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ABSTRACT

This paper details the flight dynamics and control of a pro-
totype mono-wing rotorcraft that mimics the passive transit
of the species of samara (winged seed), Acer diabolicum
Blume. The asymmetric and all-rotating platform requires
the development of a novel sensing and control framework.
The general rigid body dynamics are separated into rotor
dynamics and particle navigation, which are derived for a
coordinated helical turn flight path. The equations of motion
are used to calculate the forces necessary for flight along
a trajectory recorded with a visual motion capture system.
The result is a framework for state estimation and control,
applicable to scaled versions of the robotic samara.

I. INTRODUCTION

IN recent years a new paradigm of flight has emerged
which encompasses micro-scale bio-inspired aircraft.

These highly maneuverable platforms are capable of hov-
ering flight and are ideally suited for operation in a con-
fined environment. The reconnaissance mission envisioned
requires a high level of autonomy due to the fast dynamics
of the vehicle and the limit on communication in the likely
areas of operation, e.g. caves and buildings. Development of
the equations of motion about a trimmed flight condition will
facilitate future model-based controller and observer design,
enabling autonomous operation.

Aerial systems that satisfy the dimensional constraints out-
lined by the DARPA “Nano Air Vehicle” (NAV) initiative[1]
include fixed-wing, rotary-wing and flapping-wing vehicles.
The simplest and most mature of these platforms are fixed-
wing vehicles which boast speed, simplicity and well-known
dynamics; however the necessity for forward flight restricts
functionality in cluttered environments that can be traversed
by rotary and flapping-wing platforms.

A substantial challenge in modeling the dynamics of
micro-scale flight is the general lack of knowledge of the
complex low Reynolds number flow regime they inhabit. The
inherently three-dimensional flow of rotary wing vehicles
cannot be adequately modeled using two-dimensional airfoil
data, as lift production at this scale exceeds prediction [2].
The complexity of the system can be reduced substantially
by identifying a linear model which describes its reaction
to forces imposed by a control input. A model description
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of this nature lends itself well to modern control and state
estimation.

This manuscript characterizes the forward flight dynamics
and control of a rotary-wing NAV based on one of natures
most efficient fliers: the seed of the maple (Acer) tree or
samara. The work begins with a description of the vehicle
and experimental setup. Then recorded flight test are shown
and the characteristics of the flight path analyzed. Next the
rigid body dynamics are derived for a flight path consisting
of a helical turn. The equations of motion are then linearized
about a trimmed flight condition, from which the small per-
turbation equations of motion can be expressed in canonical
state space form. Equation-error and output-error methods
are used to compute parameter estimates from flight data.
The result of this work is a framework for state estimation
and control.

II. MATERIALS AND METHODS

A. Monocopter Description

The concept of a single-wing rotating aircraft is not a new
one, and in fact the first vehicle of this type was flown in
1952 in the woods surrounding Lake Placid, New York by
Charles W. McCutchen [3]. A more recent vehicle, called
the MAVPro, was developed and flown by a team led by
Lockheed Martin Advanced Technology Laboratories, and
was only capable of vertical flight [4]. The various single
winged rotating aircraft developed over the years have made
no attempt to utilize the most basic mode of transit of natural
samara, autorotation. Additionally, airfoil cross sections and
planform designs have had no similarity to that found in
natural samaras.

Conventional monocopter designs apply torque to the
vehicle with a thrust device slightly off-set from the ĉy-axis,
and in the case of MAVPro the propeller spins in the ĉy-
ĉz plane and influences the stability about the ĉy-axis. This
configuration results in the propeller fighting the pitch input
from the flap and reduces controllability of the vehicle. The
3.5-inch diameter propeller of the robotic samara is spinning
in the ĉx-ĉz plane and opposes applied torque about the ĉx-
axis providing additional roll stability. The configuration of
the robotic samara permits control of rotation rate, altitude,
and translation via the appropriate actuation of the wing
servo. The component layout, and sign convention of the
vehicle used in this study is shown in Figure 1.

