
Not just correct, but correct and fast
A look at one of Jim Grayʼs contributions to database system performance

David J. DeWitt
Microsoft Jim Gray Systems Lab

Madison, Wisconsin
dewitt@microsoft.com

Charles Levine
Microsoft Corporation

Redmond, Washington
charles.levine@microsoft.com

ABSTRACT
This paper examines Jim Gray’s role in the specification of the
debit/credit benchmark. The publication of this benchmark in a
1985 paper launched a benchmark war among the vendors that
resulted in dramatic improvements in database system
performance in the years following its publication. It was the
genesis of the TPC, an industry consortium which has reshaped
the benchmark landscape. Descendents of this benchmark
continue to this day to be an important metric of modern
transaction processing systems.

1. INTRODUCTION
Jim received the Turing award in 1998 for his fundamental
contributions to our understanding of the concept of transactions
and the mechanisms for their implementation using write-ahead
logging and two-phase locking. These mechanisms have proven
to be absolutely critical to the ubiquitous adoption of database
system technology for managing information in today’s data-
centric economy.

However, in addition to teaching us how to make sure that
database systems could insure that the data they managed was
always “correct”, Jim also was instrumental in making sure the
systems were “fast”. By specifying the key metric for
evaluating the performance of database systems in his 1985
paper A Measure of Transaction Processing Power, [1] Jim
launched a benchmark war that drove the industry forward at a
frantic pace for more than 15 years. At the time of the
publication of this seminal paper, database systems that could
deliver 100 transactions/second were considered state of the art.
Obtaining 1,000 transactions/second was viewed as unreachable.
Twenty years later, Jim was able to obtain 8,000
transactions/second on his laptop. While advances in hardware
certainly played a role, the dramatic improvements achieved
were also the result of improvements in the database software.

We begin with some historical background that led Jim to
develop the benchmark. After describing the benchmark itself,
we explore how the benchmark has impacted the development

of database systems as the benchmark was adopted, expanded,
and refined. More than 23 years later descendents of this
benchmark continue to drive the industry forward.

2. BACKGROUND
Jim’s foray into database benchmarking was prompted by our
attempts to develop a benchmark for evaluating the performance
of relational database systems [2]. The approach we had
adopted involved measuring the performance of a set of basic
SQL operations (e.g. selections, joins, aggregates, and updates)
on a synthetically generated database. Our motivation in
designing the Wisconsin benchmark was primarily as a vehicle
for evaluating the basic relational operators from which complex
queries are composed.

While our benchmarking efforts produced some interesting --
and controversial -- results about the state of the art of the
commercial relational products in 1983, Jim was convinced that
we had gone about measuring performance in totally the wrong
way. Jim’s response was to author a paper titled: A Measure of
Transaction Processing Power [1, 3]. The last line of the paper
says it all: “There are lies, damn lies, and then there are
performance measures.” To this day this statement remains true.
Except for IBM, the major database vendors require obtaining
their permission before publishing benchmark results and
rumors of “benchmark specials” – versions of products tuned for
specific benchmarks – are commonplace despite the best efforts
of the Transaction Processing Performance Council.

The author list and publication date of this paper say a lot about
Jim as a person. First, Jim used “Anon et al.” as the author of
the paper. Having seen the controversy that our benchmarking
paper had generated, Jim needed to protect the names of those
co-authors who had supplied results and thought using Anon et
al. as the author was funny. Second, he loved to share the credit
for his work with others. While he was the one who designed
the benchmark and wrote the paper pretty much by himself, he
cites “24 computer professionals as contributing including eight
academics, two end users, and 14 who worked for various
vendors.”

Jim carefully selected the publication venue and publication date
for the paper. Rather than sending it to an academic conference
or journal he wanted the paper seen by a much wider range of
readers. So he elected to send the paper to Datamation, which,
at the time, was one of the leading publications catering to IT
professionals. Today, he would have just posted it on his blog.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD Record, June 2008 (Vol. 37, No. 2) 45

But the last little inside joke was the publication date. We
remember distinctly that he called all excited because he had
arranged to have the paper published on April 1st (1985). The
paper was no April Fool’s joke. It changed the entire database
industry, driving the field forward for more than 15 years.

