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Applications of Clifford
Algebras in Physics

William E. Baylis

ABSTRACT Clifford’s geometric algebra is a powerful language for physics that
clearly describes the geometric symmetries of both physical space and spacetime.
Some of the power of the algebra arises from its natural spinorial formulation
of rotations and Lorentz transformations in classical physics. This formulation
brings important quantum-like tools to classical physics and helps break down
the classical/quantum interface. It also unites Newtonian mechanics, relativity,
quantum theory, and other areas of physics in a single formalism and language.
This lecture is an introduction and sampling of a few of the important applications
in physics.
Keywords: paravectors, duals, Maxwell’s equations, light polarization, Lorentz
transformations, spin, gauge transformations, eigenspinors, Dirac equation, quater-
nions, Liénard-Wiechert potentials.

1 Introduction

Clifford’s geometric algebra is an ideal language for physics because it max-
imally exploits geometric properties and symmetries. It is known to physi-
cists mainly as the algebras of Pauli spin matrices and of Dirac gamma
matrices, but its utility goes far beyond the applications to quantum the-
ory and spin for which these matrix forms were introduced. In particular,
Clifford algebra

• endows cross products with transparent geometric meanings,

• generalizes cross products to n > 3 dimensions, in particular to rel-
ativistic spacetime,

• clears potential confusion of pseudovectors and pseudoscalars,

• constructs the unit imaginary i as a geometric object, thereby ex-
plaining its important role in physics and extending complex analysis
to more than two dimensions,
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• reduces rotations and Lorentz transformations to algebraic multipli-
cation, and more generally

• allows computational geometry without matrices or tensors,
• formulates classical physics in an efficient spinorial formulation with
tools that are closely related to ones familiar in quantum theory such
as spinors (“rotors”) and projectors, and

• thereby unites Newtonian mechanics, relativity, quantum theory, and
more in a single formalism and language that is as simple as the
algebra of the Pauli spin matrices.

In this lecture, there is only enough space to discuss a few representa-
tive high points of the many applications of Clifford algebras in physics.
For other applications, the reader will be referred to published articles
and books. The mathematical background for this chapter is given by the
lecture[1] of the late Professor Pertti Lounesto earlier in the volume.

2 Three Clifford Algebras

The three most commonly employed Clifford algebras in physics are the
quaternion algebra H =C 0,2, the algebra of physical space (APS) C 3, and
the spacetime algebra (STA) C 1,3 . They are closely related. Hamilton’s
quaternion algebra,[2] introduced in 1843 to handle rotations, is the oldest,
and provided the source of the concept (again, by Hamilton) of vectors.
The superiority of H for matrix-free and coordinate-free computations of
rotations has been recently rediscovered by space programs, the computer-
games industry, and robotics engineering. Furthermore, H is a division
algebra and has been investigated as a replacement of the complex field
in an extension of Dirac theory.[3] Quaternions were used by Maxwell and
Tate to express Maxwell’s equations of electromagnetism in compact form,
and they motivated Clifford to find generalizations based on Grassmann
theory. Hamilton’s biquaternions (complex quaternions) are quaternions
over the complex field H × C, and with them, Conway (1911) and others
were able to express Maxwell’s equations as a single equation.
The complex quaternions are isomorphic to APS: H× C ' C 3 , which

is familiar to physicists as the algebra of the Pauli spin matrices. The
even subalgebra C +

3 is isomorphic to H, and the correspondences i ↔
e32, j↔ e13, k↔ e21 identify pure quaternions with bivectors in APS,
and hence with generators of rotations in physical space. APS distinguishes
cleanly between vectors and bivectors, in contrast to most approaches with
complex quaternions. The volume element e123 in APS can be identified
with the unit imaginary i since it squares to −1 and commutes with vec-
tors and their products. Every element of APS can then be expressed as
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a complex paravector, that is the sum of a scalar and a vector.[4, 5, 6]
The identification i = e123 endows the unit imaginary with geometrical
significance and helps explain the widespread use of complex numbers in
physics.[7] The sign of i is reversed under parity inversion, and imaginary
scalars and vectors correspond to pseudoscalars and pseudovectors, respec-
tively. The dual of any element x is simply −ix, and in particular, one
sees that the vector cross product x× y of two vectors x,y is the vector
dual to the bivector x ∧ y. It is traditional in APS to denote reversal by
a dagger, x̃ = x†, since reversal corresponds to Hermitian conjugation in
any matrix representation that uses Hermitian matrices (such as the Pauli
spin matrices) for the basis vectors e1, e2, e3 .
The quadratic form of vectors in APS is the traditional dot product

and implies a Euclidean metric. Paravectors constitute a four-dimensional
linear subspace of APS, but as shown below, the quadratic form they in-
herit implies the metric of Minkowski spacetime rather than Euclidean
space. Paravectors can therefore be used to model spacetime vectors in
relativity.[8, 9] The algebra of paravectors and their products is no differ-
ent from the algebra of vectors, and in particular the paravector volume
element is i and duals are defined in the same way. APS admits inter-
pretations in both spacetime (paravector) and spatial (vector) terms, and
the formulation of relativity in APS marries covariant spacetime notation
with the vector notation of spatial vectors. Matrix elements and tensor
components are not needed, although they can be obtained by expanding
multiparavectors in the basis elements of APS.
Another approach to spacetime is to introduce the Minkowski metric

directly in C 1,3 or C 3,1 . Thus, C 1,3 is generated by products of the
basis vectors γµ, µ = 0, 1, 2, 3, satisfying

1

2

¡
γµγν + γνγµ

¢
= ηµν =

 1, µ = ν = 0
−1, µ = ν = 1, 2, 3
0, µ 6= ν

.

Dirac’s electron theory (1928) was based on a matrix representation of C 1,3

over the complex field, and Hestenes[10] (1966) pioneered the use of STA
(real C 1,3 ) in several areas of physics. The even subalgebra is isomorphic
to APS: C +

1,3 ' C 3 . The volume element in STA is I = γ0γ1γ2γ3 .
Although it is referred to as the unit pseudoscalar and squares to −1, it
anticommutes with vectors, thus behaving more like an additional spatial
dimension than a scalar.
This lecture mainly uses APS, although generalizations to C n are made

where convenient, and one section is devoted to the relation of APS to STA.
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2.1 Bivectors as Plane Areas

The Clifford (or geometric) product of vectors was introduced in Lecture
1 and given there as the sum of dot and wedge products. The dot product
is familiar from traditional vector analysis, but the wedge product of two
vectors is a new entity: the bivector. The bivector v ∧w represents the
plane containing v and w; as discussed in Lecture 1, it has an intrinsic
orientation given by the circulation in the plane from v to w and a size
given by the area of the parallelogram with sides v and w. Bivectors enter
physics in many ways: as areas, planes, and the generators of reflections and
rotations. In the old vector analysis of Gibbs and Heaviside, bivectors are
replaced by cross products that give vectors perpendicular to the plane.
However, this ploy is only useful in three dimensions, and it hides the
intrinsic properties of bivectors. As discussed below, cross products are
actually examples of algebraic duals.
The conjugation (antiautomorphism, anti-involution) of reversal, as de-

fined in Lecture 1, reverses the order of vector factors in the product.
Because noncollinear vectors do not commute, this conjugation gives us a
way of distinguishing collinear and orthogonal components. Any element
invariant under reversal is said to be real whereas elements that change
sign are imaginary. Every element x can be split into real and imaginary
parts:

x =
x+ x†

2
+

x− x†

2
≡ hxi< + hxi= .

Scalars and vectors (in a Euclidean space) are thus real, whereas bivectors
are imaginary.

Exercise 1 Verify that the dot and wedge product of any vectors u,v ∈
C n can be identified as the real and imaginary parts of the geometric prod-
uct uv.

Exercise 2 Consider the triangle of vectors c = a+ b. Prove

a ∧ b = c ∧ b = a ∧ c

and show that the magnitude of these wedge products is twice the area of
the triangle.

Exercise 3 Let α, β, γ be the interior angles of the triangle (see last ex-
ercise) opposite sides a,b, c, respectively. Use the relation of the wedge
products in the previous exercise to prove the law of sines:

sinα

a
=
sinβ

b
=
sin γ

c
,

where a, b, c are the magnitudes of a,b, c.
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a

b
c

γβ

α

FIGURE 1. A triangle of vectors c = a+ b .