The vehicle detailed in this study is a type of mono-
wing rotorcraft modeled after the species of samara Acer
diabolicum Blume. The layout of the vehicle consists of two
rigid bodies linked by a servo allowing one rotational degree
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of freedom. The first rigid body and main lifting surface
resembles a scaled version of a samara both in planform
geometry and airfoil cross section, [5] [6] [7] [8]. The
second rigid body houses the electronics and motor/propellor
unit applying a torque to rotate the vehicle as required for
flight, Figure 1. The body fixed axis [ĉx, ĉy, ĉz] and Euler
angles [φw, θw, ψw] describe the orientation of the vehicle,
which is shown in Figure 1, along with the dimensions of
the vehicle.

Flight of a monocopter differs from full scale helicopters
as there exists no stationary frame of reference from which
control inputs can be applied, i.e. helicopter swashplate.
Control of the vehicle with once per revolution inputs
requires knowledge of the vehicle’s orientation relative to
the desired flight path, but sensor packages capable of
recording on-board flight data at the rate necessary for
this type of control are not commercially available in the
weight class required for use on nano-class vehicles. Instead,
control algorithms development is based on state information
collected externally using a visual motion capture system.
This approach has been successful in identifying the pitch
and heave dynamics of similar vehicle which is described in
Ref. [9]. An approach to directional control which does not
require the once per revolution actuation or high frequency
measurement of vehicle orientation is discussed in detail in
this paper.
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Fig. 1. Robotic samara orientation

Position and orientation of each vehicle was collected at
a rate of 500 Hz using a visual tracking system. The open-
loop control setup used to pilot the vehicle and record vehicle
state information is discussed in Ref. [9]. During a flight test,
the tracking system utilizes eight cameras to track the three-
dimensional position of three retro-reflective markers placed
on the samara wing. A model of the vehicle geometry and
the exact locations of the markers are used for least-squares
estimates of the position of the center of gravity as well as
orientation. The open-loop control setup and measurement
noise characteristics are detailed in Ref [9].

The obtained position estimates are exceptionally low
noise. The position noise variance was estimated by record-
ing data while not moving the vehicle. Inertial velocity
estimates are calculated by differentiation of the inertial
position, using a central difference scheme.

III. FLIGHT DYNAMICS MODEL

A. Virtual body model

For the purposes of guidance, navigation, and control,
a traditional MAV has a set of 6-7 configuration variables
corresponding to the 3D position of the center of gravity
and the remaining 3-4 used to describe the orientation of the
vehicle relative to an inertial reference frame. For the robotic
samara, the body orientation evolves over time, ranging
from a steady rotation rate about the ı̂z axis in hover to a
more complex pitching, rolling, flapping and rotating motion
in other flight conditions such as the translational flight
condition addressed in the study.

To simplify the description, consider instead the “disk”
described by the motion of the wingtip over each revolution,
or “tip path plane” (TPP). As defined in traditional rotor-
craft analysis, the TPP considered is one that discards the
harmonic motion higher than 1/rev, allowing a plane to be
defined from the surface. The aerodynamic lift force may be
considered to act perpendicular to the TPP.

To describe the dynamics of the samara, consider a virtual
(rigid) body connected to the disc center with an ideal hinge,
with its center of gravity (CG) located directly below the disc
center and with the mass of the samara, as seen in Figure 2.
No aerodynamic moments may be transmitted across an ideal
hinge, splitting the position/orientation dynamics into rotor
dynamics describing the flapping motion of the blade, and
positional dynamics of the samara to be described using the
translational equations of motion for the motion of a point
mass acted upon by the rotor disc forces. The forward flight
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Fig. 2. Modeling the samara as a rotor with a hinged virtual body.

of the vehicle is most conveniently formulated in a non-
rotating frame of reference attached to the virtual body. The
orientation of the virtual body forward velocity u is defined
by the projection of the velocity vector onto the [̂ıx, ı̂y] plane
so that translation can only occur in the u direction and
v = 0. The heave velocity is parallel to the inertial ı̂z axis and
is shown in Figure 3. Also shown is the equal and opposite
definitions of aerodynamic incidence α, and the flight path
angle γ in relation to the virtual body velocities, u,w. The
cyclic blade flapping is defined as the angle between the
wing and the inertial plane [̂ıx, ı̂y] and is shown in Figure 5.