3. THE ANON ET AL. BENCHMARK
While many think of the benchmark as defining a single metric,
the debit/credit benchmark measured in transactions executed
per second, the paper actually defines two additional tests: a
sort benchmark and a scan benchmark. Unlike the earlier
Wisconsin benchmark that can be viewed as a micro-benchmark
designed to measure the performance of both individual SQL
operators and a set of simple queries, two of the three tests in the
Anon et al. Benchmark were designed to capture the essence of
a common database application. The debit/credit test was
designed to mimic a typical banking transaction. The scan
benchmark was modeled after the process a typical company
might use to generate 1/30th of its bills for mailing each night of
the month. Since sorting is an important component of any
database system, Jim elected to use a sort benchmark to measure
the raw performance of the database system being tested.

In addition to these three tests, the benchmark also proposed a
way of normalizing the differences in the systems being
evaluated. For example, if system A has 10 times the
throughput of system B but costs 100 times as much to own and
operate, system B is clearly most cost effective.

3.1 The Debit/Credit Benchmark
The debit/credit benchmark was designed to mimic the sequence
of actions that occur when a customer makes a withdrawal or
deposit at a bank. Its design was motivated by a large bank that
wanted to acquire a computer and database system that would
enable it to put its 1,000 branches, 10,000 tellers, and 10 million
customer accounts on line in the early 1970s. As part of the
RFP, the bank specified a performance target for the system of
100 transactions/second (tps) with 95% of the transactions
having a response time of less than 1 second and an overall
system availability of 99.5%. This RFP was the basis from
which Jim formalized the design of what was initially known as
the TP1 benchmark1.

The database for the benchmark is quite simple and is composed
of three record types: one to model the account for the branch,
one to model the teller’s account, and one to model the
customer’s account. The transaction is equally simple
(simplicity is always appealing) and is shown in Figure 1 below.

After updating the account record (to reflect a withdrawal or
deposit), an auditing record is appended to a History file, which

1 The name “TP1” was an internal IBM code name. It was also

sometimes called ET1. Jim explained the origin of the names in the
following correspondence with Levine on Jan 23, 1992: Originally
there was TP1-TP7 standing for Transaction Processing benchmark
1-7. TP7 is SCAN, TP1 is DebitCredit. TP1 was coded in DL/1. As
IMS evolved, TP1 evolved. Eventually, TP1 was recoded for the new
“Eagle” transaction processing system which had a new set of
database calls. The resulting transaction profile was called ET1
(Eagle Transaction 1).

retains all such records for the most recent 90 days. Then it
updates the teller and branch records to reflect that a particular
teller processed a transaction for the customer’s account.

Begin Transaction
 Read message from the teller’s terminal
 Read and then update the account record specified
 Append an auditing record to a History file
 Read and then update the appropriate teller record
 Read and then update the appropriate branch record
 Send message to the teller’s terminal
Commit Transaction

Figure 1: The Debit-Credit Transaction

With a performance target of 100 tps, the benchmark specified
that the database should contain 1,000 Branch records, 10,000
Teller records, and 10,000,000 customer accounts. With
computers at the time having typically 2-4 MB of main memory,
the Branch and Teller tables could be cached in memory, but not
the Account table.

Since 100 tps at the time was a difficult goal to achieve, Jim
correctly anticipated that some vendors would not be able to
meet this target. He also wanted to make sure that vendors did
not cheat by shrinking the size of the database so that it fit
memory. Thus, he devised a set of scaling rules for the
benchmark. For example, if a vendor wanted to assert that its
system was capable of 1000 tps, they would have to increase the
size of the database by a factor of ten to 10,000 Branches,
100,000 Tellers, and 100M customer accounts. Likewise, a
vendor whose product could only achieve 10 tps was allowed to
scale the size of the database down by a factor of 10. These
scaling rules proved to be critical to the success of the
benchmark as they allowed all the vendors to participate, kept
them as honest as possible, and kept the target moving as
systems got faster and faster.