Exercise 4 Let r be the position vector of a point that moves with velocity
v = ṙ. Show that the magnitude of the bivector r ∧ v is twice the rate
at which the time-dependent r sweeps out area. Explain how this relates
the conservation of angular momentum r ∧ p, with p = mv, to Kepler’s
second law for planetary orbits, namely that equal areas are swept out in
equal times.

2.2 Bivectors as operators

The fact that the bivector of a plane commutes with vectors orthogonal
to the plane and anticommutes with ones in the plane means that we can
easily use unit bivectors to represent reflections. In particular, in an n -
dimensional Euclidean space, n > 2, the two-sided transformation

v→ e12ve12

reflects any vector v in the e12 = e1e2 plane, as is verified in the next
exercise.

Exercise 5 Expand v = vkek in the n -dimensional basis {e1, e2, . . . , en}
to prove

e12ve12 = 2
¡
v1e1 + v2e2

¢− v = v4 − v⊥,
where v4 is the component of v coplanar with e12 and v⊥ = v− v4 is
the component orthogonal to the plane. In words, components in the e12
plane remain unchanged, but those orthogonal to the plane change sign.
This is what we mean by a reflection in the e12 plane.

Exercise 6 Show that the coplanar component of v is given by

v4 =
1

2
(v+ e12ve12) .
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FIGURE 2. The reflection of v in the plane e12 is e12ve12 .

Find a similar expression for the orthogonal component v⊥.

While the representation of reflections by an algebraic product is useful
in many physical applications, the fact that bivectors generate rotations
is of fundamental importance in physics. We therefore devote part of this
lecture to expanding the basic formulation of rotations in C 2 introduced
in Lecture 1. Try the following:

Exercise 7 Simplify the products e1e12 and e2e12.

Note that both e1 and e2 are rotated in the same direction through
90 degrees by right-multiplication with e12. The same result is given by
left-multiplication with e21 = e2e1 = e

†
12 = −e12 :

e1e12 = e2 = e21e1

e2e12 = −e1 = e21e2
It follows that any vector v = v1e1 + v2e2 in the e12 plane is rotated by
90◦ when multiplied by the unit bivector e12 : v→ ve12 (see Fig. 3).

Exercise 8 Find the operator that upon multiplication from the right ro-
tates any vector in the e12 plane by the small angle α ¿ 1. This should
be expressed as a first-order approximation in α .

To rotate by an angle θ other than 90◦ , we take a linear combination
of 1 and e12 to form the rotation operator

cos θ + e12 sin θ = exp (e12θ) . (2.1)

The Euler relation for the bivector follows from that for complex numbers:
it depends only on (e12)

2 = −1. The bivector e12 thus generates a rotation
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v = v1e1+v2e2

v1e1

v2e2

ve12

v2e2e12

v1e1e12

FIGURE 3. The bivector e12 rotates vectors in the e12 plane by 90◦.

in the e12 plane: any vector v in the e12 plane is rotated by θ in the
plane in the sense that takes e1 → e2 by

v→ v exp (e12θ) = exp (e21θ)v . (2.2)

Exercise 9 Verify that the operator exp (e12θ) has the appropriate limit
θ → π/2 and when 0 < θ ¿ 1 (see previous exercise).

A finite rotation is performed smoothly by increasing θ gradually from
0 to its full value. To represent a continual rotation in the e12 plane at the
angular rate ω, we put θ = ωt. Note that the rotation element exp (e12θ)
is the product of two unit vectors in the e12 plane:

exp (e12θ) = e1e1 exp (e12θ) ≡ e1n ,

where n = e1 exp (e12θ) is the unit vector obtained from e1 by a rotation
of θ in the e12 plane.

Exercise 10 Expand n = e1 exp (e12θ) in the basis {e1, e2} and verify
that e1n = cos θ + e12 sin θ. Show that the scalar and bivector parts of
exp (e12θ) are equal to e1 · n and e1 ∧ n, respectively.
In general, every product mn of unit vectors m and n can be in-

terpreted as a rotation operator of the form exp
³
B̂θ
´
, where the unit

bivector B̂ represents the plane containing m and n, and θ is the angle
between them. The product mn does not depend on the actual directions
of m and n, but only on the plane in which they lie and on the angle
between them.

Exercise 11 Let a = βe1 exp (e12θ) and b = β−1e2 exp (e12θ) be vectors
obtained by rotating e1 and e2 through the angle θ in the e12 plane and
then dilating by complimentary factors. Prove that ab = e12 . [Hint: note
that b can also be written β−1 exp (−e12θ) e2 and that exp (e12θ) exp (−e12θ) =
1. ]
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The last exercise shows that the product ab of two perpendicular vec-
tors depends only on the area and orientation of the rectangle they form.
The product does not depend on the individual directions and lengths of
the vectors. More generally, the wedge product a ∧ b of two vectors a,b
depends only on the area and orientation of the parallelogram they form.

Rotations in Spaces of More Than Two Dimensions

Relation (2.2) shows two ways to rotate any vector v in a plane. Note that
the left and right rotation operators are not the same, but rather inverses
of each other: exp (e21θ) exp (e12θ) = exp (e21θ) exp (−e21θ) = 1 .

Exercise 12 Use the Euler relation to expand the exponentials exp (B1)
and exp (B2) of bivectors B1 = θ1B̂1 and B2 = θ2B̂2, where B̂21 = B̂

2
2 =

−1. Prove that if B̂1 = ±B̂2, then

exp (B1) exp (B2) = exp (B1 +B2) .

Also show that when B1B2 6= B2B1, the relation exp (B1) exp (B2) =
exp (B1 +B2) is not generally valid.

In spaces of more than two dimensions, we may want to rotate a vec-
tor v that has components perpendicular to the rotation plane. Then the
products v exp (e1e2θ) and exp (e2e1θ)v no longer work; they include
terms like e3e1e2 that are not even vectors. (They are trivectors as will
be discussed in the next section.) We need a form for the rotation that
leaves perpendicular components invariant. Recall that perpendicular vec-
tors commute with the bivector for the plane. For example, e3e12 = e12e3 .
We therefore use

v→RvR−1 (2.3)

for the rotation, where R = exp (e21θ/2) is a rotor and R−1 = exp (e12θ/2)
is its inverse. The transformation (2.3) is linear, because RαvR−1 = αRvR−1

for any scalar α, and R (v+w)R−1 = RvR−1+RwR−1 for any two vec-
tors v and w. The two-sided form of the rotation leaves anything that
commutes with the rotation plane invariant. This includes vector com-
ponents perpendicular to the rotation plane as well as scalars. The form
may remind you of transformations of operators in quantum theory. It is
sometimes called a spin transformation to distinguish it from one-sided
transformations common with matrices operating on column vectors.

Exercise 13 Show that rotors in Euclidean spaces are unitary: R−1 = R†.

The ability to rotate in any plane of n -dimensional space without com-
ponents, tensors, or matrices is a major strength of geometric algebra in
physics. A product of rotors is a rotor (rotations form a group), and in
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physical space, where n = 3 , any rotor can be factored into a product of
Euler-angle rotors

R = exp

µ
−e12φ

2

¶
exp

µ
−e31 θ

2

¶
exp

µ
−e12ψ

2

¶
. (2.4)

However, such factorization is not necessary since there is always a simpler
expression R = exp (Θ) , where Θ is a bivector whose orientation gives the
plane of rotation and whose magnitude gives half the angle of rotation. By
using the rotor R = exp (Θ) instead of a product of three rotations about
specified angles, one can avoid degeneracies in the Euler-angle decomposi-
tion. The simple rotor expression allows smooth rotations in a single plane
and thus interpolations between arbitrary orientations.

Exercise 14 Show that the magnitude of Θ in the rotor R = exp (Θ) is
the area swept out by any unit vector n in the rotation plane under the
rotation n→ RnR−1. [Hint: Note that the increment in area added when
the unit vector is rotated through the incremental angle dθ is 1

2dθ. ]

Exercise 15 Consider the Euler-angle rotor (2.4). Show that when θ = 0
the result depends only on φ + ψ and is independent of the value φ − ψ,
whereas when θ = π, the converse holds. Such degeneracies can cause
problems if Euler angles are used in robotic or 3-D video applications.

Relation to Rotation by Matrix Multiplication.

Spin transformations rotate vectors, and when we expand v = vjej , it is
the basis vectors and not the coefficients that are directly rotated:

v = vjej → v0 = vje0j
ej → e0j = RejR

−1.

It is easy to find the components of the rotated vector v0 in the original
(unprimed) basis:

v0i = ei · v0 =
¡
ei · e0j

¢
vj .