[u, v, w]T = [V cos γ, 0,−V sin γ]T (1)

B. Equations of motion for a flapping blade

In steady hovering flight the coning angle β = β0 =
constant and is independent of ψ. In forward flight the
cyclically varying airloads induce an additional flapping
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ŝ
x

ŝ
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Fig. 4. Definition of azimuth angles of the wing ψw , virtual body ψcg ,
and virtual body with respect to the wing ψ.

response that varies about the azimuth ψ. The aerodynamic,
centrifugal, and inertial forces acting on the robotic samara
wing determine the observed coning angle, Figure 5. We
define a positive moment as one which acts to reduce the
β. The centrifugal force can then be written for an element
along the span as d(MCF ) = my2Ω2βdy and the inertial
moment about the flap hinge as d(I) = my2β̈dy. Addi-
tionally the aerodynamic moment is d(Mβ) = −Lydy. The
sum of the applied moments form the differential equation
describing the blade flapping motion. The flap equation can
be written as a function of azimuth angle instead of time,
where ψ = Ωt results in the following transformation;
β̇ = Ω

∗
β and β̇ = Ω2

∗∗
β. The equation of motion of the robotic
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Fig. 5. Definition of coning angles β1s, β1c. with forces acting on an
element of a flapping robotic samara wing

samara flapping wing reduces to
∗∗
β +

γ

8
∗
β + β =

γ

8
[θ − 4

3
λi] (2)

where γ is the lock number of the robotic samara. The
lock number is a function of the aerodynamic and geometric
parameters listed in Table I and is computed as

γ =
ρ ClαcR

4

Ib
= 6.75. (3)

Detailed numerical and steady state analytic solutions for the
flap equation in (2) have demonstrated good agreement with
a first order harmonic series [10]. Harmonic analysis of the
flap equation allows a periodic solution of the form

β = β0 + β1s sin(ψ) + β1c cos(ψ). (4)

The blade flapping throughout the u-turn is observed to be
periodic with respect to the azimuth angle ψ. The periodic
coefficients describe the direction of force and can be seen to
correlate with both the velocity and acceleration of the virtual
body in Figure 6. The β1c term influences the magnitude of
u and the β1s term influences the magnitude ‖Vcg‖. The
coefficients β1s, β1c are the out of plane flapping angles that
describe the orientation of the wing within the disk. The
orientation of the virtual body defines the roll and pitch
angles to be φ = β1s and θ = β1c respectively. Thus
the flapping of the wing in forward flight describes the
instantaneous orientation of the virtual body which includes
the coning angle β0.

TABLE I
ROBOTIC SAMARA WING PROPERTIES

Measurement Symbol Value Unit
Air density ρ 1.225 Kg/m3

Mean chord c 3.5 cm
Wing length R 18 cm

Lift curve slope Clα 3.5 -
Wing inertia Ib 23.3µ Kgm3

C. Rigid body equations of motion

The rigid body equations of motion are differential equa-
tions that describe the evolution of the state variables subject
to applied forces. In body-fixed axes the sum of all external
forces applied to the center of gravity is

mV̇cg +mS(ω)Vcg = f (5)

where m is the vehicle mass, Vcg = uŝx + vŝy + wŝz is
the translational velocity of the center of gravity, ω = pŝx+
qŝy + rŝx are the body-fixed roll, pitch and yaw rates, f =
fxŝx + fy ŝy + fz ŝz are externally applied forces, and S(.)
is a skew operator. The rotational dynamics are governed by
the differential equation

Iω̇ + S(ω)Iω = τ (6)

where τ is a vector of externally applied torques and I is a
diagonal inertia matrix arising from symmetries in the virtual
aircraft.

47



D. Coordinated helical turn

The flight path of the vehicle resembles a steady banked
turn such that φ̇0 and θ̇0 are equal to zero. Additionally γ
the flight path angle (> 0 for climbing flight) is small so that
sin γ = γ and cos γ = 1. The kinematic equations are then

p = −ψ̇cg sinβ1c (7)

q = ψ̇cg cosβ1c sinβ1s (8)

r = ψ̇cg cosβ1c cosβ1s. (9)

Substituting the derived velocities and modified kinematics
into the force equilibrium equations results in the following
equations of motion:

X = mg sinβ1c +m(u̇+ wq − vr) (10)

Y = −mg cosβ1c sinβ1s +m(v̇ + ur − wp) (11)

Z = −mg cosβ1c cosβ1s +m(ẇ + vp− uq) (12)

where [X,Y, Z]T represent force equilibrium in the body
fixed coordinate frame, and g is acceleration due to gravity.

