

Fractus mXTEND[™] Antenna Booster

A standard antenna solution for mobile frequency bands

GSM850, GSM900, GSM1800/DCS, GSM1900/PCS, UMTS LTE700, LTE800, LTE850, LTE900, LTE1700, LTE1800, LTE1900, LTE2500, LTE2500, and LTE2600

(LTE 1-10, LTE 12-20, LTE 23, LTE 25-30, LTE 33-41, LTE 44)

mXTEND[™] Antenna Booster FR01-S4-250

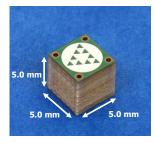
Fractus products are protected by Fractus patents. Information about Fractus patents: http://www.fractus.com/index.php/fractus/patents

All information contained within this document is property of Fractus and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.

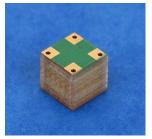
Fractus is an ISO 9001:2008 certified company. All our antennas are lead-free and RoHS compliant.

INDEX OF CHAPTERS

1.	PRODUCT DESCRIPTION FR01-S4-250	
2.	EVALUATION BOARDS 1 PORT (LTE700)	
3.	EVALUATION BOARDS 1 PORT (GSM850-GSM900)	10
4.	EVALUATION BOARDS 1 PORT (LTE1700-LTE2600)	15
5.	EVALUATION BOARDS 2 PORTS	20
6.	EVALUATION BOARDS 3 PORTS	29
7.	CAPABILITIES AND MEASUREMENT SYSTEMS	4
8.	MECHANICAL CHARACTERISTICS FR01-S4-250	45
9.	ASSEMBLY PROCESS	47
10	PACKAGING	40


TABLE OF CONTENTS

1.	PROI	DUCT DESCRIPTION FR01-S4-250	4
2.	EVAL	UATION BOARDS 1 PORT (LTE700)	5
	2.1.	QUICK REFERENCE GUIDE	5
	2.2.	EVALUATION BOARDS 1 PORT (LTE700)	6
3.	EVAL	UATION BOARDS 1 PORT (GSM850-GSM900)	10
	3.1.	QUICK REFERENCE GUIDE	10
	3.2.	EVALUATION BOARDS 1 PORT (GSM850-GSM900)	11
4.	EVAL	UATION BOARDS 1 PORT (LTE1700-LTE2600)	15
	4.1.	QUICK REFERENCE GUIDE	15
	4.2.	EVALUATION BOARD 1 PORT (LTE1700-LTE2600)	16
5.	EVAL	UATION BOARDS 2 PORTS	20
	5.1.	QUICK REFERENCE GUIDE	20
	5.2.	EVALUATION BOARD 2 PORTS (UFL CABLES)	21
	5.3.	EVALUATION BOARD 2 PORTS (COPLANAR GROUNDED TRANSMISSION LINES)	25
6.	EVAL	UATION BOARDS 3 PORTS	29
	6.1.	QUICK REFERENCE GUIDE	29
	6.2.	EVALUATION BOARD 3 PORTS (UFL CABLES)	30
	6.3.	EVALUATION BOARD 3 PORTS (COPLANAR GROUNDED TRANSMISSION LINES)	37
7.	CAPA	BILITIES AND MEASUREMENT SYSTEMS	44
8.	MEC	HANICAL CHARACTERISTICS FR01-S4-250	45
	8.1.	DIMENSIONS, TOLERANCES, AND ROHS	45
	8.2.	COLOUR RANGE FOR THE INK	45
	8.3.	RECOMMENDED FOOTPRINT FOR THE FR01-S4-250	46
	8.4.	RECOMMENDED FOOTPRINT FOR THE FR01-S4-250 DOUBLE BOOSTER.	46
9.	ASSEMBLY PROCESS		
10.	. PACKAGING 4		



1. PRODUCT DESCRIPTION FR01-S4-250

The Fractus® mXTEND™ Antenna Booster has been specifically designed for providing multiband performance in wireless devices (in particular in mobile devices), enabling worldwide coverage by allowing operation in the communication standards GSM850, GSM900, GSM1800/DCS, GSM1900/PCS, UMTS, LTE700, LTE800, LTE850, LTE900, LTE1700, LTE1800, LTE1900, LTE2000, LTE2100, LTE2300, LTE2500, and LTE2600.

TOP

BOTTOM

APPLICATIONS

- Handsets
- Smartphones
- Tablets
- Phablets
- Laptop PCs
- Netbooks
- Modules
- Routers
- eBooks

BENEFITS

- High efficiency
- Small size
- Cost-effective
- Easy-to-use (pick and place)
- Multiband behaviour (worldwide standards)
- Off-the-Shelf Standard Product (no customization is required)

The mXTEND[™] Antenna Booster is intended to replace conventional antenna solutions by a miniature and standard component capable of enabling operation in the main mobile communication bands.

The mXTENDTM Antenna Booster belongs to a new generation of antenna solutions based on the Virtual AntennaTM technology developed by Fractus[®]. The technology is mainly focused on replacing conventional antenna solutions by miniature and standard components.

2. EVALUATION BOARDS 1 PORT (LTE700)

2.1. QUICK REFERENCE GUIDE

Technical features	Evaluation Board with UFL cables	Evaluation Board with coplanar transmission lines
Frequency Range	698	- 798 MHz
Average Efficiency	> 45 %	> 40 %
Peak Gain	0.2 dBi	0.1 dBi
VSWR	< 3:1	
Radiation Pattern	Omnidirectional	
Polarization	Linear	
Weight (approx.)	0.25 g.	
Temperature	-40 to + 85 °C	
Impedance	50 Ω	
Dimensions (L x W x H)	5.0 mm x 5.0 mm	

Table 1 — Technical features. Measures from the Evaluation Board (133 mm \times 60 mm \times 1 mm). See Figure 1. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

Comments:

- Note that in the Evaluation Boards (Figure 1), 2 mXTEND[™] Antenna Boosters are placed together to provide operation at LTE700 (698-798 MHz). Please see Figure 29 for the recommended footprint.
- The efficiency measures (Figure 3 and Figure 4) are shown from 700 MHz due to the minimum frequency specifications of the Satimo STARGATE 32 anechoic chamber.
- Please contact <u>info@fractus.com</u> for more information related to the Antenna Booster matching service.

2.2.EVALUATION BOARDS 1 PORT (LTE700)

This section depicts two different Evaluation Boards. The first one is built with UFL cables to connect the mXTEND[™] Antenna Booster with the SMA connector. The part number is EB_FR01-S4-250-UFL1R-700 and it is shown in the left picture of the Figure 1. The second Evaluation Board is made with coplanar grounded transmission lines (traces on a PCB) to connect the mXTEND[™] Antenna Booster with the SMA connector. The part number is EB_FR01-S4-250-CPW1R-700 and it is shown in the right picture of the Figure 1.

Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

 \mathbf{D} : Distance between the mXTENDTM Antenna Booster and the ground plane.

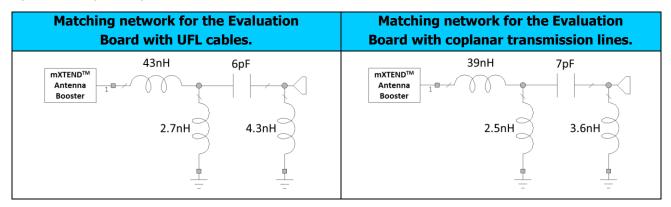

Material: The Evaluation Boards are built on FR4 substrate. Thickness is 1 mm.

Figure 1 — Evaluation Boards providing operation at LTE700, 1 port configuration.

This product is protected by at least the following patent PAT. US 8,203,492 and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

2.2.1. MATCHING NETWORKS

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTENDTM Antenna Booster once the design is finished and taking into account all elements of the system. Please notice that different devices with different ground planes and components nearby the mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

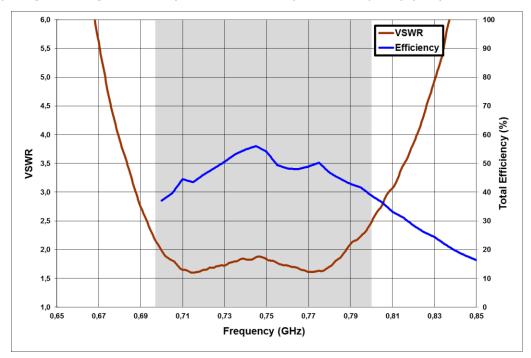
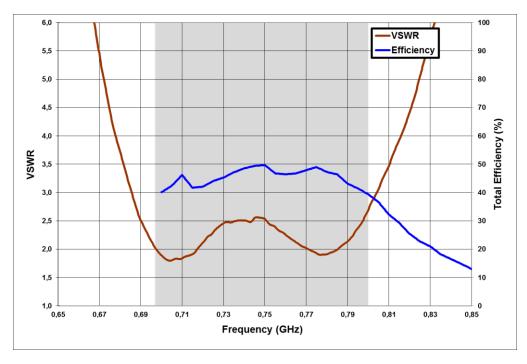


Figure 2 – Matching networks for the LTE700, 1 port configuration.



2.2.2. VSWR AND TOTAL EFFICIENCY FOR 1 PORT (LTE700)

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 3 – VSWR and Total Efficiency for Evaluation Board with UFL cables. Part Number: EB_FR01-S4-250-UFL1R-700.