The matrix of values
¡
ei · e0j

¢
is the usual rotation matrix.1 For example,

with R = exp (e21θ/2) , e1 · e01 e1 · e02 e1 · e03
e2 · e01 e2 · e02 e2 · e03
e3 · e01 e3 · e02 e3 · e03

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

1While one can readily compute the transformation matrices by writing the spin
transformations explicitly for basis vectors, neither the matrices nor even the vector
components are needed in the algebraic formulation.
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Exercise 16 Show that if n = Re1R
† = exp (e21θ) e1, where R = exp (e21θ/2) ,

then

R = (ne1)
1/2

=
(ne1 + 1)p
2 (1 + n · e1)

.

[Hint: find the unit vector that bisects n and e1. ]

Relation of Rotations to Reflections

Evidently R2 = exp (e21θ) = ne1 is the rotor for a rotation in the plane
of n and e1 by 2θ. Its inverse is e1n, and it takes any vector v into

v→ ne1ve1n .

If e3 is a unit vector normal to the plane of rotation,

v → ne3e3e1ve3e1ne3

= (ne3) e31ve31 (ne3) ,

which represents the rotation as reflections in two planes with unit bivectors
ne3 and e31. The planes intersect along e3 and have a dihedral angle of
θ. See Fig. (4).
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FIGURE 4. Successive reflections in two planes is equivalent to a rotation by
twice the dihedral angle θ of the planes. In the diagram, the red ball is first
reflected in the e3e1 plane and then in the ne3 plane.

Example 17 Mirrors in clothing stores are often arranged to give double
reflections so that you can see yourself rotated rather than reflected. Two
mirrors with a dihedral angle of 90◦ will rotate your image by 180◦. This
corresponds to the above transformation with n replaced by e2.

Exercise 18 How could you orient two mirrors so that you see yourself
from the side, that is, rotated by 270◦ ?
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What if we rotate the reflection planes in the e12 plane? (In physical
space, we might speak of rotating the planes about the e3 axis, but of
course this makes sense only in three dimensions.) Rotating the plane means
rotating its bivector, and to rotate ne3, for example, we rotate both n and
e3 (although here, e3 is invariant under rotations in e12 ):

ne3 → RnR−1Re3R−1 = Rne3R
−1 = ne3R−2.

Similarly,
e31 → R2e31 .

The product (ne3) e31 is invariant. We conclude that the rotation that re-
sults from successive reflections in two nonparallel planes in physical space
depends only on the line of intersection and the dihedral angle between the
planes; it is independent of rotations for both planes about their common
axis.

Exercise 19 Corner cubes are used on the moon and in the rear lenses on
cars to reverse the direction of the incident light. Consider a sequence of
three reflections, first in the e12 plane, followed by one in the e23 plane,
followed by one in the e31 plane. Show that when applied to any vector v,
the result is −v.

Spatial Rotations as Spherical Vectors

Any rotation is specified by the plane of rotation and the area swept out
by a unit vector in the plane under the rotation. In physical space, as
the rotation proceeds, the unit vector sweeps out a path on the surface
S2 of a unit sphere; this path can represent the rotation. The rotation
plane includes the origin and intersects S2 in a great circle, and the path
representing the rotation is a directed arc on this great circle. We call such
a directed arc a spherical vector. Spherical vectors are as straight as they
can be on S2, and they can be freely translated along their great circles.
However, spherical vectors on different great circles represent rotations on
different planes and are generally distinct.
We have seen that any rotor R = expΘ is the product of two unit

vectors a,b,
R = expΘ = ba ,

where a and b lie in the plane of Θ and the angle between them is Θ.
(Points on S2 are the ends of unit vectors from the origin of the sphere, and
we represent both with the same bold-face symbol.) The spherical vector−→
ab on S2 from a to b represents R.

Exercise 20 If R = ba, then R† = ab. Verify with these expressions
that R and R† are inverses of each other.
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Exercise 21 Show that ba =
¡
RbR−1

¢ ¡
RaR−1

¢
for any rotor R =

exp
³
αΘ̂

´
in the plane of a and b.

Now let’s combine R with a rotor in a different plane, say R0. Distinct
planes have distinct great circles on S2 and intersect at antipodal points.
We slide a and b along the great circle of Θ until b is at one of the
intersections. Then we choose c so that R0 = cb. The composition

R0R = cb ba = ca

yields a rotor ca represented by the spherical vector −→ac = −→ab+−→bc from
a to c.The composition of rotations thus is equivalent to the addition of
spherical vectors on S2 (see Fig. 5).

FIGURE 5. A product of rotations is represented by the addition of spherical
vectors.

The length of the spherical vector
−→
ab from a to b, which represents

the rotor R = ba, is half the maximum angle of rotation of a vector
v→ RvR−1. In other words, the length of

−→
ab is the area swept out by a

unit vector in the rotation plane. Points on S2 are not directly associated
with directions in physical space. Pairs of points on S2 separated by an
angle θ represent rotors in physical space that rotate vectors by up to an
angle of 2θ ; the points themselves are associated with spinors. (The points
do not fully identify the spinors but only their poles. Their orientation
about the poles requires an additional complex phase which is not required
for the treatment of rotations.)
We refer to S2 as the Cartan sphere.2 It is not to be confused with

the unit sphere in physical space. Indeed, there is a two-to-one mapping of

2 In recognition of Élie Cartan’s extensive work with spinor representations of simple
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points from S2 to directions in physical space: antipodes on the Cartan
sphere map to the same direction in physical space.3 Note that the addition
of spherical vectors is noncommutative. This reflects the noncommutivity
of rotations in different planes.

Example 22 What’s the product of a 180◦ rotation in the e12 plane
followed by a 180◦ rotation in the e23 plane? Use the Euler relation
exp (e21α) = cosα+ e21 sinα to get

exp
³
e32

π

2

´
exp

³
e21

π

2

´
= e3e2e2e1 = e3e1 = exp

³
e31

π

2

´
.

The result is therefore a 180◦ rotation in the e13 plane. Note that we do
not need to compute an entire rotation RvR−1 but only the rotor R. In
terms of spherical vectors, the composition is equivalent to adding a 90

◦

vector on the equator to one joining the equator to the north pole.

Exercise 23 Show that the result of a 90◦ rotation in the e12 plane fol-
lowed by a 90◦ rotation in the e23 plane is a 120◦ rotation in the plane
(e12+e23+e31) /

√
3.

We now have both an algebraic way and a geometric way to rotate any
vector by any angle in any plane, and their relation provides simple al-
gebraic calculations for spherical trigonometry. If B̂ is the unit bivector
for the plane and θ is the angle of rotation, the vector v under rotation
becomes

v → v0 = RvR−1

R = exp
³
B̂θ/2

´
.

If, for example, B̂ = e21 = e2e1, the sense of the rotation is from e1
towards e2. The rotation can be evaluated algebraically without com-
ponents or matrices. For the algebraic calculation, one can expand R =
cos θ/2 + B̂ sin θ/2, but it is much easier to first expand v into compo-
nents in the plane of rotation (coplanar: 4 ) and orthogonal (⊥ ) to it:

v = v4 + v⊥.

Since v4 anticommutes with B̂ whereas v⊥ commutes with it,

RvR−1 = R2v4 + v⊥

= v4 cos θ + B̂v
4
sin θ + v⊥.

As before, the product B̂v
4
of a unit bivector with a vector in the plane

of the bivector, rotates that vector by a right angle in the plane.

Lie algebras.
3 Spherical vectors on S2 give a faithful representation of rotations in SU (2) , the

double covering group of SO(3).
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Exercise 24 Expand R−1 to prove that v4R−1 = Rv4 and v⊥R−1 =
R−1v⊥, where v4 lies in the plane of the rotation (is coplanar) and v⊥

is orthogonal to the rotation plane.

Time-dependent Rotations

An additional infinitesimal rotation by Ω0dt during the time interval dt
changes a rotor R to

R+ dR =

µ
1 +

1

2
Ω0dt

¶
R .

The time-rate of change of R thus has the form

Ṙ =
dR

dt
=
1

2
Ω0R ≡ 1

2
RΩ,

where the bivector Ω = R−1Ω0R is the rotation rate as viewed in the
rotating frame. For the special case of a constant rotation rate, we can take
the rotor to be

R (t) = R (0) eΩt/2.

