distinct from belief functions, and some account of how degrees-of-confirmation are supposed to 

inform an agent’s degrees-of-belief. 

 

One additional point: The subjectivists’ ideal agents are logically omniscient. They assign belief-

strength 1 to all logical truths. How is this unobtainable norm for confirmation/belief functions 

supposed to be relevant to the functioning of real people? However, if we don’t reduce 

confirmation functions to ideal agents’ belief functions, this “logical omniscience problem” has 

no hold over confirmation functions. Real people use the logic of confirmation functions in the 

same sort of way they might use any logic to inform their real (non-ideal) belief strengths. 

 

5.3 Another Logical View 

 

Rather than ask what confirmation functions are, it’s more fruitful to ask what they do. Under 

appropriate circumstances they’re truth-indicating indices. If, among the alternative hypotheses 

proposed to account for a given subject-matter we are fortunate enough to think of a hypothesis 

that happens to be true, and if we find enough ways to empirically test it against rivals, then all 

that’s needed for confirmational success is persistent testing and not too much bad luck with how 

the evidence actually turns out. For, according to the Likelihood Ratio Convergence Theorem, 

                                                 
20

 Ramsey (1926), de Finetti (1937), Savage (1954) are well-known proponents of this view. 

Howson and Urbach (1993) provide a comprehensive treatment. 
21

 Glymour (1980) first raised this problem. For details of the versions mentioned here see 

(Hawthorne 2005). 
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the true hypothesis itself says, via its likelihoods, that a long enough (but finite) stream of 

observations is very likely to produce outcomes that will drive the likelihood ratios of 

empirically distinct false competitors to approach 0. As this happens, the confirmation index of 

these competitors, as measured by their posterior probabilities, also approaches 0, and the 

confirmation index of the true hypothesis (or its disjunction with empirically equivalent rivals) 

will approach 1. 

 

This result does not imply that whatever hypothesis has index near 1 at a given moment is likely 

to be the true alternative. Rather, it suggests the pragmatic strategy of continually testing 

hypotheses, and taking whichever of them has an index nearest to 1 (if there is one) as the best 

current candidate for being true. The convergence theorem implies that maintaining this strategy 

and continually testing is very likely to eventually promote the true hypothesis (or its disjunction 

with empirically indistinguishable rivals) to the status of best current candidate, and it will 

remain there. So if we align our belief strengths for hypotheses with their approximate 

confirmation indices, eventually we should (very probably) come to strongly believe the true 

hypothesis. But this eliminative strategy only promises to work if we continue to look for rivals 

and continue to test the best alternative candidates against them. This strategy shouldn’t seem 

novel or surprising. It’s merely a rigorously justified version of scientific common sense. 

 

When the empirical evidence is meager or unable to distinguish between a pair of hypotheses, 

the confirmation index must rely on whatever our most probative non-evidential considerations 

tell us. We often have good reasons besides the observable evidence to strongly discount some 

logically possible alternatives as just too implausible, or at least as significantly less plausible 

than some better conceived rivals. We always bring some such considerations to bear, at least 

implicitly. It is a virtue of Bayesian confirmation theory that it provides a place for such 

assessments to figure into the logic of hypothesis evaluation. 

 

 

6. Future Directions for Research 

 

Although there has already been a lot of good philosophical work on the implications of 

Bayesian Confirmation Theory for our understanding of the epistemology of the sciences, a 

number of important topics and issues remain unsettled, and open to additional investigation. 

Here is a brief list of some of these topics: (1) does evidential diversity/variety better confirm 

hypotheses (why)? (2) why Occam’s razor? – are simpler hypotheses more likely (why)? (3) the 

Duhem problem – given that hypotheses usually only “speak to the evidence” via additional 

auxiliary hypotheses, precisely how are we to determine (in a Bayesian context) whether 

negative evidence impugns the target hypothesis or an auxiliary hypothesis? (4) what more can 

be said about the objective evaluation of prior probabilities? – e.g. why are ad hoc hypothesis 

supposed to be less plausible? (5) what does a Bayesian approach have to say about such 

traditional paradoxes of confirmation as “the ravens paradox”, “the grue problem”, “the apparent 

confirmation of irrelevant conjuncts” (a.k.a. “the tacking problem”). Many of these topics, and 

more, are discussed in (Horwich, 1982), (Earman, 1992), and (Howson and Urbach, both 1993 

and revised 2005). These treatments are far from definitive, and new, more probative results 
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continue to appear, primarily an journal articles.
22

 Much more generally, perhaps the most 

important open philosophical issue it this: how does, or should, Bayesian Confirmation Theory 

fit into an larger epistemology of the sciences, and how should this scientific epistemology mesh 

with much broader philosophical conceptions of the epistemology of everyday life? 
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