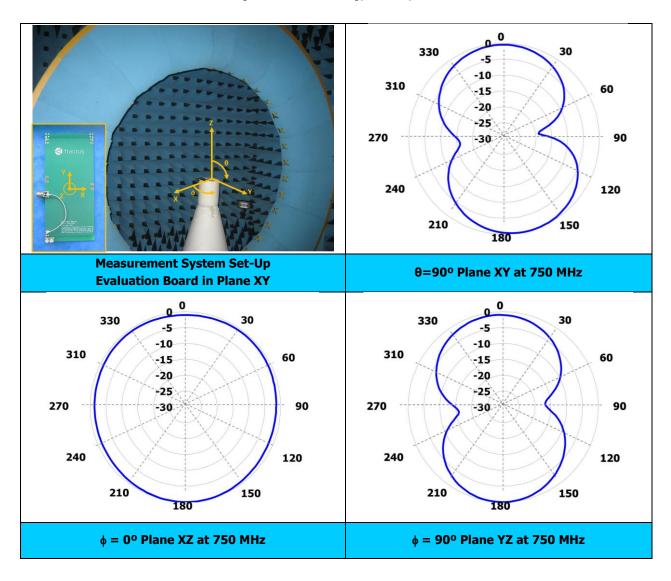
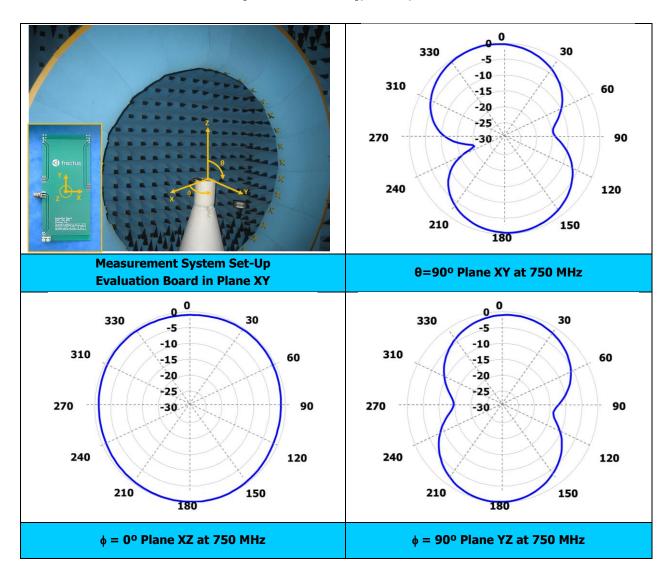


Figure 4 – VSWR and Total Efficiency for the Evaluation Board with coplanar transmission lines. Part Number: EB_FR01-S4-250-CPW1R-700.

Note: The Satimo STARGATE 32 anechoic chamber measures from 700 MHz.

2.2.3. RADIATION PATTERNS (698 - 798 MHz), GAIN, AND EFFICIENCY



	Peak Gain	0.2 dBi
Gain	Average Gain across the band	-0.5 dBi
	Gain Range across the band (min, max)	-1.8 <-> 0.2 dBi
	Peak Efficiency	56.0 %
Efficiency	Average Efficiency across the band	47.6 %
	Efficiency Range across the band	37.1 - 56.0 %

Table 2 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-UFL1R-700 within the 698-798 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

2.2.4. RADIATION PATTERNS (698 - 798 MHz), GAIN, AND EFFICIENCY

	Peak Gain	0.1 dBi
Gain	Average Gain across the band	-0.7 dBi
	Gain Range across the band (min, max)	-1.4 <-> 0.1 dBi
	Peak Efficiency	49.7%
Efficiency	Average Efficiency across the band	45.7 %
	Efficiency Range across the band	40.1 - 49.7%

Table 3 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-CPW1R-700 within the 698-798 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

3. EVALUATION BOARDS 1 PORT (GSM850-GSM900)

3.1. QUICK REFERENCE GUIDE

Technical features	Evaluation Board with UFL cables	Evaluation Board with coplanar transmission lines
Frequency Range	824	- 960 MHz
Average Efficiency	> 50 %	> 50 %
Peak Gain	1.0 dBi	1.2 dBi
VSWR	< 3:1	
Radiation Pattern	Omnidirectional	
Polarization	Linear	
Weight (approx.)	0.25 g.	
Temperature	-40 to + 85 °C	
Impedance		50 Ω
Dimensions (L x W x H)	5.0 mm x 5.0 mm x 5.0 mm	

Table 4 – Technical features. Measures from the Evaluation Board (133 mm x 60 mm x 1 mm). See Figure 5. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

Please contact <u>info@fractus.com</u> for more information related to the Antenna Booster matching service.

3.2. EVALUATION BOARDS 1 PORT (GSM850-GSM900)

This section depicts two different Evaluation Boards. The first one is built with UFL cables to connect the mXTEND[™] Antenna Booster with the SMA connector. The part number is EB_FR01-S4-250-UFL1R-850 and it is shown in the left picture of the Figure 5. The second Evaluation Board is made with coplanar grounded transmission lines (traces on a PCB) to connect the mXTEND[™] Antenna Booster with the SMA connector. The part number is EB_FR01-S4-250-CPW1R-850 and it is shown in the right picture of the Figure 5.

Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

 \mathbf{D} : Distance between the mXTENDTM Antenna Booster and the ground plane.

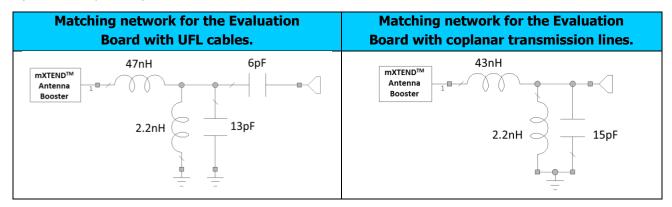

Material: The Evaluation Boards are built on FR4 substrate. Thickness is 1 mm.

Figure 5 – Evaluation Boards providing operation at GSM850-GSM900, 1 port configuration.

This product is protected by at least the following patent PAT. US 8,203,492 and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

3.2.1. MATCHING NETWORKS

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTENDTM Antenna Booster once the design is finished and taking into account all elements of the system. Please notice that different devices with different ground planes and components nearby the mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

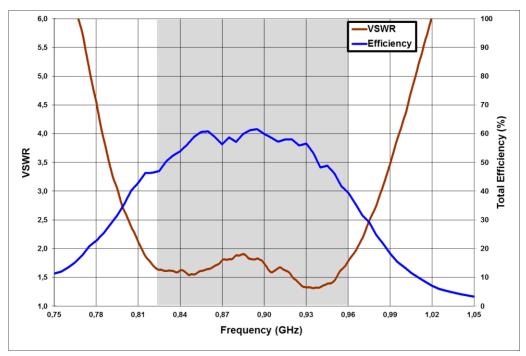


Figure 6 – Matching networks for the GSM850-GSM900, 1 port configuration.

3.2.2. VSWR AND TOTAL EFFICIENCY FOR 1 PORT (GSM850-GSM900 MHz)

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

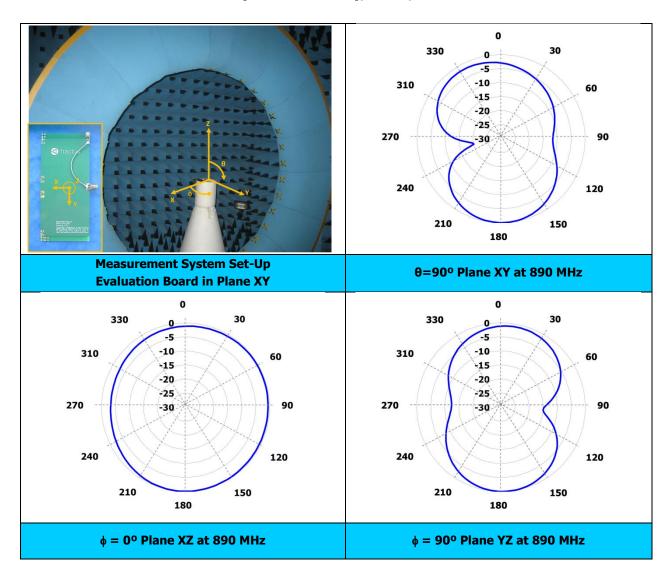
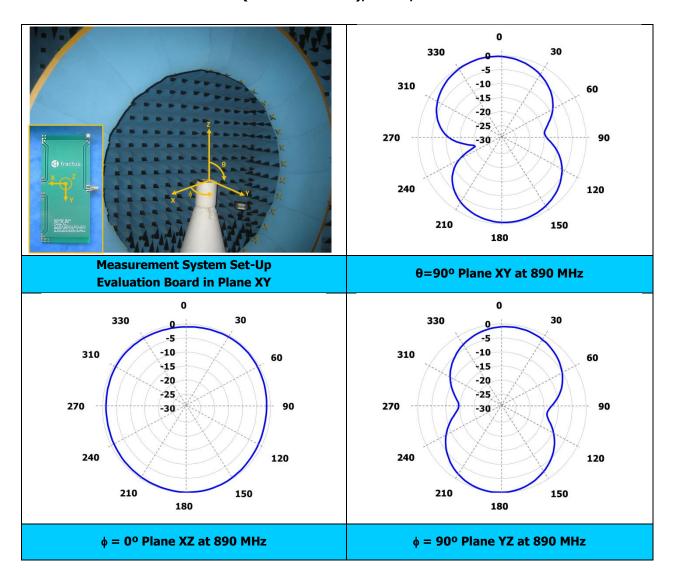

Figure 7 – VSWR and Total Efficiency for Evaluation Board with UFL cables. Part Number: EB_FR01-S4-250-UFL1R-850.