If R (0) = 1, then Ω = Ω0. Any vector r is thereby rotated to

r0 = RrR−1

giving a time derivative

ṙ0 = R

·
Ωr− rΩ

2
+ ṙ

¸
R−1

= R [hΩri< + ṙ]R−1,

where we noted that r is real and the bivector Ω is imaginary. Since r
can be any vector, we can replace it by hΩri<+ ṙ to determine the second
derivative

r̈0 = R
£hΩ (hΩri< + ṙ)i< + hΩṙi< + r̈¤R−1

= R
£hΩ hΩri<i< + 2 hΩṙi< + r̈¤R−1. (2.5)

Let’s write Ω = ωΩ̂. Then hΩri< = Ωr4 = ωΩ̂r
4
, where r4 is the part

of r coplanar with Ω̂. The product Ω̂r
4
is r4 rotated by a right angle

in the plane Ω̂.

Exercise 25 Show that hΩ hΩri<i< = −ω2r4 and that the minus sign
can be viewed as arising from two 90-degree rotations or, equivalently, from
the square of a unit bivector.
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The result can be expressed

r̈0 = R
h
−ω2r4 + 2ωΩ̂ṙ4 + r̈

i
R−1.

A force law f 0 = mr̈0 in the inertial system is seen to be equivalent to an
effective force

f = mr̈ = R−1f 0R+mω2r4 + 2mωṙ4Ω̂

in the rotating frame. The second and third terms on the RHS are identified
as the centrifugal and Coriolis forces, respectively.

2.3 Higher-Grade Multivectors

Higher-order products of vectors also play important roles in physics. Prod-
ucts of k orthonormal basis vectors ej can be reduced if two of them are
the same, but if they are all distinct, their product is a basis k -vector. In
an n -dimensional space, the algebra contains

¡
n
k

¢
such linearly indepen-

dent multivectors of grade k . The highest-grade element is the volume
element, proportional to

eT ≡ e123···n = e1e2e3· · · en .

Exercise 26 Find the number of independent elements in the geometric
algebra of C 5 of 5-dimensional space. How is this subdivided into vectors,
bivectors, and so on?

Homogeneous Subspaces

A general element of the algebra is a mixture of different grades. We use
the notation hxik to isolate the part of x with grade k. Thus, hxi0 is the
scalar part of x, hxi1 is the vector part, and by hxi2,1 we mean the sum
hxi2 + hxi1 of the bivector and vector parts. Evidently

x = hxi0,1,2,...,n =
nX

k=0

hxik .

The elements of each grade k in C n form a homogeneous linear subspace
hC nik of the algebra.
The exterior product of k vectors v1,v2, . . . ,vk, is the k -grade part of

their product:
v1 ∧ v2 ∧ · · · ∧ vk ≡ hv1v2 · · ·vkik .

It represents the k -volume contained in the k -dimensional polygon with
parallel edges given by the vector factors v1,v2, . . . ,vk, and it vanishes
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unless all k vectors are linearly independent. In APS, in addition to scalars,
vectors, and bivectors, there are also trivectors, elements of grade 3:

u ∧ v ∧w ≡ huvwi3
=

X
jkl

ujvkwl hejekeli3

=
X
jkl

εjklu
jvkwle123

= eT det

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 , (2.6)

where we noted that in 3-dimensional space, the 3-vectors hejekeli3 are
all proportional to the volume element e123 = eT :

hejekeli3 = εjkle123 ,

and where εjkl is the Levi-Civita symbol. Note the appearance of the de-
terminant in expression (2.6). It ensures that the wedge product vanishes
if the vector factors are linearly dependent.
While the component expressions can be useful for comparing results

with other work, the component-free versions u ∧ v ∧ w ≡ huvwi3 are
simpler and more efficient to work with. In the trivector huvwi3 , the
factor uv can be split into scalar (grade-0) and bivector (grade-2) parts
uv = huvi0 + huvi2 , but huvi0w is a (grade-1) vector, so that only the
bivector piece contributes:

huvwi3 = hhuvi2wi3 .
Now split w into components coplanar with huvi2 and orthogonal to it:

w = w4 +w⊥,

and recall that w4 and w⊥ anticommute and commute with huvi2 , re-
spectively. The coplanar part w4 is linearly dependent on u and v and
therefore does not contribute to the trivector. We are left with

huvwi3 = hhuvi2wi3 =
huvi2w⊥®3

=
1

2
(huvi2w +w huvi2)

= hhuvi2wi= .

Similarly, the vector part of the product huvi2w is

hhuvi2wi1 =
huvi2w4®

1
=
1

2
(huvi2w −w huvi2)

= hhuvi2wi< .
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Exercise 27 Show that while huvwi3 = hhuvi2wi3 , the difference huvwi1−hhuvi2wi1 = hhuvi0wi1 does not generally vanish.
A couple of important results follow easily.

Theorem 28 hhuvi2wi< = u (v ·w)− v (u ·w) .
Proof. Expand hhuvi2wi< = 1

2 (huvi2w−w huvi2) , add and subtract
term uwv and vwu, and collect:

hhuvi2wi< =
1

4
[(uv − vu)w−w (uv− vu)]

=
1

4
[uvw + uwv− vuw − vwu−wuv− uwv+wvu+ vwu]

=
1

2
[u (v ·w)−v (u ·w)− (w · u)v+(w · v)u]

= u (v ·w)− v (u ·w) .

Let B be the bivector huvi2 . If we expand u = ujej and v = vkek,
we find

B = ujvk hejeki2 =
1

2
Bjk hejeki2 ,

where Bjk = ujvk − ukvj and we noted the antisymmetry of hejeki2 =− hekeji2 . From the last theorem, the vector hBwi1 lies in the plane of
B and is orthogonal to w. In terms of components,

hBwi1 =
1

2
Bjkwl

hejeki2 el®1
=

1

2
Bjkwl (ejδkl − ekδjl)

= Bjlwl

is a contraction of the bivector B with the vector w and is sometimes
written as the dot product hBwi1 = B ·w. It lies in the intersection of the
plane of B with the hypersurface orthogonal to w.
Since a vector v orthogonal to the space spanned by the vectors com-

prising a k -vector K commutes with K if k is even and anticommutes
with it if k is odd, we can generalize the result for the trivector to

Theorem 29 The exterior (wedge) product hKvik+1 of a k -vector K
with a vector v is given by

hKvik+1 ≡ K ∧ v =
1

2

³
Kv+(−)k vK

´
.

Corollary 30 The contraction is hKvik−1 ≡ K · v = 1
2

³
Kv− (−)k vK

´
.
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Duals

Note that in the algebra of an n -dimensional space, the number of inde-
pendent k -grade multivectors is the same as the number of (n− k) -grade
elements. Thus, both the vectors (grade 1 elements) and the pseudovec-
tors (grade n− 1 elements) occupy linear spaces of n dimensions. We can
therefore establish a one-to-one mapping between such elements. We define
the Clifford-Hodge dual ∗x of an element x by

∗x ≡ xe−1T .

The dual of a dual is e−2T = ±1 times the original element. If x is a k -
vector, each term in a k -vector basis expansion of x will cancel k of the
basis vector factors in eT , leaving ∗x = xe−1T as an (n− k) -vector.
A simple k -vector is a single product of k independent vectors that span

a k -dimensional subspace. Every vector in that subspace is orthogonal to
vectors whose products comprise the (n− k) -vector ∗x . In this sense, any
simple element and its dual are fully orthogonal. The dual of a scalar is
a volume element, known as a pseudoscalar ; the dual of a vector is the
hypersurface orthogonal to that vector, known as a pseudovector ; and so
on.4

In physical space (n = 3 ), the dual to a bivector is the vector normal to
the plane of the bivector. Thus, eT = e123 and e

−1
T = −e123 = −eT , and

for example
∗ (e12) = e12 (−e123) = e3 .

We recognize this as the cross product :

∗ (u ∧ v) = u× v ,

when it is taken between polar vectors, and we can understand its relation
to the plane of u and v. The volume element in physical space squares to
−1 and commutes with all vectors and hence all elements. It can therefore
be associated with the unit imaginary :

eT = e123 = i

and thus ∗ (u ∧ v) = (u ∧ v) /i so that

u ∧ v = iu× v .

However, whereas the cross product is defined only in three dimensions and
is nonassociative as well as noncommutative, the exterior wedge product

4These names are most suitable in APS where the pseudoscalar belongs to the center
of the algebra, but they are also applied in cases with an even number n of dimensions,
where eT anticommutes with the vectors.
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is defined in spaces of any dimension and is associative. It also emphasizes
the essential properties of the plane and is an operator on vectors that
generates rotations.5

Exercise 31 Verify by calculation of some explicit values that the Levi-
Civita symbol is the dual to the volume element hejekeli3 in APS:

εjkl =
∗ hejekeli3 = hejekeli3 e−1T .