The Datamation article included the results from running the
debit/credit benchmark on a number of commercial products.
These results are reproduced in Table 1 below.

SYSTEM TPS I/Os $K/TPS
Lean and Mean 400 6 40
Fast 100 4 60
Good 50 10 80
Common 15 20 150
Funny 1 20 400

Table 1: 1985 Results for the Debit/Credit Benchmark

By promising not to name systems, Jim was able to get vendors
to supply results (and be authors). The “Lean and Mean” system
provided 4 times the throughput of the “Fast” at only 2.7 times
the cost as the “Fast” system and was the most cost effective
solution at the time.

Needless to say, the results set off a huge amount of speculation
in the community as to which system was which. The vendors,
of course, knew which system was theirs. Their customers
probably did, too, and the vendors of the Common and Funny

46 SIGMOD Record, June 2008 (Vol. 37, No. 2)

products undoubtedly were put under a lot of pressure from
customers to improve their products.

It is interesting that, even in 1985, Jim was aware that customers
who repeated the benchmark never obtained the same level of
performance as the vendors, a problem that continues to plague
the field today. Vendor-supplied results continue to be viewed
with suspicion. Whether the problem is that vendors are using
“benchmark special” versions of their products or that customers
are unable to tune their installations to the same degree as the
vendors, it is widely recognized that customers essentially never
are able to reproduce results obtained by the vendors. As Jim
wrote in 1991 [10] “Put another way, the performance numbers
a salesperson quotes are really a guarantee that the product will
never exceed the quoted performance. Despite these caveats,
benchmarks and the concepts that underlie them are important
tools in evaluating computer systems’ performance and
price/performance.”

3.2 The Scan Benchmark
The second component of the benchmark was designed by Jim
to measure the performance that a typical application-level
programmer might obtain from the database system. The
benchmark is very simple. It reads and updates every record of
a file containing one million, 100 byte records. The benchmark
divides the job into 1,000 separate transactions each of which
processes 1,000 records. With disks of that period capable of
transferring data at 2-3 Mbytes/second, the minimum expected
time per transaction was 0.1 seconds. The observed times were
much worse, ranging from 1 second to 10 seconds, leaving the
vendors a lot of room for improvement. While this benchmark
never really received much attention, today we expect scans of
tables to run at near-disk speeds.

3.3 The Sort Benchmark
The last component of the benchmark required sorting a file of
one million, 100 byte numbers with 10 byte keys. Over time,
this benchmark became known as the Datamation Sort
benchmark. Jim envisioned this test as a measure of the raw
performance of the database system. Sorting has always been an
important component of a relational database system both for
ordering the results of a query, implementing the distinct
operator and as the basis for the sort-merge join algorithm.

The sort benchmark specification was essentially unconstrained
with the exception that the input and output files had to be stored
sequentially on disk. There were no limitations imposed on the
number of CPUs, the amount of memory, or the number of
scratch disks employed. With typical computers of the period
limited to 2-4MB of memory, the sort required at least two
passes. In theory, with a 3MB second/disk, the sort should have
required only a minute or two; the observed times ranged from
10 minutes to 10 hours. The results clearly indicated lots of
room for improvement.

3.4 Costing Rules
Costing was another factor that Jim introduced in the design of
the benchmark. His motivation was to normalize the
performance of different systems by somehow incorporating
their costs. For example, if system A was twice as fast as

system B for a particular benchmark but used four times as
much hardware, its cost effectiveness was really 1/2 that of
System B. Ideally, the cost of running a benchmark would
incorporate the total cost of ownership but Jim struggled with
what to include. For example, should personnel costs to run the
computer system be included? Or the power consumed? In the
end, Jim decided to include the cost of only the hardware and
software used, amortized over a five-year lifetime. A
benchmark requiring an hour to run is charged a prorated
amount of the five-year cost.