Flight tests conducted with the robotic samara provide a
means of verifying the equations of motion. A portion of
a flight which fits within the constraints of the proposed
analytical model is shown in Figure 6.

The variation of ψ̇cg with the turn radius rturn is observed
to be linear for most of the trial, where a small but linear
change in rturn corresponds to a large change in turn rate
ψ̇cg . The final portion of the figure shows the linear change
in forward speed derivative u̇ with respect to rturn.
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Fig. 6. Flight data for a steady helical turn, including turn radius rturn,
turn rate ψ̇cg .

E. Extension to forward flight

1) Pure longitudinal motion: Consider now straight flight
as a special case of a coordinated turn, where ψ̇ = p0 =
q0 = r0 = β1s = 0. The equation of motion along the ŝx-
axis for forward flight may be written as the combination
of a nominal condition (represented by []0) and a small
perturbation ∆[] as:

X0 + ∆X −mg[sin(β1c0) + ∆β1c cos(β1c0)] = ∆u̇ (13)

Setting all perturbation quantities to zero ∆[]=0 yields the
force equilibrium along trimmed forward flight:

X0

m
= g sinβ1c0 (14)

2) Perturbation equations: The trimmed forward flight
equation 14 can be subtracted from the linearized force
equilibrium equation 13 leading to a description of small
perturbation motion about the equilibrium condition as:

∆u̇ =
∆X
m
− g∆β1c cosβ1c (15)

Separating out the linear effects of the longitudinal variables
[u,w, β0, β1c] facilitates development of a canonical linear
control model, and can be written as:

∆X
m

= Xu∆u+Xw∆w+Xβ0∆β0 +Xβ1c
∆β1c +Xθ∆θ,

(16)
where X[.]=(1/m)∂X/∂[.]. The time-invariant linear system
can now be expressed in state space form ẋ = Ax + Bu
where x = [∆u,∆w,∆β0,∆β1c]T , and u = [∆θ0], written
in matrix form as:

[
A
]

=


Xu Xw 0 0 0
0 0 ZΩ Zβ0 0
0 0 ΩΩ Ωβ0 0
0 0 β0Ω 0 0

β1cu 0 β1cΩ β1cβ0
0

 (17)

and [B] = [Xθ0 , Zθ0 , 0, β0θ0 , 0]T .

TABLE II
PARAMETER ESTIMATES AND STANDARD ERRORS

Parameter Equation-Error Output-Error
θ θ̂ ± s(θ̂) θ̂ ± s(θ̂)

Xu +0.4165± 0.1753 +0.8978± 0.3416
Xw +3.7378± 0.5694 +1.6108± 0.4431
Xθ0 −7.9875± 21.055 +114.35± 25.827
ZΩ +0.2538± 0.0164 +0.2237± 0.0318
Zβ0 −57.323± 12.301 −17.695± 23.318
Zθ0 −14.718± 13.399 +38.942± 19.449
ΩΩ −1.3358± 0.2084 −2.2649± 0.5876
Ωβ0 +1001.5± 63.791 +1231.1± 219.49
β0Ω −0.0081± 0.0008 −0.0063± 0.0008
β0θ0

−1.8922± 0.3399 −2.3455± 0.3158
β1cu −0.5881± 0.2122 +0.5628± 0.2050
β1cΩ −0.1145± 0.0325 +0.0872± 0.0540
β1cβ0

+24.323± 7.7405 −22.543± 15.787
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IV. EXPERIMENTAL RESULTS

Lateral directional flight was recorded in the laboratory
for a flight path consisting of an initial trim state and a
perturbation about the trim, Figure 7. In general, the turn
radius is inversely proportional to the collective pitch of the
wing. The samara travels in the opposite direction of the
motion that would be induced by an impulsive collective
input applied at that instant. A non-impulsive, sustained
input changes the turn radius of the flight path such that
an alternating series of large and small turn radii can steer
the vehicle in a specific direction.