Figure 8 - VSWR and Total Efficiency for the Evaluation Board with coplanar transmission lines. Part Number: EB_FR01-S4-250-CPW1R-850.

3.2.3. RADIATION PATTERNS (824 - 960 MHz), GAIN, AND EFFICIENCY



	Peak Gain	1.0 dBi
Gain	Average Gain across the band	0.3 dBi
	Gain Range across the band (min, max)	-1.2 <-> 1.0 dBi
	Peak Efficiency	61.6 %
Efficiency	Average Efficiency across the band	55.2 %
	Efficiency Range across the band	39.5 - 61.6 %

Table 5 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-UFL1R-850 within the 824-960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

3.2.4. RADIATION PATTERNS (824 - 960 MHz), GAIN, AND EFFICIENCY

	Peak Gain	1.2 dBi
Gain	Average Gain across the band	0.5 dBi
	Gain Range across the band (min, max)	-1.3 <-> 1.2 dBi
	Peak Efficiency	62.2 %
Efficiency	Average Efficiency across the band	55.6 %
	Efficiency Range across the band	34.4 - 62.2 %

Table 6 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-CPW1R-850 within the 824-960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

4. EVALUATION BOARDS 1 PORT (LTE1700-LTE2600)

4.1. QUICK REFERENCE GUIDE

Technical features	Evaluation Board with UFL cables	Evaluation Board with coplanar transmission lines
Frequency Range	1710	- 2690 MHz
Average Efficiency	> 75 %	> 70 %
Peak Gain	3.3 dBi	2.8 dBi
VSWR	< 3:1	
Radiation Pattern	Omnidirectional	
Polarization	Linear	
Weight (approx.)	0.25 g.	
Temperature	-40 t	to + 85 °C
Impedance	50 Ω 5.0 mm x 5.0 mm	
Dimensions (L x W x H)		

Table 7 - Technical features. Measures from the Evaluation Board (133 mm \times 60 mm \times 1 mm). See pictures in Figure 9. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

Please contact info@fractus.com for more information related to the Antenna Booster matching service.

4.2.EVALUATION BOARD 1 PORT (LTE1700-LTE2600)

This section depicts two different Evaluation Boards. The first one is built with UFL cables to connect the mXTEND[™] Antenna Booster with the SMA connector. The part number is EB_FR01-S4-250-UFL1R-1700 and it is shown in the left picture of the Figure 9. The second Evaluation Board is made with coplanar grounded transmission lines (traces on a PCB) to connect the mXTEND[™] Antenna Booster with the SMA connector. The part number is EB_FR01-S4-250-CPW1R-1700 and it is shown in the right picture of the Figure 9.

Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

 \mathbf{D} : Distance between the mXTENDTM Antenna Booster and the ground plane.

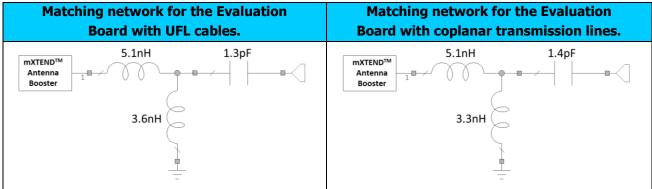

Material: The Evaluation Boards are built on FR4 substrate. Thickness is 1 mm.

Figure 9 – Evaluation Boards providing operation at LTE1700-LTE2600, 1 port configuration.

This product is protected by at least the following patent PAT. US 8,203,492 and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

4.2.1. MATCHING NETWORK

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTENDTM Antenna Booster once the design is finished and taking into account all elements of the system. Please notice that different devices with different ground planes and components nearby the mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

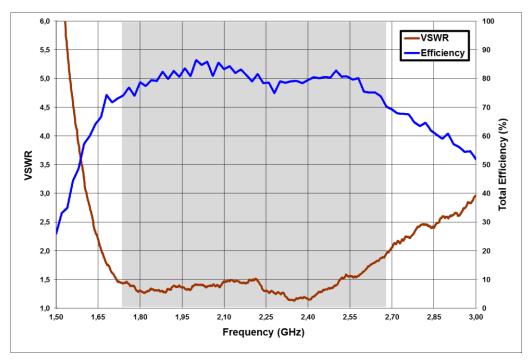
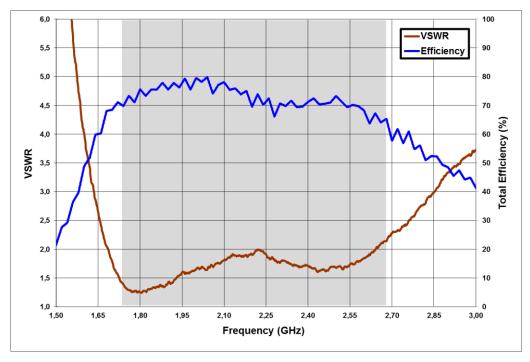


Figure 10 – Matching networks for the LTE1700-LTE2600, 1 port configuration.



4.2.2. VSWR AND TOTAL EFFICIENCY 1 PORT (LTE1700-LTE2600)

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

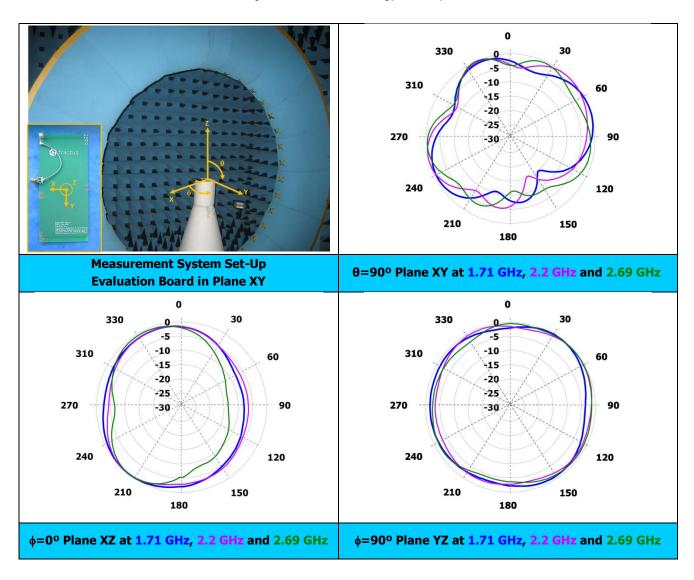
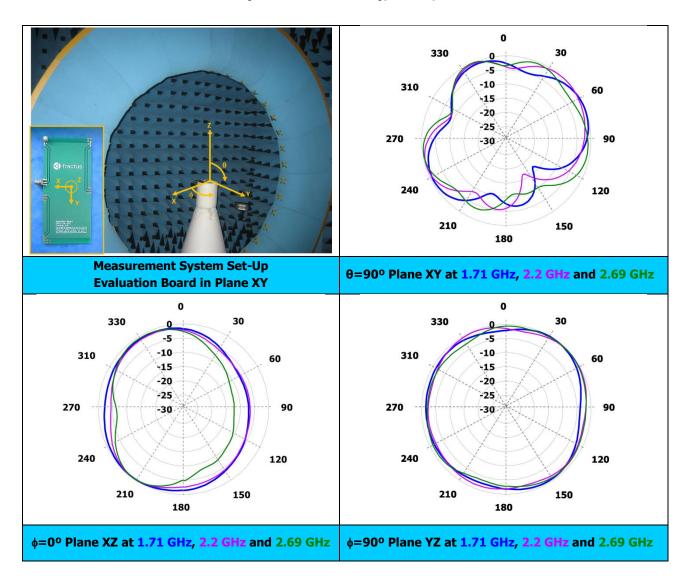

Figure 11 – VSWR and Total Efficiency for Evaluation Board with UFL cables. Part Number: EB_FR01-S4-250-UFL1R-1700.

Figure 12 - VSWR and Total Efficiency for the Evaluation Board with coplanar transmission lines. Part Number: EB_FR01-S4-250-CPW1R-1700.

4.2.3. RADIATION PATTERNS (1710 - 2690 MHz), GAIN, AND EFFICIENCY



Gain	Peak Gain	3.3 dBi
	Average Gain across the band	2.6 dBi
	Gain Range across the band (min, max)	1.7 <-> 3.3 dBi
	Peak Efficiency	86.4 %
Efficiency	Average Efficiency across the band	79.6 %
	Efficiency Range across the band	69.7 - 86.4 %

Table 8 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-UFL1R-1700 within the 1710-2690MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

4.2.4. RADIATION PATTERNS(1710 - 2690 MHz), GAIN, AND EFFICIENCY

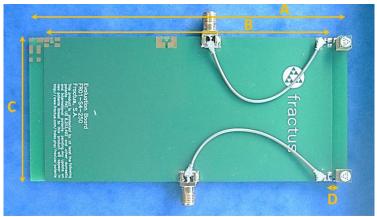
Gain	Peak Gain	2.8 dBi
	Average Gain across the band	2.2 dBi
	Gain Range across the band (min, max)	1.4 <-> 2.8 dBi
Efficiency	Peak Efficiency	79.9 %
	Average Efficiency across the band	72.6 %
	Efficiency Range across the band	61.7 - 79.9 %

Table 9 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-CPW1R-1700 within the 1710-2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

5. EVALUATION BOARDS 2 PORTS

5.1. QUICK REFERENCE GUIDE

Technical	824 - 960 MHz		1710 - 2690 MHz			
features	Evaluation Board with UFL cables			Evaluation Board with coplanar transmission lines		
Average Efficiency	> 50 %	> 50 %	> 70 %	> 70 %		
Peak Gain	1.4 dBi	1.3 dBi	3.6 dBi	2.8 dBi		
VSWR	< 3:1					
Radiation Pattern	Omnidirectional					
Polarization	Linear					
Weight (approx.)	0.25 g.					
Temperature	-40 to + 85 °C					
Impedance	50 Ω					
Dimensions (L x W x H)		5.0 mm x 5.0	mm x 5.0 mm			


Table 10 - Technical Features. Measures from the Evaluation Board (133 mm x 60 mm x 1 mm). See Figure 13 and Figure 16. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

Please contact info@fractus.com for more information related to the Antenna Booster matching service.