Like the rules for scaling the debit/credit transaction benchmark,
the costing rules he proposed proved to be an important
contribution as it gave vendors wishing to run the benchmark the
freedom to pick whatever hardware combination that maximized
the overall cost effectiveness of their system. Furthermore, it
also reduced the need to use the same hardware platform to
obtain comparable results across software vendors. Of course,
costing is always ripe for manipulation through discounts on
software and hardware.

4. THE AFTERMATH
While most papers take a while to have an impact, publication of
the Datamation version of the paper had an immediate impact.
Each vendor knew exactly where its product stood compared to
its competitors. While the vendor of the “Lean and Mean”
system had a lot to crow about, the developers responsible for
the “good” and “funny” systems had to be pretty discouraged.
The paper launched what was to be a benchmarking war among
the major database vendors.

The sort and scan benchmarks were, however, early casualties.
It was much easier for the marketing teams to focus on, and sell,
a single number. Your system’s “tps” rating had a catchy ring to
it and could be marketed like mpg ratings for cars.

To keep the process as fair as possible, in 1988 Jim encouraged
Omri Serlin and Tom Sawyer to start the Transaction Processing
Performance Council (TPC), a coalition of hardware and
software vendors [4, 5]. Since the Wisconsin benchmark had
caused all the database vendors (except IBM) to add a “no
benchmarking allowed” clause (sometimes referred to as the
“DeWitt” clause [6]) to their license agreements, results would
have to come from the vendors. One of the first actions of the
TPC was to agree on a set of benchmarking, costing, auditing,
and publication rules that had to be followed to publish a result.
An independent audit was “highly recommended” by the TPC,
but not required. The TPC made audits by TPC certified
auditors mandatory in 1993.

Interestingly, the hardware vendors were also eager to
participate in this benchmarking war. Having Oracle run faster
on a Sun system than an HP box, drove customers to buy Sun
products. To this day, Sun maintains a team of engineers
dedicated to tuning Oracle for Sun computers. We expect that
every major hardware vendor has a similar effort.

The TPC refined the definition of the original debit/credit
benchmark specification, added rules for pricing, ACID, full
disclosure, and auditing. The result was dubbed TPC-A and
launched in 1989. Jim was personally involved in the TPC-A

SIGMOD Record, June 2008 (Vol. 37, No. 2) 47

effort as the Tandem representative for the first year of the TPC.
He wrote the ACID clause, a task for which he was uniquely
qualified. The ACID clause establishes the rules for
transactional semantics in the benchmark. Isolation and
Durability were particularly important. Isolation has been the
center of some of the biggest battles in the TPC over the years.
The durability tests have uncovered countless recovery bugs,
even in seemingly mature, well tested products. The ACID
clause can be found in every TPC benchmark since TPC-A.

TPC-A was followed a year later by TPC-B, which simplified
TPC-A by eliminating the external network and the concept of
users. Both TPC-A and TPC-B are direct descendents of Jim’s
debit/credit benchmark. TPC-A and B brought to an end the
wild west of debit/credit benchmarking claims. But rather than
dampen the competition, the TPC endowed credibility and
legitimacy to the benchmark efforts, which in turn increased the
value of winning. Ultimately, the simplicity of TPC-A and B
were their undoing [7]. The trivial transaction profile lent itself
to benchmark specials.

In 1992, the TPC launched TPC-C. It was the first TPC
benchmark without any ties to debit/credit. By 1995, when the
TPC-A and TPC-B benchmarks were officially “retired”,
vendors had reached the 10,000 tpsB level, a simply amazing
improvement over a 10-year period.

During this period, progress occurred at an incredible rate.
While conceptually simple, it turns out that making the debit-
credit benchmark really fast required streamlining all aspects of
the DBMS software from the query executor to the I/O system.
Sybase’s introduction of stored procedures gave a big boost in
performance as the entire debit/credit application could be
implemented inside the database system, replacing four round-
trip messages between the application and the DBMS with a
single round trip. As a consequence, Sybase had a significant
performance advantage until their competitors added stored
procedures to their systems.