This definition is easily extended to higher dimensions.

We can use duals to express a rotor in physical space in terms of the axis
of rotation, which is dual to the rotation plane. For example

R = exp (e2e1θ/2) = exp (−ie3θ/2)

is the rotor for a rotation v→ RvR−1 by θ about the e3 axis in physical
space. Furthermore, in APS the volume of the parallelepiped with sides
a,b, c, is dual to a pseudoscalar, namely the trivector

a ∧ b ∧ c = habci3 = habci=
= hhabi2 ci= = hi ∗ habi2 ci= = i h(a× b) ci<
= i (a× b) · c .

Exercise 32 The bivector rotation rate Ω = −iω can be expressed as the
dual of a vector ω in physical space. Show that hΩri< = ω × r.
Exercise 33 Show that in physical space the theorem hhuvi2wi< = u (v ·w)−
v (u ·w) is equivalent to (u× v)×w = u ·w v − v ·w u .

Exercise 34 Rewrite the transformation (2.5) from the rotating frame to
the inertial lab frame in terms of ω = iΩ.

Reciprocal Basis

Except for their normalization, reciprocal basis vectors are duals to hyper-
planes formed by wedging all but one of the basis vectors. The reciprocal

5The algebra of physical space (APS) thus automatically incorporates complex num-
bers as its center (commuting part). The unit imaginary has geometric meaning in the
algebra: it is the unit volume element, which defines the dual relationship. This helps
make sense of some of the many complex numbers that appear in real physics, and the
dual relationship helps avoid confusion associated with pseudoscalars, pseudovectors,
and their behavior under inversion. The bivector in APS, for example, is a pseudovec-
tor, the dual to the vector normal to the plane of the bivector:

e12 = e123e3 = ie3 .
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basis is important when the basis is not orthogonal and not necessarily
normalized, as in the study of crystalline solids. Thus, if we form a ba-
sis {a1,a2,a3} from three non-coplanar vectors a1,a2,a3, in APS, the
reciprocal vector to a1 is

a1 ≡
∗ (a2 ∧ a3)

∗ (a1 ∧ a2 ∧ a3) =
a2 ∧ a3

a1 ∧ a2 ∧ a3 =
a2 × a3

a1 · (a2 × a3) ,

where we noted that ∗ (a1 ∧ a2 ∧ a3) is a real scalar, so that

a1 · a1 =
a1 ·∗ (a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) =

∗ (a1 ∧ a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) = 1

a2 · a1 =
a2 ·∗ (a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) =

∗ (a2 ∧ a2 ∧ a3)
∗ (a1 ∧ a2 ∧ a3) = 0 = a3 · a

1 .

We can think of the reciprocal vectors as basis 1-forms, that is linear op-
erators ak on vectors aj whose operation is defined by

ak (aj) = aj · ak = δkj .

3 Paravectors and Relativity

The space of scalars, the space of vectors, and the space of bivectors, are
all linear subspaces of the full 2n -dimensional space of the algebra C n .
Direct sums of the subspaces are also linear subspaces of the algebra. The
most important is the direct sum of the scalar and the vector subspaces. It
is an (n+ 1) -dimensional linear space known as paravector space. In APS
(n = 3 ), every element reduces to a complex paravector.
Elements of real paravector space have the form p = p0+p = hpi0+hpi1 ,

and the algebra C n also includes their exterior products:

paravector space = hC ni1,0 , (n+ 1) -dim

biparavector space = hC ni2,1 ,

µ
n+ 1

2

¶
-dim

k-paravector space = hC nik,k−1 ,

µ
n+ 1

k

¶
-dim .

In general, grade-0 paravectors are scalars in hC ni0 , (n+ 1) -grade par-
avectors are volume elements (pseudoscalars) in hC nin , and the linear
space of k -grade multiparavectors is hC nik,k−1 ≡ hC nik⊕hC nik−1 , k =
1, 2, . . . , n.

3.1 Clifford Conjugation

In addition to reversal (dagger-conjugation), introduced above, we need
Clifford conjugation, the anti-automorphism that changes the sign of all
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vector factors as well as reversing their order and their combination. For
any paravector p , its Clifford conjugate is

p̄ = p0 − p, pq = q̄p̄

Clifford conjugation can be used to split elements into scalarlike and vec-
torlike parts:

p =
p+ p̄

2
+

p− p̄

2
= hpiS + hpiV = scalarlike + vectorlike.

Clifford conjugation is combined with reversal to give the grade automor-
phism

p̄† = p̄, (pq)† = (pq)† = p̄†q̄†,

with which elements can be split into even and odd parts:

p =
p+ p̄†

2
+

p− p̄†

2
= hpi+ + hpi− = even + odd.

These relations offer simple ways to isolate different vector and paravector
grades. In particular, for n = 3, (here · · · stands for any expression)

h· · · iS = h· · · i0,3 h· · · iV = h· · · i1,2
h· · · i< = h· · · i0,1 h· · · i= = h· · · i2,3
h· · · i+ = h· · · i0,2 h· · · i− = h· · · i1,3 .

Exercise 35 Verify that the splits can be combined to extract individual
vector grades as follows:

h· · · i0 = h· · · i<S = h· · · i<+ = h· · · iS+
h· · · i1 = h· · · i<V
h· · · i2 = h· · · i=V
h· · · i3 = h· · · i=S .

Example 36 Let B be any bivector. Then B is even, imaginary, and
vectorlike, whereas B2 is even, real, and scalarlike. Any analytic function
f (B) is even and f (B) = f (−B) = f

¡
B̄
¢
= f

¡
B†
¢
. Spatial rotors

R (B) = exp (B/2) are even and unitary: R† (B) = R−1 (B) = R (−B) . 6

Exercise 37 Show that the wedge (exterior) and dot (contraction) products
of an arbitrary element x with a vector v in C n is given by

x ∧ v =
1

2

¡
xv+ vx̄†

¢
x · v =

1

2

¡
xv− vx̄†¢ .

6We can use either grade numbers or conjugation symmetries to split an element into
parts. The grade numbers emphasize the algebraic structure whereas the conjugation
symmetries indicate an operational procedure to compute the part.
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3.2 Paravector Metric

If {e1, e2, · · · , en} is an orthonormal basis of the original Euclidean space,
so that

hejeki0 =
1

2
(ejek + ekej) = δjk ,

the proper basis of paravector space is {e0, e1, e2, · · · , en} , where we iden-
tify e0 ≡ 1 for convenience in expanding paravectors p = pµeµ, µ =
0, 1, · · · , n in the basis. The metric of paravector space is determined by
a quadratic form. We need a product of a paravector p with itself or a
conjugate that is scalar valued. It is easy to see that p2 generally has vec-
tor parts, but pp̄ = hpp̄i0 = p̄p is a scalar. Therefore it is adopted as the
quadratic form (“square length”):

Q (p) = pp̄.

By “polarization” p→ p+ q we find the inner product

hp, qi = hpq̄iS =
1

2
(pq̄ + qp̄)

= pµqν heµēνiS ≡ pµqνηµν .

Exercise 38 Show that the inner product hpq̄iS = 1
2 [Q (p+ q)−Q (p)−Q (q)] .

Exercise 39 Find the values of ηµν = heµēνiS .
We recognize the matrix¡

ηµν
¢
= diag (1,−1,−1, · · · ,−1)

as the natural metric of the paravector space. It has the form of the
Minkowski metric. If hpq̄iS = 0, then the paravectors p and q are or-
thogonal. For any element x, xx̄ = xx̄ = hxx̄iS . In the standard matrix
representation of C 3,

xx̄ ' detx .

If xx̄ = 1, x is unimodular.
The inverse of an element x can be written

x−1 =
x̄

xx̄
,

but this does not exist if xx̄ = 0. The existence of nonzero elements of
zero length means that Clifford’s geometric algebra, unlike the algebras of
reals, complexes, and quaternions, is generally not a division algebra. This
may seem an annoyance at first, but it is the basis for powerful projector
techniques, as we demonstrate below.