5.2.EVALUATION BOARD 2 PORTS (UFL CABLES)

This Evaluation Board (part number: EB_FR01-S4-250-UFL2R) integrates UFL cables to connect the mXTEND[™] Antenna Booster with the SMA connector. It works from 824 MHz to 960 MHz and from 1710 MHz to 2690 MHz. In the next section (5.3) there is another version of the Evaluation Board where the connections are made through coplanar grounded transmission lines (traces on a PCB) to connect the mXTEND[™] Antenna Booster with the SMA connector (part number: EB_FR01-S4-250-CPW2R).

_									_	_	
Figure	13 –	EB_	FR01-	·S4-2!	50-UF	L2R.	Evaluat	tion B	Board	with l	JFL
cables	From	824	MHz	to 96	50 MH	lz an	d from	1710) MHz	to 26	590

Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

D: Distance between the $mXTEND^{TM}$ Antenna Booster and the ground plane.

Material: The Evaluation Board is built on FR4 substrate. Thickness is 1 mm.

This product is protected by at least the following patents PAT. US 8,203,492, PAT. US 8,736,497, and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

5.2.1. MATCHING NETWORK

MHz.

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTENDTM Antenna Booster once the design is finished and taking into account all elements of the system. Please notice that different devices with different ground planes and components nearby the mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

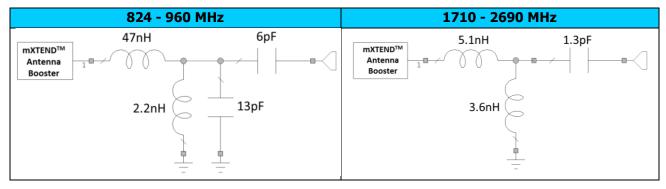
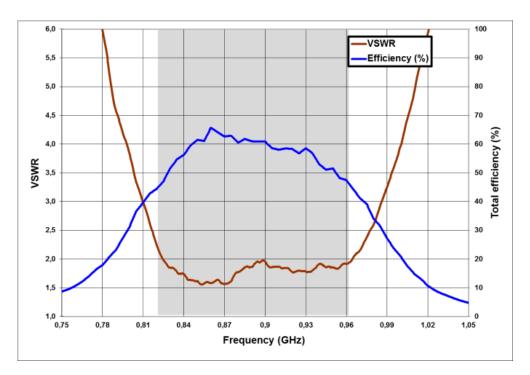
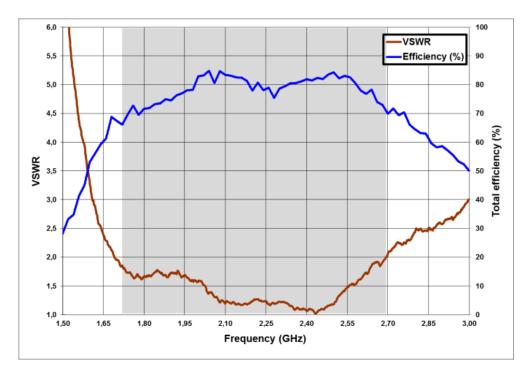



Figure 14 – Matching networks for the 2 ports solution (Evaluation Board with UFL cables).



5.2.2. VSWR AND TOTAL EFFICIENCY

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

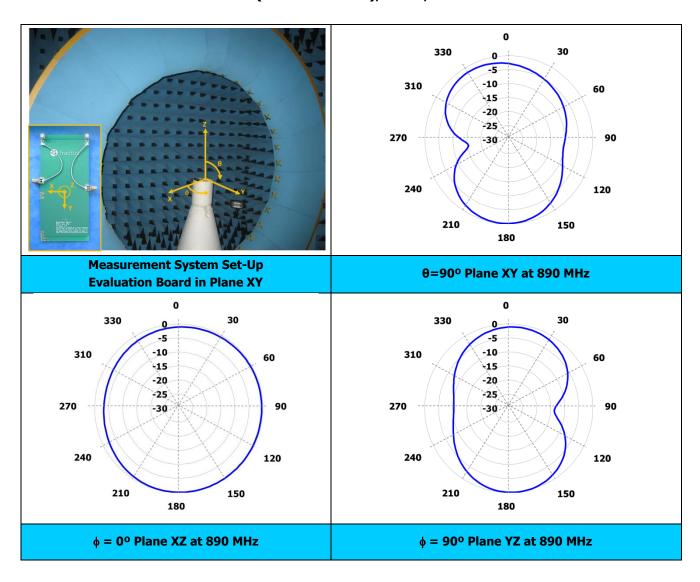
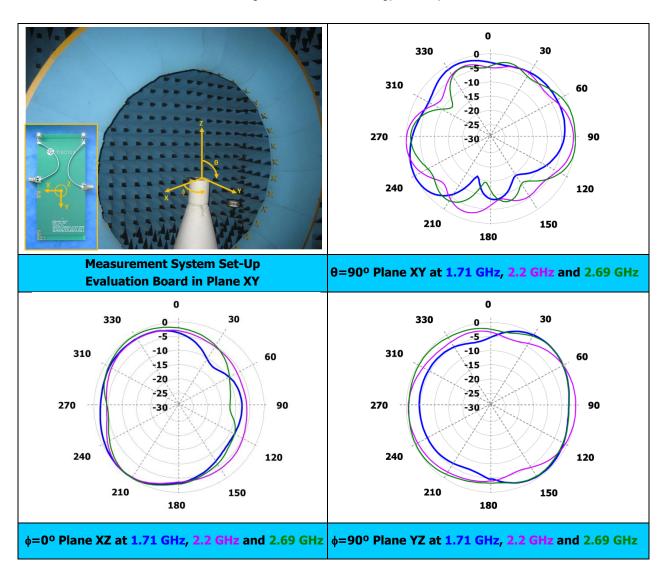

Figure 15 – VSWR and Total Efficiency for the 824-960 MHz range (from the Evaluation Board with UFL cables (Figure 13)).

Figure 16 – VSWR and Total Efficiency for the 1710-2690 MHz range (from the Evaluation Board with UFL cables (Figure 13)).

5.2.3. RADIATION PATTERNS (824 - 960 MHz), GAIN, AND EFFICIENCY



Gain	Peak Gain	1.4 dBi
	Average Gain across the band	0.5 dBi
	Gain Range across the band (min, max)	-0.4 <-> 1.4 dBi
Efficiency	Peak Efficiency	65.7 %
	Average Efficiency across the band	57.7 %
	Efficiency Range across the band	46.3 - 65.7 %

Table 11– Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-UFL2R within the 824-960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

5.2.4. RADIATION PATTERNS (1710 - 2690 MHz), GAIN, AND EFFICIENCY


Gain	Peak Gain	3.6 dBi
	Average Gain across the band	2.6 dBi
	Gain Range across the band (min, max)	1.8 <-> 3.6 dBi
Efficiency	Peak Efficiency	84.8 %
	Average Efficiency across the band	78.6 %
	Efficiency Range across the band	66.2 - 84.8 %

Table 12 – Antenna Gain and Total Efficiency within the 1710-2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

5.3. EVALUATION BOARD 2 PORTS (Coplanar grounded transmission lines)

This Evaluation Board (part number: EB_FR01-S4-250-CPW2R) integrates coplanar grounded transmission lines to connect the mXTEND TM Antenna Booster with the SMA connector. It works from 824 MHz to 960 MHz and from 1710 MHz to 2690 MHz.

Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

 ${\bf D}$: Distance between the mXTENDTM Antenna Booster and the ground plane.

Material: The Evaluation Board is built on FR4 substrate. Thickness is 1 mm.

Figure 16 – EB_FR01-S4-250-CPW2R. Evaluation Board with coplanar grounded transmission lines. From 824 MHz to 960 MHz and from 1710 MHz to 2690 MHz.

This product is protected by at least the following patents PAT. US 8,203,492, PAT. US 8,736,497, and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

5.3.1. MATCHING NETWORK

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTENDTM Antenna Booster once the design is finished and taking into account all elements of the system. Please notice that different devices with different ground planes and components nearby the mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

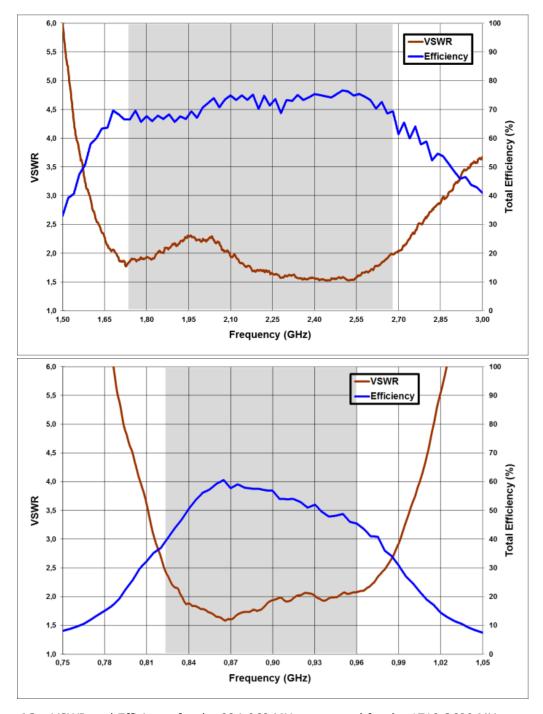


Figure 17 – Matching networks for the 2 ports solution (Evaluation Board with coplanar transmission lines).