Having a single number was not only good for marketing but it
was also a great motivational tool to drive engineering teams.
If your competitor was twice as fast you had no choice but to try
and meet their latest results in your next release. Hardware
vendors worked hand-in-hand with the database vendors to
ensure that their hardware provided the best platform for
running the top products. To this day, vendors use the various
TPC benchmarks to verify that changes in a new release of their
software have not had an adverse effect on the performance of
the system.

Although Jim only directly participated in the TPC for the first
year, he remained a big fan. The open competition and full
disclosure of how results were achieved matched how Jim
himself worked in the industry. Further, there were some issues
about which Jim was particularly passionate. Transaction
isolation was one such issue. In 1993, Jim canceled his other
plans at the last moment and flew down to San Diego to attend a
TPC meeting where the issue de jure was repeatable read versus
read committed isolation. After TPC-C had been released, one
database vendor argued strenuously (and repeatedly) that the
isolation level be changed from repeatable read to read
committed. Jim argued that the lower isolation level allowed

incorrect results and compared it to the Intel Pentium floating-
point bug which was making headlines at the time. The clarity
of Jim’s argument and his being the indisputable authority on
the subject carried the day.

This benchmarking war did, however, have some negative
consequences. The almost total focus on TPC-A and TPC-B
results for 10 years allowed the mainstream vendors to mostly
neglect the performance of their systems on complex decision
support queries. While advances were made during this period
in query processing and storage techniques, improvements in
query optimization were essentially non-existent. This allowed
vendors like Teradata, whose primary focus was decision
support and not transactions, to dominate the very large data
warehouse market. One wonders what might have been had the
vendors not focused solely on the debit/credit part of the Anon
et. al. benchmark.

While the commercial vendors ignored both the scan and sort
benchmarks, Jim was determined to keep the sort benchmark
alive. In 1987 he started a sorting competition that continues to
this day [8]. In 1997 the winner of the Datamation sort (sort
1M, 100 byte records with 10 byte keys) was a group at Tandem
who won with a time of 980 seconds. The following year Peter
Weinberger (who was then at Bell Labs) obliterated this record
using a Cray 1 with a time of 28 seconds. Peter’s record
remained unbeaten until 1993 when Chris Nyberg beat it with a
time of 9 seconds using a loaded DEC Alpha and sorting
software designed to exploit the use of the Alpha’s L1 and L2
caches. Every year the Datamation sort benchmark record
dropped until in 2001 a group of students and faculty at
Wisconsin lead by Andrea and Remzi Arpaci-Dusseau used a
cluster of 32 Linux PCs to perform the sort in less than ½
second. Simply starting a parallel job on 32 clusters in a ½
second is a challenge in itself. At this point, Jim decided that
the Datamation sort benchmark had outlived its usefulness and
should be retired.

Starting in 1995, Jim expanded the set of sort competitions to
include the Minute Sort (how many 100 byte records you can
sort in a minute), the Penny Sort (how much can you sort using a
penny’s worth of hardware), and the Terabyte Sort.

Jim never lost his enthusiasm for this competition as he had a
deep appreciation for the software talent required to drive the
state of the art in sorting forward. Every year Jim would arrive
at the annual SIGMOD conference with trophies in hand to
present to the new record holders. We are confident it was one
of the highlights of his year.

5. TWENTY YEARS LATER
On April 1st, 2005, the 20th anniversary of the Datamation
article, Jim published a paper showing the progress that had
been made [9]. Jim decided it would be fun to rerun the original
debit/credit benchmark on his laptop to measure first hand the
progress that the field had made. Although at the time the TPC-
B benchmark had been officially “retired” for 10 years, Jim
wanted the experiment to be as similar to the original
debit/credit benchmarks as possible. With the help of Charles
Levine, he was able to obtain over 8,000 tps using his two-year
old laptop and Microsoft SQL Server 2000 (a product that did
not even exist in 1985). Of course, he cheated a little bit on the

48 SIGMOD Record, June 2008 (Vol. 37, No. 2)

scaling rules he himself had established but it was certainly his
prerogative to do so (and fitting given the chosen publication
date).