Exercise 40 Show that the paravector 1 + e1 has no inverse and is or-
thogonal to itself.
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Spacetime as Paravector Space

The paravectors of physical space provide a covariant model of spacetime.
(Extensions to curved spacetimes are possible, but for simplicity we re-
strict ourselves here to flat spacetimes.) We use SI units with c = 1 and,
unless specified otherwise, take n = 3 . Spacetime vectors are represented
by paravectors whose frame-dependent split into scalar and vector parts
reflects the observer’s ability to distinguish time and space components.
In particular, any timelike spacetime displacement dx = dt + dx has a
Lorentz-invariant length defined as the proper time interval dτ :

dτ2 = dxdx̄ = ηµνdx
µdxν .

The proper velocity is

u =
dx

dτ
= γ (1 + v) = uµeµ

where v = dx/dt is the usual coordinate velocity and we use the summa-
tion convention for repeated indices. Other spacetime vectors are similarly
represented, for example,

p = mu = E + p : paramomentum

j = jµeµ = ρ+ j : current density

A = Aµeµ = φ+A : paravector potential

∂ = ∂µeνη
µν = ∂t −∇ : gradient operator.

Exercise 41 Consider a function f (s) , where s is the scalar s = hkx̄iS =
kµxµ = kµx

µ and k is a constant paravector. Use the chain rule for differ-
entiation to prove that ∂f (s) = kf 0 (s) , where f 0 (s) = df/ds. Note that
∂µ ≡ ∂/∂xµ .

Biparavectors represent oriented planes in spacetime, for example the
electromagnetic field

F =

∂Ā
®
V
=
1

2
Fµν heµēνiV = E+ iB .

The basis biparavectors heµēνiV = − heν ēµiV are also the generators of
Lorentz rotations, and the expansion of F in this basis gives directly the
usual tensor components Fµν . However, no tensor elements are needed in
APS, and the algebra offers several ways to interpret F geometrically. The
field at any point is a covariant plane in spacetime, and for any observer it
splits naturally into frame-dependent parts: a timelike plane E = Ee0 =
hFi1 and a spatial plane iB = hFi2 . Since E = hFe0i< , the electric field
E lies in the intersection of F with the spatial hyperplane dual (and thus
orthogonal) to e0. From iB = hFe0i= , we see that the usual magnetic
field B is the vector dual to the spacetime hypersurface hFe0i= .
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We need to be careful about stating that F is a plane in spacetime.
The sum of electromagnetic fields is another electromagnetic field, but the
sum of planes in four dimensions is not necessarily a single plane. We
may get two orthogonal planes. (Of course this cannot happen in three
dimensions, where the sum of any two planes is also a plane, but spacetime
has four dimensions.) Thus, we distinguish simple fields, which are single
spacetime planes from compound ones, which occupy two orthogonal (and
hence commuting) planes. How do we distinguish a simple field from a
compound one? All we need to do is square it. The square of any simple field
is a real scalar, whereas the square of a compound field contains a spacetime
volume element, that is a pseudoscalar, given in APS as an imaginary
scalar.

Example 42 The biparavector hpq̄iV = 1
2 (pq̄ − qp̄) is simple and repre-

sents a spacetime plane containing paravectors p and q. Its square

hpq̄i2V =
1

4
(pq̄ − qp̄)

2
=
1

4
(pq̄ + qp̄)

2 − 1
2
(pq̄qp̄+ qp̄pq̄)

= hpq̄i20 − pp̄qq̄

is seen to be a real scalar.

If paravectors p and q are orthogonal to both r and s, then hpq̄ + rs̄iV
is a compound biparavector with orthogonal spacetime planes hpq̄iV and
hrs̄iV . However, the planes in a compound biparavector may not be unique:
if p, q, r, s are mutually orthogonal paravectors and if pp̄ = rr̄ and qq̄ = ss̄,
then

hpq̄ + rs̄iV =
1

2

D
(p+ r) (q + s) + (p− r) (q − s)

E
V

expresses the compound biparavector as two sets of orthogonal planes. Or-
thogonal planes in spacetime are proportional to each other’s dual. As a
result, any compound biparavector can be expressed as a simple biparavec-
tor times a complex number.

Exercise 43 Show that the compound biparavector e1ē0+e3ē2 = e1ē0 (1 + i) .

The square of F = E+ iB is

F2 = E2 −B2 + 2iE ·B

and F is evidently simple if and only if E ·B = 0. A null field, with F2 = 0,
is thus simple. It can be written F =

³
1 + k̂

´
E , where k̂E = iB.

Exercise 44 Show that any null field F =
³
1 + k̂

´
E obeys k̂F = F = −Fk̂ .



Applications in Physics 25

Lorentz Transformations

Much of the power of Clifford’s geometric algebra in relativistic applica-
tions arises from the form of Lorentz transformations. In APS, we identify
paravector space with spacetime, and physical (restricted) Lorentz trans-
formations are rotations in paravector space. They take the form of spin
transformations

p → LpL†, odd multiparavector grade
F → LFL̄ , even multiparavector grade,

where the Lorentz rotors L are unimodular (LL̄ = 1 ) and have the form

L = ± exp (W/2) ∈ SL (2,C)

W =
1

2
Wµν heµēνi1,2 .

Every L can be factored into a boost B = B† (a real factor) and a spatial
rotation R = R̄† (a unitary factor):L = BR.
For any paravectors p, q, the scalar product hpq̄iS →


LpL†L̄†q̄L̄

®
S
=

hpq̄iS is Lorentz invariant. In particular, the square length pp̄ =
¡
p0
¢2 −

p2 is invariant and can be timelike (> 0 ), spacelike (< 0 ), or lightlike
(null, = 0 ). Null paravectors are orthogonal to themselves. Similarly F2

is Lorentz invariant, and simple fields can be classified as predominantly
electric (F2 > 0 ), predominantly magnetic (F2 < 0 ), or null (F2 = 0 ).
With Lorentz transformations, we can easily transform properties be-

tween inertial frames. The position coordinate x of a particle instanta-
neously at rest changes only by its time, the proper time τ : dxrest = dτ .
We transform this to the lab, in which the particle moves with proper
velocity u = dx/dτ, by

dx = LdxrestL
† = LL†dτ = udτ

= dt+ dx = dt (1 + v) .

With L = BR it follows that

LL† = B2 = u =
dt

dτ
(1 + v) .

Now LL† = Le0L
† = u is just the Lorentz rotation of the unit basis

paravector e0 , and its square length is invariant:

uū = 1 = γ2
¡
1− v2¢ ,

where γ = dt/dτ is the time-dilation factor.

Example 45 Consider the transformation of a paravector p = pµeµ in a
system that is boosted from rest to a velocity v = ve3 :

p→ LpL† = BpB = pµuµ
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where B = exp (we3ē0/2) = u1/2 represents a rotation in the e3ē0 par-
avector plane and uµ = BeµB is the boosted proper basis paravector. Evi-
dently

u0 = Be0B = B2e0 = ue0 = γ (e0 + ve3)

u1 = e1

u2 = e2

u3 = Be3B = ue3 = γ (e3 + ve0)

with γ =
³
1− v2

c2

´−1/2
.

As in the case of spatial rotations, if we put LpL† = p0 = p0νeν , we can

e0

u0

u3

e3

e1,2 = u1,2

FIGURE 6. Spacetime diagram showing the boost to v = 0.6 e3 .

easily find
p0ν = pµ huµēνiS

and hence the usual 4× 4 matrix relating the components of p before and
after the boost, but we have no need of it. The relations for uµ are useful
for drawing spacetime diagrams. Thus, if v = 0.6, then γ = 1.25 and

u0 = (5e0 + 3e3) /4

u3 = (5e3 + 3e0) /4 .

We can take this further and look at planes in spacetime, as shown in Fig.
6.

Exercise 46 Show that the biparavectors e3ē0 and e1ē2 are invariant
under any boost B along e3 .
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Exercise 47 Let system B have proper velocity uAB with respect to A,
and let system C have proper velocity uBC as seen by an observer in B.
Show that the proper velocity of C as viewed by A is

uAC = u
1/2
ABuBCu

1/2
AB

and that this reduces to the product uAC = uABuBC when the spatial veloc-
ities are collinear. Writing each proper velocity in the form u = γ (1 + v) ,
show that in the collinear case

vAC =
huACiV
huACiS

=
vAB + vBC
1 + vAB·vBC .

Example 48 Consider a boost of the photon wave paravector

k = ω
³
1 + k̂

´
→ k0 = BkB = u

³
ω + kk

´
+ k⊥

with kk = k · v̂ v̂ = k− k⊥ and u = γ (1 + v) . This describes what hap-
pens to the photon momentum when the light source is boosted. Evidently
k⊥ is unchanged, but there is a Doppler shift and a change in kk :

ω0 =
D
u
³
ω + kk

´E
S
= γω

³
1 + k̂ · v

´
k0 · v̂ =

D
uv̂
³
ω + kk

´E
S
= γω

³
v + k̂ · v̂

´
= ω0 cos θ0.