5.3.2. VSWR AND TOTAL EFFICIENCY

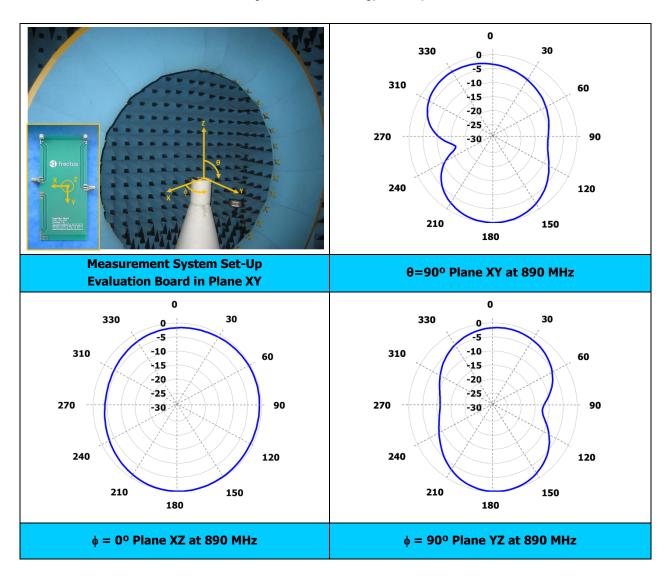
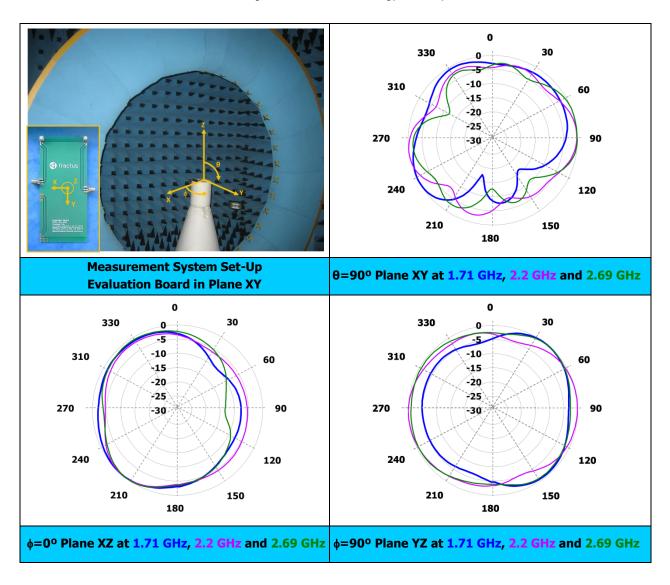

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz)

Figure 18 – VSWR and Efficiency for the 824-960 MHz range and for the 1710-2690 MHz range from the Evaluation Board with coplanar transmission lines (Figure 16).

5.3.3. RADIATION PATTERNS (824 - 960 MHz), GAIN, AND EFFICIENCY



Gain	Peak Gain	1.3 dBi
	Average Gain across the band	0.3 dBi
	Gain Range across the band (min, max)	-0.8 <-> 1.3 dBi
Efficiency	Peak Efficiency	60.6 %
	Average Efficiency across the band	53.0 %
	Efficiency Range across the band	39.7 - 60.6 %

Table 13 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-CPW2R within the 824-960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

5.3.4. RADIATION PATTERNS (1710 - 2690 MHZ), GAIN, AND EFFICIENCY

Gain	Peak Gain	2.8 dBi
	Average Gain across the band	2.3 dBi
	Gain Range across the band (min, max)	1.6 <-> 2.8 dBi
Efficiency	Peak Efficiency	76.6 %
	Average Efficiency across the band	71.5 %
	Efficiency Range across the band	65.1 - 76.6 %

Table 14 – Antenna Gain and Total Efficiency within the 1710-2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

6. EVALUATION BOARDS 3 PORTS

6.1. QUICK REFERENCE GUIDE

6.1.1. REFERENCE GUIDE FROM THE EVALUATION BOARD WITH UFL CABLES

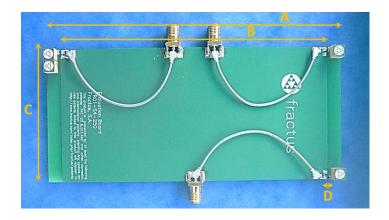
Technical features	698 - 798 MHz	824 - 960 MHz	1710 - 2690 MHz		
Average Efficiency	> 45 %	> 50 %	> 70 %		
Peak Gain	0.6 dBi 0.6 dBi 3.2 dBi				
VSWR		< 3:1			
Radiation Pattern	Omnidirectional				
Polarization	Linear				
Weight (approx.)	0.25 g.				
Temperature	-40 to + 85 °C				
Impedance	50 Ω				
Dimensions (L x W x H)	5.0 mm x 5.0 mm x 5.0 mm				

Table 15 - Technical features. Measures from the Evaluation Board (133 mm \times 60 mm \times 1 mm). See Figure 19.

6.1.2. REFERENCE GUIDE FROM THE EVALUATION BOARD WITH COPLANAR GROUNDED TRANSMISSION LINES

Technical features	698 - 798 MHz	824 - 960 MHz	1710 - 2690 MHz				
Average Efficiency	> 40 %	> 45 %	> 70 %				
Peak Gain	-0.2 dBi	1.0 dBi	3.4 dBi				
VSWR		< 3:1					
Radiation Pattern	Omnidirectional						
Polarization	Linear						
Weight (approx.)	0.25 g.						
Temperature	-40 to + 85 °C						
Impedance	50 Ω						
Dimensions	Γ 0 mm ν Γ 0 mm ν Γ 0 mm						
(L x W x H)	5.0 mm x 5.0 mm x 5.0 mm						

Table 16 - Technical features. Measures from the Evaluation Board (133 mm \times 60 mm \times 1 mm). See Figure 23.



Comments:

- Note that in the Evaluation Boards (Figure 19 and Figure 23), 2 mXTEND[™] Antenna Boosters are placed together to provide operation at LTE700 (698-798 MHz). Please see Figure 29 for the recommended footprint.
- The efficiency measures (Figure 21 and Figure 25) are shown from 700 MHz due to the minimum frequency specifications of the Satimo STARGATE 32 anechoic chamber.
- Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.
- Please contact <u>info@fractus.com</u> for more information related to the Antenna Booster matching service.

6.2.EVALUATION BOARD 3 PORTS (UFL CABLES)

This Evaluation Board (part number: EB_FR01-S4-250-UFL3R) integrates UFL cables to connect the mXTEND[™] Antenna Booster with the SMA connector. It works from 698 MHz to 798 MHz, from 824 MHz to 960 MHz, and from 1710 MHz to 2690 MHz. In the next section (6.3) there is another version of the Evaluation Board where the connections are made through coplanar grounded transmission lines (traces on a PCB) to connect the mXTEND[™] Antenna Booster with the SMA connector (part number: EB_FR01-S4-250-CPW3R).

Figure 19 – EB_FR01-S4-250-UFL3R. Evaluation Board with UFL cables. 698 MHz to 798 MHz, 824 MHz to 960 MHz, and 1710 MHz to 2690 MHz.

Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

 $\textbf{D}\colon \mbox{ Distance between the } \mbox{mXTEND}^{\mbox{\scriptsize TM}}$ Antenna Booster and the ground plane.

Material: The Evaluation Board is built on FR4 substrate. Thickness is 1 mm.

This product is protected by at least the following patents PAT. US 8,203,492, PAT. US 8,736,497, and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

6.2.1. MATCHING NETWORK

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTENDTM Antenna Booster once the design is finished and taking into account all elements of the system.