6. SUMMARY
Jim made many contributions to the database field. His theory
of transactions and their implementation and the debit/credit
benchmark serve as two bookends. Transactions provide the
fundamentals that make all electronic commerce possible. His
debit/credit benchmark helped drive the database industry
forward for 15 years to the point where the cost of a transaction
dropped to a small fraction of a penny. Together, these
contributions allow electronic commerce to be incredibly low-
cost and highly reliable. Our world would be very different
today without either one.

7. DEWITT’S PERSONAL REFLECTIONS
While Jim’s mentoring was invaluable to my career, his style
was not always gentle. Once, when reviewing a paper of mine
on database system architectures for client-server environments,
Jim scribbled on the review: “DeWitt, What have you been
smoking?” I knew it was Jim because he signed the review –
something he tended to do with papers he really liked or really
hated. Jim's advice wasn't always perfect - one time, when I
was an assistant professor, Jim called me up and advised me to
give up trying to make parallel database systems work - but he
was usually right, and he was certainly right the time he called
and told me that our approach to benchmarking was “all wrong”.

8. LEVINE’S PERSONAL REFLECTIONS
Early in my career I had the very good fortune to sit across the
hallway from Jim when we were both at Tandem. Jim was
already a formidable presence in the database world (although I
didn’t appreciate that at the time) and I was simply a junior
software developer a few years out of college. I learned a lot
from Jim just by overhearing his conversations. Jim had a
marvelous ability to distill complex things to their essential
elements and then make connections and see trends. As a
mentor, I believe that he was motivated by how much he could
help others learn and grow, rather than working with the right
people or the right projects. Altruism at its best.

As the TPC-A effort was wrapping up, Jim picked me to take
over as Tandem’s TPC representative. There were certainly
more experienced and knowledgeable people Jim could have
chosen, so it was quite a vote of confidence that he picked me.

Jim set a high standard for honesty, integrity, and cooperation
that I have tried to follow in the TPC and my career.

I have many fond memories of Jim. The last email I got from
Jim was three weeks before he disappeared. Replying to an
announcement of the birth of my son, Jim wrote
“Congratulations. Now the fun begins!” Classic Jim. There’s a
lot about being a good person I hope to teach my son that I
learned from him.

9. REFERENCES
Many of the papers cited below are posted at http://research.
microsoft.com/~gray/JimGrayPublications.htm; they are marked
with a (*).

[1] “A Measure of Transaction Processing Power,” Anon et
al., Datamation, April 1, 1985. *

[2] “Benchmarking Database Systems: A Systematic
Approach,” Bitton, D., DeWitt, D. J., and C. Turbyfil,
Proceedings of the 1983 Very Large Database
Conference, October 1983.

[3] “A Measure of Transaction Processing Power,” Anon et
al., Tandem Technical Report, TR 85.2. *

[4] “The History of DebitCredit and the TPC,” Omni Serlin,
The Benchmark Handbook, Chapter 2, 1993. *

[5] “History and Overview of the TPC,” Shanley, Kim,
http://www.tpc.org/information/about/history.asp,
February 1998.

[6] “DeWitt Clauses: Can We Protect Purchasers Without
Hurting Microsoft?” http://www.redorbit.com/news/
technology/520809/dewitt_clauses_can_we_protect_purch
asers_without_hurting_microsoft/index.html

[7] “The Evolution of TPC Benchmarks: Why TPC-A and
TPC-B Are Obsolete,” Charles Levine, Jim Gray, Steve
Kiss, and Walt Kohler, San Francisco Systems Center
Technical Report 93.1, Digital Equipment Corporation,
September 1993. *

[8] http://research.microsoft.com/barc/sortbenchmark/

[9] “Thousands of DebitCredit Transactions-Per-Second,”
Jim Gray, and Charles Levine, Microsoft Research
Technical Report, MSR-TR-2005-39, April 1, 2005. *

[10] “Introduction,” Jim Gray, The Benchmark Handbook,
Chapter 1, 1993. *

SIGMOD Record, June 2008 (Vol. 37, No. 2) 49