Thus the photons are thrown forward

cos θ0 =
v + cos θ

1 + v cos θ
. (3.1)

in what is called the “headlight” effect (see Fig. 7).

v = 0

v = .95 c γ −1

FIGURE 7. Headlight effect in boosted light source.
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Exercise 49 Solve Eq. (3.1) for cos θ and show that the result is the same
as in Eq. (3.1) except that v is replaced by −v and θ and θ0 are inter-
changed.

Exercise 50 Show that at high velocities, the radiation from the boosted
source is concentrated in the cone of angle γ−1 about the forward direction.

Simple rotors of Lorentz transformations can be expressed as a product
of paravectors in the spacetime plane of rotation. Consider a biparavector
hpq̄iV and a paravector r with a coplanar component r4 and an orthog-
onal component r⊥. The coplanar component is a linear combination of p
and q : r4 = αp + βq, where α and β are scalars. Now the product of
hpq̄iV with p satisfies

hpq̄iV p =
1

2
(pq̄p− qp̄p) = p hq̄piV

= p hpq̄i†V .

Similarly with q and thus with any linear combination of p and q. It
follows that if L is a simple Lorentz rotor in the plane hpq̄iV , that the
coplanar component obeys

Lr4 = r4L†.

On the other hand r⊥ is orthogonal to the plane and thus coplanar with
its dual:


pr̄⊥

®
S
= 0 =


qr̄⊥

®
S
, so that

hpq̄iV r⊥ =
1

2

¡
pq̄r⊥ − qp̄r⊥

¢
=
1

2
r⊥ (p̄q − q̄p) = −r⊥ hpq̄i†V

and consequently for any Lorentz rotor L that rotates in the plane of
hpq̄iV ,

L̄r⊥ = r⊥L†.

The Lorentz transformation of r thus gives

LrL† = r⊥ + L2r4.

In spacetime, it is possible for a null vector to be both coplanar and or-
thogonal to a null flag. An example of a null flag is F = (1 + e3) e1 =
(1 + e3) e3e1 = i (1 + e3) e2 . The dual flag ∗F = −iF =(1 + e3) e2 is the
rotation of F about e3 by π/2. A Lorentz transformation generated by
F leaves the flagpole 1+ e3 invariant, since F (1 + e3) = 0 = (1 + e3)F†.
Suppose that r lies in the plane of rotation of L and that

s = LrL† = L2r .

Then, as long as rr̄ 6= 0,

L =
¡
sr−1

¢1/2
=

(s+ r) r−1p
2 hsr−1 + 1iS

=
sr−1 + 1

h2 (sr−1 + 1)i1/2S

.



Applications in Physics 29

Exercise 51 Verify that LL̄ = 1 and

L2r =

¡
sr−1 + 1

¢
(s+ r)

h2 (sr−1 + 1)iS
=
2 + sr−1 + rs−1

2 + sr−1 + r̄−1s̄
s = s .

[Hint: note that ss̄ = rr̄ 6= 0 so that r̄−1s̄ = rs̄/ (rr̄) = rs̄/ (ss̄) = rs−1. ]

If we rotate a null paravector k = ω
³
1 + k̂

´
in a spacetime plane that

contains k , then k → k0 = LkL† = L2k. In the case of a boost, L = B =

exp
³
w
2 k̂
´
, we find

k0 = ewk

with ew = hk0iS / hkiS = ω0/ω = γ (1 + v) =
p
(1 + v) / (1− v).

Lorentz rotations in the same or in dual planes commute, but other-
wise they generally do not. Furthermore, whereas any product of spatial
rotations is another spatial rotation, the product of noncommuting boosts
generally does not give a pure boost, but rather the product of a boost
and a rotation. Lorentz rotations can also be expressed as the product of
spacetime reflections. Up to four reflections may be needed.

3.3 Relation of APS to STA

An alternative to the paravector model of spacetime in APS is the spacetime
algebra (STA) introduced by David Hestenes[10]. They are closely related,
and it is the purpose of this section to show how.
STA is the geometric algebra C 1,3 of Minkowski spacetime. It starts

with a 4-dimensional basis {γ0, γ1, γ2, γ3} ≡
©
γµ
ª
satisfying

γµγν + γνγµ = 2ηµν

in each frame. The chosen frame can be independent of the observer and
her frame

©
γ̂µ
ª
. Any spacetime vector p = pµγ̂µ can be multiplied by γ̂0

to give the spacetime split

pγ̂0 = p · γ̂0 + p ∧ γ̂0 = p0 + pkek ,

where e0 = 1 and ek ≡ γ̂kγ̂0 are the proper basis paravectors of the
system in APS. (This association establishes the previously mentioned iso-
morphism between the even subalgebra of STA and APS.) More general
paravector basis elements uµ in APS arise when the basis

©
γµ
ª
used

for the expansion p = pµγµ is for a frame in motion with respect to the
observer:7

uµ = γµγ̂0 .

7A double arrow might be thought more appropriate than an equality here, because
uµ and γµ, γ̂0 act in different algebras. However, we are identifying C 3 with the even
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In particular, u0 = γ0γ̂0 is the proper velocity of the frame
©
γµ
ª
with

respect to the observer frame
©
γ̂µ
ª
. The basis vectors in APS are relative;

they always relate two frames, but those in STA can be considered absolute.
Clifford conjugation in APS corresponds to reversion in STA, indicated

by a tilde:
ūµ =

¡
γµγ̂0

¢˜
= γ̂0γµ .

For example, if the proper velocity of frame
©
γµ
ª
with respect to γ̂0 is

u0 = γ0γ̂0, then the proper velocity of frame
©
γ̂µ
ª
with respect to γ0

is ū0 = γ̂0γ0 . It is not possible to make all of the basis vectors in any
STA frame Hermitian, but one usually takes γ̂†0 = γ̂0 and γ̂†k = −γ̂k in
the observer’s frame

©
γ̂µ
ª
. Hermitian conjugation in STA then combines

reversion with the reflection in the observer’s time axis γ̂0 : Γ
† = γ̂0Γ̃γ̂0 ,

for example

u†µ =
h
γ̂0
¡
γµγ̂0

¢˜
γ̂0

i
= γµγ̂0 = uµ ,

which shows that all the paravector basis vectors uµ are Hermitian. It is
important to note that Hermitian conjugation is frame dependent in STA
just as Clifford conjugation of paravectors is in APS.

Example 52 The Lorentz-invariant scalar part of the paravector product
pq̄ in APS thus becomes

hpq̄iS =
1

2
pµqν (eµēν + eν ēµ)

=
1

2
pµqν

¡
γµγ̂0γ̂0γν + γν γ̂0γ̂0γµ

¢
= pµqνηµν .

Biparavector basis elements in APS become basis bivectors in STA:

1

2
(eµēν − eν ēµ) =

1

2

¡
γµγ̂0γ̂0γν − γν γ̂0γ̂0γµ

¢
=

1

2

¡
γµγν − γνγµ

¢
.

Lorentz transformations in STA are effected by

γµ → LγµL
˜,

subalgebra of C 1,3, so that the one algebra is embedded in the other. Caution is still
needed to avoid statements such as

i = e1e2e3 = e1 ∧ e2 ∧ e3 wrong!= γ̂1 ∧ γ̂0 ∧ γ̂2 ∧ γ̂0 ∧ γ̂3 ∧ γ̂0 = 0 .

This is not valid because the wedge products on either side of the third equality refer to
different algebras and are not equivalent.
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with LL˜ = 1. Every product of basis vectors transforms the same way.
An active transformation keeps the observer frame fixed and transforms
only the system frame:

eµ = γ̂µγ̂0 → uµ = γµγ̂0 = Lγ̂µL
˜γ̂0 = Lγ̂µγ̂0

¡
γ̂0L

˜γ̂0
¢

= LeµL
†.

We noted that the γ̂0 in the definition of eµ is always the observer’s time
axis. In a passive transformation, it is the system frame that stays the same
and the observer’s frame that changes. Let us suppose that the observer
moves from frame

©
γµ
ª
to frame

©
γ̂µ
ª
where γµ = Lγ̂µL

˜. Then

eµ = γµγ0 → uµ = γµγ̂0 .