Please notice that different devices with different ground planes and components nearby the mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

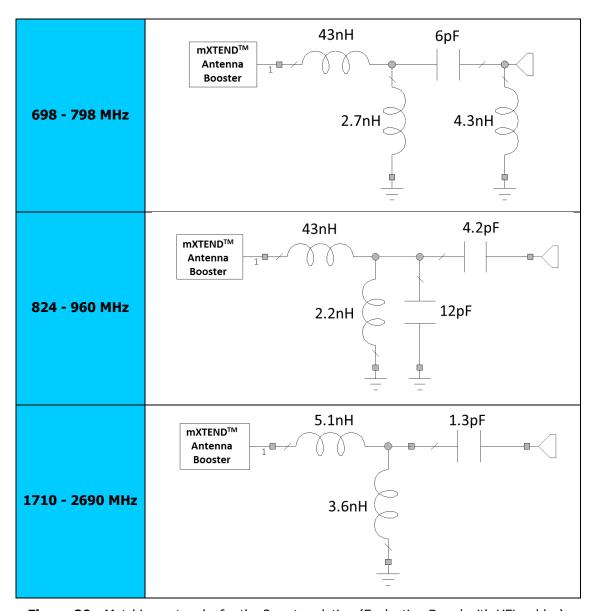
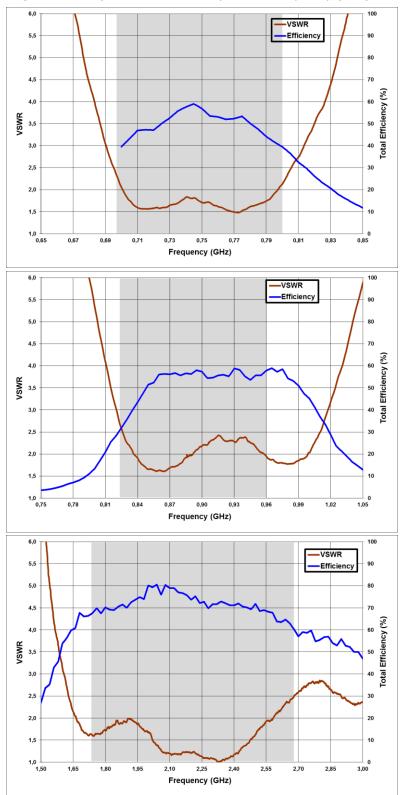



Figure 20 - Matching networks for the 3 ports solution (Evaluation Board with UFL cables).

6.2.2. VSWR AND TOTAL EFFICIENCY

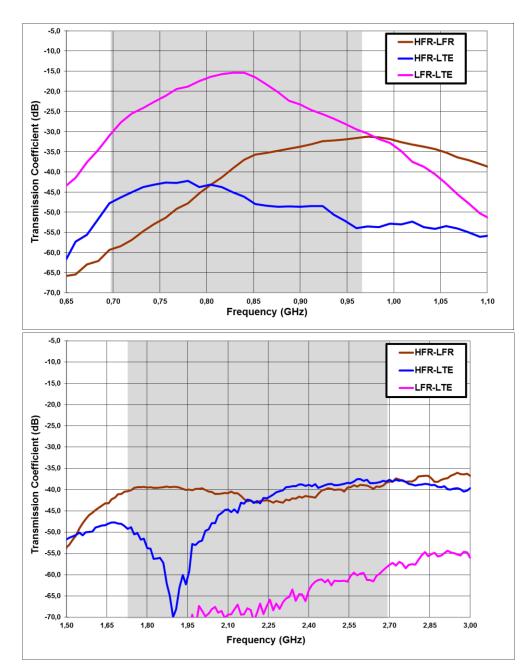

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 21 – VSWR and Total Efficiency for the 698-798 MHz range, for 824-960 MHz range, and for the 1710-2690 MHz range (from the Evaluation Board with UFL cables (Figure 19)).

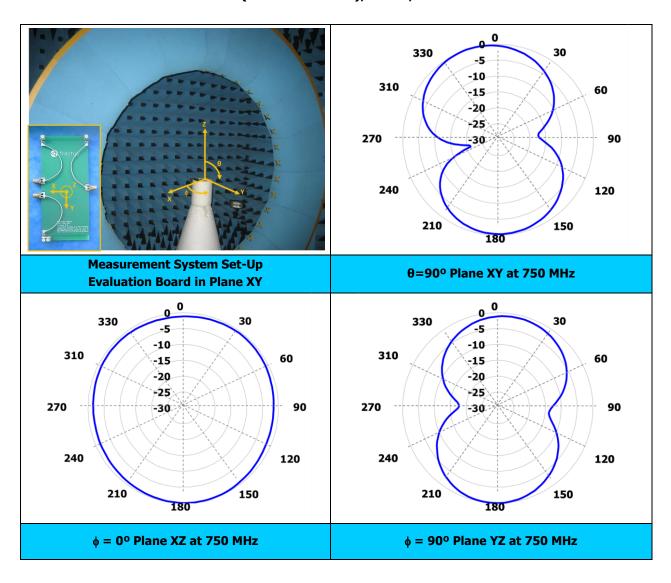
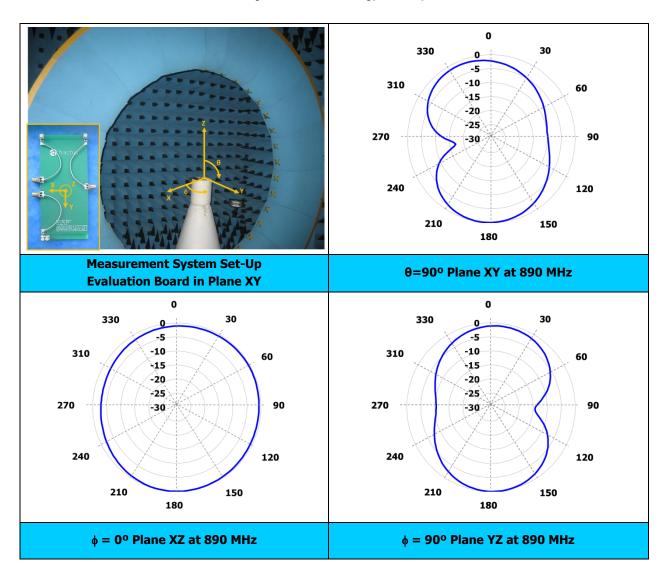

6.2.3. TRANSMISSION COEFFICIENT

Figure 22 – Transmission coefficient for the 698-798 MHz range (LTE), for the 824-960 MHz range (LFR), and for the 1710-2690 MHz range (HFR) (from the Evaluation Board 3 ports with UFL cables) (Figure 19).

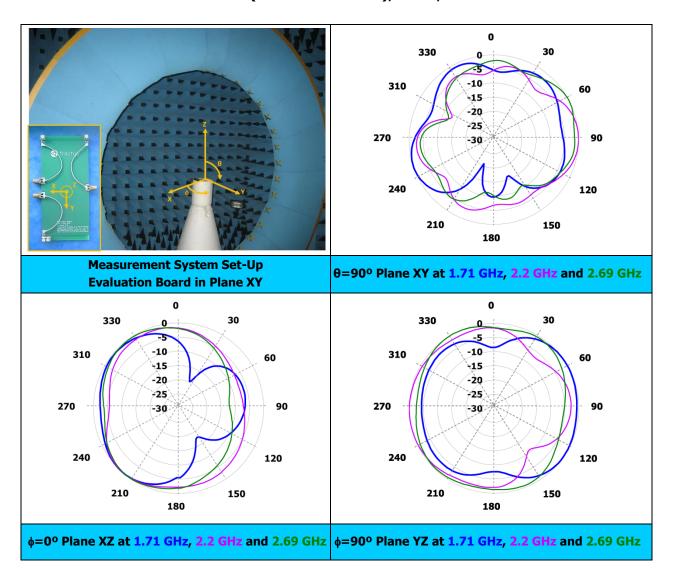
6.2.4. RADIATION PATTERNS (698 - 798 MHz), GAIN, AND EFFICIENCY



Gain	Peak Gain	0.6 dBi
	Average Gain across the band	-0.2 dBi
	Gain Range across the band (min, max)	-1.5 <-> 0.6 dBi
Efficiency	Peak Efficiency	59.0 %
	Average Efficiency across the band	50.3 %
	Efficiency Range across the band	39.5 - 59.0 %

Table 17 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-UFL3R within the 698-798 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

6.2.5. RADIATION PATTERNS (824 - 960 MHz), GAIN, AND EFFICIENCY



Gain	Peak Gain	0.6 dBi
	Average Gain across the band	0.0 dBi
	Gain Range across the band (min, max)	-2.1 <-> 0.6 dBi
Efficiency	Peak Efficiency	58.8 %
	Average Efficiency across the band	53.1 %
	Efficiency Range across the band	31.2 - 58.8 %

Table 18 – Antenna Gain and Total Efficiency within the 824-960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

6.2.6. RADIATION PATTERNS (1710 - 2690 MHz), GAIN, AND EFFICIENCY

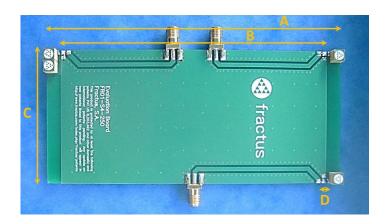

Gain	Peak Gain	3.2 dBi
	Average Gain across the band	2.5 dBi
	Gain Range across the band (min, max)	1.7 <-> 3.2 dBi
Efficiency	Peak Efficiency	80.5 %
	Average Efficiency across the band	71.5 %
	Efficiency Range across the band	58.5 - 80.5 %

Table 19 – Antenna Gain and Total Efficiency within the 1710-2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

6.3.EVALUATION BOARD 3 PORTS (Coplanar grounded transmission lines)

This Evaluation Board (part number: EB_FR01-S4-250-CPW3R) integrates coplanar grounded transmission lines to connect the mXTEND[™] Antenna Booster with the SMA connector. It works from 698 MHz to 798 MHz, from 824 MHz to 960 MHz, and from 1710 MHz to 2690 MHz.