The velocity components, rotation rate, and blade flap
angles are shown in Figure 7 as they vary with the input
θ0. The first 0.5s of flight correspond to a near constant u
and near zero w. At the time of the u-turn, 1-1.5s, there is
an increase in the vertical velocity. The increase is correlated
because a collective pitch increase used to change the heave
velocity, is also used to change the flight path direction. The
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Fig. 7. State trajectories in a coordinated turn.

flight data shown in Figure 7 was used to perform system
identification using algorithms implemented in a MATLAB
toolbox called System IDentification Programs for AirCraft
(SIDPAC), detailed in Reference[11]. Guided by analytical
modeling, modified step-wise regression was used to deter-
mine the model structure using the statistical significance of
measured states, resulting in the system shown in (??). This
model structure was chosen to maximize the model fit using
regressors with a significant partial-f ratio, while minimizing
the parameter estimate error bounds. A two-step procedure
using the equation-error method, followed by the output-
error method, was used to estimate the stability derivatives
in the model. The equation-error method performs a linear
estimation at the acceleration level, which has a deterministic

solution that is cheap to compute. The output-error method,
widely regarded as more accurate, performs a nonlinear
estimation at the level at which measurements were taken.
This method requires an iterative numerical solver, but intial
guesses using an equation-error estimate typically converge
quickly. Parameter estimates and standard errors, corrected
for non-white colored residuals, are given in Table II. Model
fits to the perturbation data sets are shown in Figure 8 and
9 for the equation-error and output-error methods, where the
measurements are plotted with a solid line and the model
outputs are plotted with a dashed line.

An acceptable fit was achieved between the analyzed data
and many of the model structure and parameter estimates.
The equation-error results had model fits of 0.94, 0.94, 0.91,
0.56, and 0.59 for matching ẋ measurements and fits of 0.85,
0.97, 0.92, 0.83 and 0.12 for matching x measurements.
The equations describing the flap dynamics had low model
fits for both methods. Several parameters were estimated
consistently by the two methods, lying within two standard
deviations of each other.

Significant insight may be obtained from the estimates
that did not match well or had large error bounds. Much
of the inconsistency may be attributed to limited excitation
present in the flight data, but it also reveals an important
characteristic about the analyzed flight data. For example, the
finding that the stability derivative Xu is positive indicates
a rare case of forward speed instability. Forward speed
instability is normally a localized result and not found in
a general flight dynamics result. In this case, the portion of
linearized flight used in the equation-error output method fit
included a portion of descending flight, during which the
robotic samara (a global stability) exhibits a local instability
with respect to forward speed, because arresting a forward
velocity requires the rotor disc first be inclined to oppose
the motion. The estimated error in this term reflects the fact
that the stability derivative was required to fit a more general
flight case, but is biased toward descending flight. In general,
the results do show promise for identifying samara flight
dynamics in this manner and will be improved in the future
with flight tests better suited for system identification.

V. CONCLUSION

This paper presents the derivation of the equations of
motion of a robotic samara designed and tested at the
University of Maryland, College Park. The nonlinear Euler
equations were used to describe the rigid body dynamics
of the vehicle in a steady turn. The rotating wing motion
was treated as simple harmonic oscillator and coupled to the
virtual body equations of motion which combine to form a
set of seven nonlinear differential equations. The equations of
motion for the steady turn are extended to forward flight and
linearized about a trim state, resulting in five linearized small
perturbation equations in state space form. Flight tests pro-
vided high accuracy position information that was reduced to
wing flap angles and virtual body velocities. This information
was used to specify a flight condition that fit within the
limits of the derived model allowing for estimation of the
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Fig. 8. Equation-error model fit to perturbation data.

parameters defined in the A and B matices. Several linear
relationships were shown to exist including [rturn, u̇], and
[rturn, ψ̇]. The steady turn discussed here has been observed
in scaled versions of the robotic samara. Therefore the open-
loop control demonstrated and analyzed is considered to be
appropriate for similar vehicles of reduced size with limited
sensing and actuation capabilities.
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