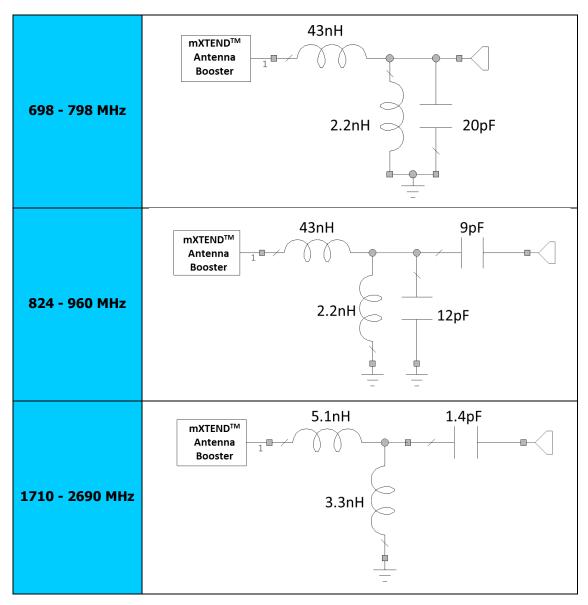
Measure	mm
Α	133
В	120
С	60
D	1.5

Tolerance: ±0.2 mm

D: Distance between the $mXTEND^{TM}$ Antenna Booster and the ground plane.

Material: The Evaluation Board is built on FR4 substrate. Thickness is 1 mm.

Figure 23 – EB_FR01-S4-250-CPW3R. Evaluation Board with coplanar grounded transmission lines. 698 MHz to 798 MHz, 824 MHz to 960 MHz, and 1710 MHz to 2690 MHz


This product is protected by at least the following patents PAT. US 8,203,492, PAT. US 8,736,497, and other domestic and international patents pending. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents

6.3.1. MATCHING NETWORK

The specs of a Fractus standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended to place 0402 pads for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the mXTEND[™] Antenna Booster once the design is finished and taking into account all elements of the system.

Please notice that different devices with different ground planes and components nearby the $mXTEND^{TM}$ Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components).

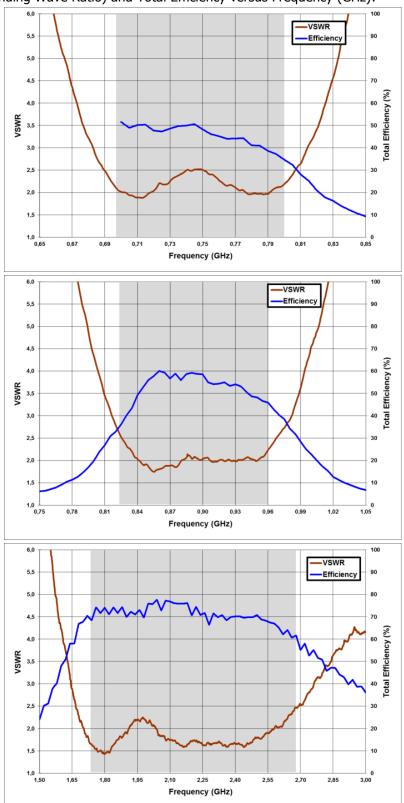
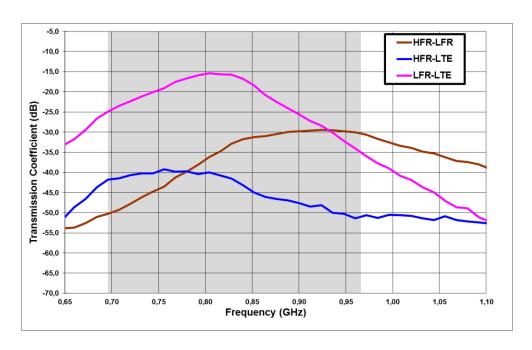


Figure 24 – Matching networks for the 3 ports solution (Evaluation Board with coplanar transmission lines).

6.3.2. VSWR AND TOTAL EFFICIENCY


VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

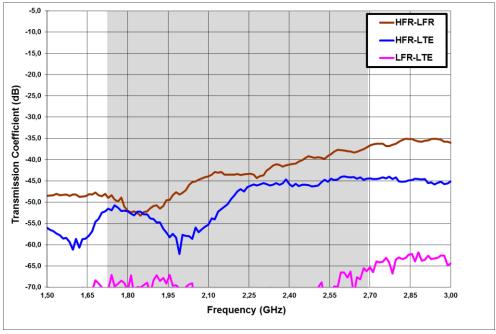


Figure 25 – VSWR and Total Efficiency graph for the 698-798 MHz range, for 824-960 MHz range, and for the 1710-2690 MHz range (from the Evaluation Board with coplanar transmission lines (Figure 23).

6.3.3. TRANSMISSION COEFFICIENT

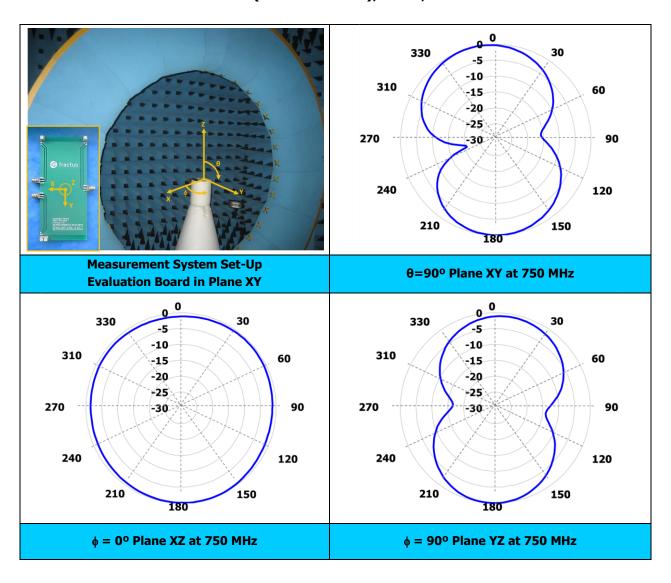
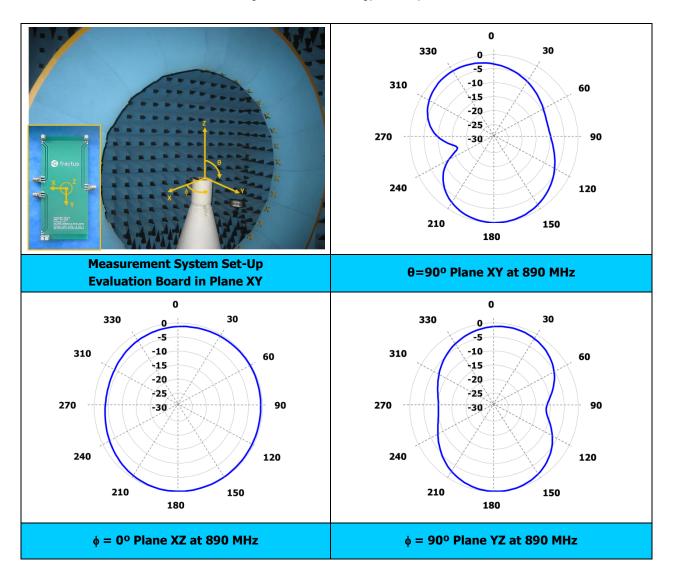


Figure 26 – Transmission coefficient for the 698-798 MHz range (LTE), for the 824-960 MHz range (LFR), and for the 1710-2690 MHz range (HFR) (from the Evaluation Board with coplanar transmission lines (Figure 23)).

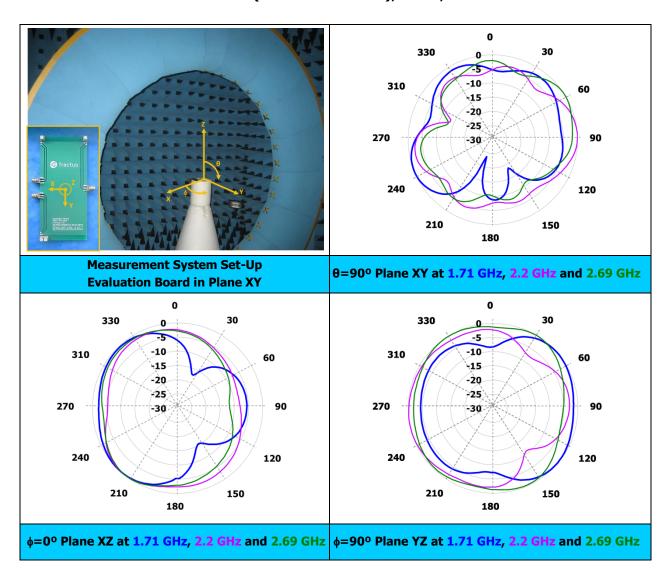
6.3.4. RADIATION PATTERNS (698 - 798 MHz), GAIN, AND EFFICIENCY



	Peak Gain	-0.2 dBi
Gain	Average Gain across the band	-0.5 dBi
	Gain Range across the band (min, max)	-1.5 <-> -0.2 dBi
Efficiency	Peak Efficiency	51.6 %
	Average Efficiency across the band	46.0 %
	Efficiency Range across the band	35.7 - 51.6 %

Table 20 – Antenna Gain and Total Efficiency for the Evaluation Board EB_FR01-S4-250-CPW3R within the 698-798 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

6.3.5. RADIATION PATTERNS (824 - 960 MHz), GAIN, AND EFFICIENCY



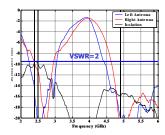
	Peak Gain	1.0 dBi
Gain	Average Gain across the band	0.1 dBi
	Gain Range across the band (min, max)	-1.4 <-> 1.0 dBi
Efficiency	Peak Efficiency	60.1 %
	Average Efficiency across the band	53.2 %
	Efficiency Range across the band	35.5 - 60.1 %

Table 21 – Antenna Gain and Total Efficiency within the 824-960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

6.3.6. RADIATION PATTERNS (1710 - 2690 MHz), GAIN, AND EFFICIENCY

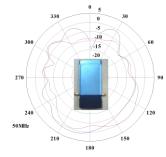
	Peak Gain	3.4 dBi
Gain	Average Gain across the band	2.8 dBi
	Gain Range across the band (min, max)	1.9 <-> 3.4 dBi
Efficiency	Peak Efficiency	77.6 %
	Average Efficiency across the band	70.9 %
	Efficiency Range across the band	58.2 - 70.9 %

Table 22 – Antenna Gain and Total Efficiency within the 1710-2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.


7. CAPABILITIES AND MEASUREMENT SYSTEMS

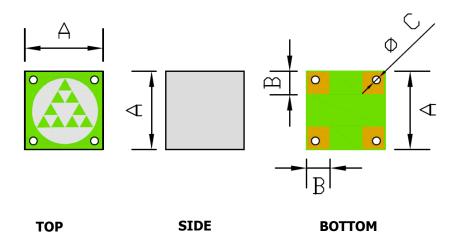
Fractus specialises in designing and manufacturing optimised antennas for wireless applications and providing our clients with RF expertise. We offer turn-key antenna products and antenna integration support to minimise your time requirement and maximize your return on investment during your product development efforts. We also provide our clients with the opportunity to leverage our in-house testing and measurement facilities to obtain accurate results quickly and efficiently.

Agilent E5071B


VSWR & S Parameters

SATIMO STARGATE 32

Radiation Pattern & Efficiency



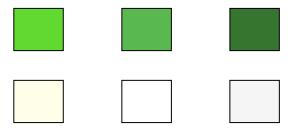
Anechoic chambers and full equipped in-house lab

8. MECHANICAL CHARACTERISTICS FR01-S4-250

8.1. DIMENSIONS, TOLERANCES, AND ROHS

Figure 27 – mXTEND[™] Antenna Booster dimensions and tolerances

Dimension	n	ım	Dimension	mm
A	5.0	+ 0.2 - 0.1	В	1.5±0.1
С	0.5±0.1			


The 4 pads are fully symmetrical to mount it on the PCB.

The mXTENDTM Antenna Booster FR01-S4-250 is compliant with the restriction of the use of hazardous substances (**RoHS**).

The RoHS certificate can be downloaded from http://www.fractus.com/index.php/fractus/documentation

8.2. COLOUR RANGE FOR THE INK

The next figure shows the range of the colours in the $mXTEND^{TM}$ Antenna Booster:

Acceptable colour range

8.3. RECOMMENDED FOOTPRINT FOR THE FR01-S4-250

Assuming that the mXTEND[™] Antenna Booster FR01-S4-250 is placed in the clearance area of the PCB, see below the recommended footprint dimensions.

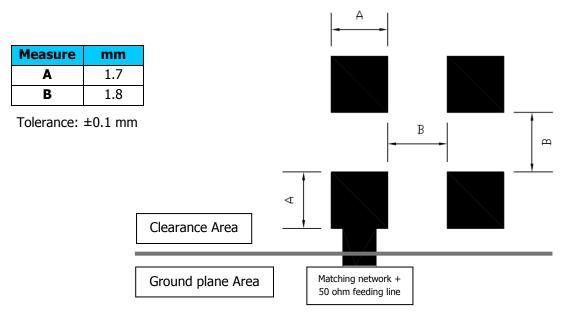


Figure 28 – Footprint dimensions for the single booster

For additional support in the integration process, please contact info@fractus.com

8.4. RECOMMENDED FOOTPRINT FOR THE FR01-S4-250 DOUBLE BOOSTER.

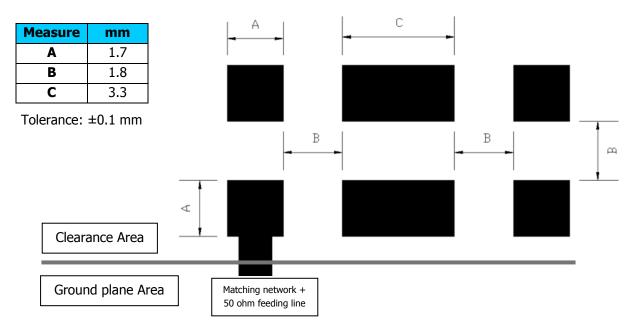
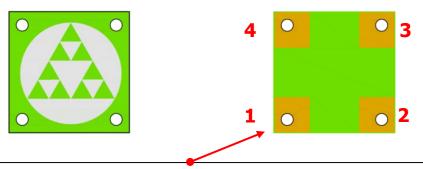


Figure 29 – Footprint dimensions for the double booster


For additional support in the integration process, please contact info@fractus.com

9. ASSEMBLY PROCESS

Figure 30 shows the back and front view of the mXTEND TM Antenna Booster FR01-S4-250. Due to the symmetry in the product configuration, the feeding pad can be any of the 4 pads.

Mounting Pads (2, 3, 4): solder the mXTENDTM Antenna Booster mounting pads to the soldering pads on the PCB. These pads must NOT be grounded.

Feed Pad (1): The 4 pads are fully symmetrical. Once the feeding pad is selected (1), the other 3 pads became mounting pads. Align the feed pad with the feeding line on the PCB. See section 8.3.

Figure 30 – Pads of the mXTEND[™] Antenna Booster FR01-S4-250

As a surface mount device (SMD), the mXTENDTM Antenna Booster is compatible with industry standard soldering processes. The basic assembly procedure for the mXTENDTM Antenna Booster is as follows:

- 1. Apply a solder paste on the pads of the PCB. Place the mXTEND™ Antenna Booster on the board.
- 2. Perform a reflow process according to the temperature profile detailed in table 23, figure 30 (page 46)
- 3. After soldering the mXTEND[™] Antenna Booster to the circuit board, perform a cleaning process to remove any residual flux. Fractus recommends conducting a visual inspection after the cleaning process to verify that all reflux has been removed.

The drawing below shows the soldering details obtained after a correct assembly process:

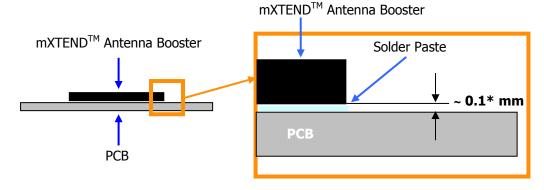


Figure 31 - Soldering Details

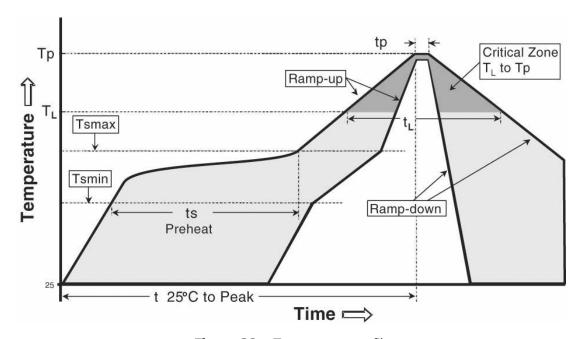
NOTE(*): Solder paste thickness after the assembly process will depend on the thickness of the soldering stencil mask. A stencil thickness equal or larger than **127 microns (5 mils)** is required.

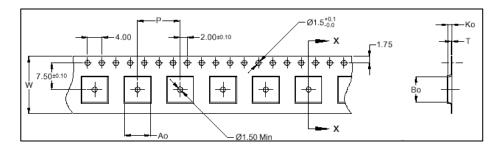
The mXTEND[™] Antenna Booster FR01-S4-250 can be assembled following the Pb-free assembly process. According to the Standard **IPC/JEDEC J-STD-020C**, the temperature profile suggested is as follows:

Phase	Profile features	Pb-Free Assembly (SnAgCu)
RAMP-UP	Avg. Ramp-up Rate (Tsmax to Tp)	3 °C / second (max.)
PREHEAT	Temperature Min (Tsmin)Temperature Max (Tsmax)Time (tsmin to tsmax)	150 °C 200 °C 60-180 seconds
REFLOW	- Temperature (TL) - Total Time above TL (t L)	217 °C 60-150 seconds
PEAK	- Temperature (T _p) - Time (tp)	260 °C 20-40 seconds
RAMP-DOWN	Rate	6 °C/second max.
Time from 25 °C to Peak Temperature		8 minutes max.

Table 23– Recommended soldering temperatures

Next graphic shows temperature profile (grey zone) for the mXTEND TM Antenna Booster assembly process reflow ovens.




Figure 32 – Temperature profile

mm

10. PACKAGING

The mXTEND $^{\text{TM}}$ Antenna Booster FR01-S4-250 is delivered in tape and reel packaging.

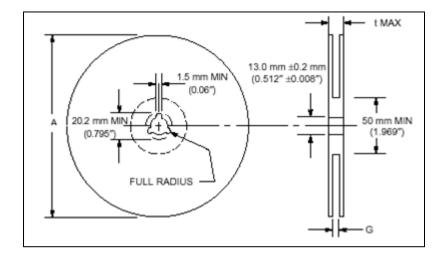
 A0
 5.3±0.1

 B0
 5.3±0.1

 K0
 5.3±0.1

 W
 16.0±0.3

 P
 8.0±0.1


 T
 0.4±0.1

Measure

Figure 33 - Tape dimensions

Figure 34 – Image of the tape

Measure	mm
Α	330 ± 1
G	17.5±0.2
t max	21.5±0.2

Reel Capacity: 1000 pcs

Figure 35 – Reel Dimensions and Reel Capacity