To re-express the transformed relative coordinates uµ in terms of the orig-
inal eµ , we must expand the system frame vectors γµ in terms of the
observer’s transformed basis vectors. Thus

uµ = Lγ̂µL
˜γ̂0 = LeµL

†.

The mathematics is identical to that for the active transformation, but
the interpretation is different. Since the transformations can be realized by
changing the observer frame and keeping the system frame constant, the
physical objects can be taken to be fixed in STA, giving what is referred
to as an invariant treatment of relativity.
The Lorentz rotation is the same whether we rotate the object forward or

the observer backward or some combination. This is trivially seen in APS
where only the object frame relative to the observer enters. Furthermore,
as seen above, the space/time split of a property in APS is simply a result
of expanding into vector grades in the observer’s proper basis {eµ} :

p = hpi0 + hpi1 = p0 + p

F = hFi1 + hFi2 = E+ iB .

To get the split for a different observer, you can expand p in his par-

avector basis {uµ} and F in his biparavector basis
n
huµūνi1,2

o
, where

u = u0 is his proper velocity relative to the original observer. Then with
the transformation uµ = LeµL

† you re-express the result in her proper
basis before splitting vector grades. The physical fields, momenta, etc. are
transformed and are not invariant in APS, but covariant, that is the form
of the equations remains the same but not the vectors and multivectors
themselves.8

8You can have absolute frames in APS, if you want them for use in passive transfor-
mations, by introducing an absolute observer.
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4 Eigenspinors

A Lorentz rotor of particular interest is the eigenspinor Λ that relates
the particle reference frame to the observer. It transforms distinctly from
paravectors and their products:

Λ→ LΛ

and is a generally reducible element of the spinor carrier space of Lorentz
rotations ∈ SL (2,C) . This property makes Λ a spinor. The eigen part
refers to its association with the particle. Indeed any property of the particle
in the reference frame is easily transformed by Λ to the lab (= observer’s
frame). For example, the proper velocity of a massive particle can be taken
to be u = 1 in the reference frame. In the lab it is then

u = Λe0Λ
† = ΛΛ†,

which is seen to be the timelike basis vector of a frame moving with proper
velocity u (with respect to the observer).
If we write Λ = BR, then u is independent of R. Traditional particle

dynamics gives only u and by integration the world line. The eigenspinor
gives more, namely the orientation and the full moving frame

©
uµ = ΛeµΛ

†ª .
While u0 is the proper velocity, u3 is essentially the Pauli-Lubański spin
paravector.[11]

4.1 Time Evolution

The eigenspinor Λ changes in time, with Λ (τ) giving the Lorentz rotation
at time τ . For boosts (rotations in timelike planes) this means that Λ
relates the observer frame to the commoving inertial frame of the object at
τ . Eigenspinors at different times can be related by

Λ (τ2) = L (τ2, τ1)Λ (τ1) ,

where the time-evolution operator is

L (τ2, τ1) = Λ (τ2) Λ̄ (τ1)

and is also seen to be a Lorentz rotation.
The time evolution is in principle found by solving the equation of motion

Λ̇ =
1

2
ΩΛ =

1

2
ΛΩr (4.1)

with the spacetime rotation rate Ω = Λ̇Λ̄−ΛΛ̇ = ΛΩrΛ̄, where Ωr is its
biparavector value in the reference frame. This relation allows us to com-
pute time-rates of change of any property that is known in the reference
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frame. We take the reference frame of a massive particle to be the com-
moving inertial frame of the particle, in which u = 1. For example, the
acceleration in the lab is

u̇ = hΩui< =

ΛΩrΛ

†®
< = Λ hΩri< Λ†.

The proper velocity u of a particle can always be obtained from an
eigenspinor that is a pure boost:

Λ = u1/2 = (1 + u) /
q
2 h1 + uiS .

The spacetime rotation rate is then

Ω = 2Λ̇Λ̄ =

*Ã
d

dτ

1 + u

h1 + ui1/2S

!Ã
1 + ū

h1 + ui1/2S

!+
V

=
hu̇ (1 + ū)iV
1 + γ

= u̇− γ̇u

1 + γ
− i
u̇× u
1 + γ

,

where we noted that (1 + u) (1 + ū) is a scalar. The negative imaginary
part u̇× u/ (1 + γ) is the spatial rotation rate, known as the proper Thomas
precession rate.9

4.2 Charge Dynamics in Uniform Fields

A standard problem in particle dynamics is to find the motion of a charge
in constant, uniform electric and magnetic fields. We saw above an inter-
pretation of the field F as a spacetime plane. Its definition is given in this
operational or dynamic sense: it is the spacetime rotation rate of a test
charge with a unit charge-to-mass ratio. The Lorentz-force equation fol-
lows from the eigenspinor evolution (4.1) with the spacetime rotation rate
Ω = eF /m :

Λ̇ =
e

2m
FΛ . (4.2)

Exercise 53 From the relation p = mu = mΛΛ† for the momentum p
of the charge, prove that the identification above of the spacetime rotation
rate leads to the covariant Lorentz-force equation10

ṗ = e hFui< ≡
e

2

¡
Fu+ uF†

¢
.

9This one-line derivation is not only much neater but considerably clearer than the
usual cumbersome one based on differentials!
10One of the advantages of treating EM relativistically is that, provided we know

how quantities transform, we can determine general laws from behavior in the rest
frame. Thus the Lorentz force equation is the covariant extension of the definition of
the electric field, viz. the force per unit charge in the rest frame of the charge: ṗrest =
eErest. This rest-frame relation is NOT covariant. The LHS is the rest-frame value of the
covariant paravector ṗ, where the dot indicates differentiation with respect to proper
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For any constant F, the eigenspinor satisfying (4.2) has the form

Λ (τ) = L (τ)Λ (0) , L (τ) = exp
³ e

2m
Fτ
´

and this implies a spacetime rotation of the proper velocity

u (τ) = Λ (τ)Λ† (τ) = L (τ)u (0)L† (τ) .

This is a trivial solution that works for all constant, uniform fields, whether
or not they are spacelike, timelike, or null, simple or compound. Traditional
texts usually treat the simple spacelike case (or occasionally the simple
timelike case) by finding a drift frame in which the electromagnetic field
is purely magnetic (or electric). We see that a more general solution is
much easier. Furthermore, it is readily extended. If F varies in time but
commutes with itself at all different times, the solution has the form above
with Fτ replaced by

R τ
0
F (τ 0) dτ 0. Also, if you have a nonnull simple field,

it can always be factored into

F = udFd = u
1/2
d Fdū

1/2
d

where Fd is the field in the drift frame and ud is the proper velocity of the
drift frame with respect to the lab. Its vector part is orthogonal to Fd .

Example 54 Consider the field

F = (5e1 + 4ie3)E0 = (5e1 + 4e1e2)E0

= 5

µ
1− 4

5
e2

¶
E0e1 = udFd

We note that F2 > 0, so we expect the field in the drift frame to be purely
electric. We therefore factor out the electric field E0e1, leaving

F = 5

µ
1− 4

5
e2

¶
E0e1 = udFd .

In the last step, we normalize the velocity factor so that ud is a unit par-
avector:

ud =

¡
1− 4

5e2
¢p

1− 16/25 =
5

3

µ
1− 4

5
e2

¶
≡ γ (1 + v)

which leaves Fd = 3E0e1.

time, whereas the RHS is the real part of the covariant biparavector field F,which
transforms distinctly. The covariant Lorentz-force equation follows when we boost ṗ
from rest to the lab:

ṗ = ΛṗrestΛ
† = eΛ hFresti< Λ†

= e
D
ΛFrestΛ

†
E
<
= e

D
Λ
¡
Λ̄FΛ

¢
Λ†
E
<

= e hFui< .
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Exercise 55 Factor the electromagnetic field

F = (3e1 − 5ie3)E0

into a drift velocity and electric or magnetic drift field.
Solution: F = udFd =

5
4

¡
1 + 3

5e2
¢
(−i4e3E0) .

For compound fields, the drift field is a combination of collinear magnetic
and electric fields, and the solution easily gives a rifle transformation: a
commuting boost and rotation. Traditional electromagnetic-theory texts
rarely treat this case. For null fields, F with F2 = 0, the drift frame idea
is not useful, since the drift velocity is at the speed of light. Our simple
algebraic solution above still works, however, and indeed is then especially
easy to evaluate since

exp

µ
1

2
Ωτ

¶
= 1 +

1

2
Ωτ

when Ω2 = 0.

5 Maxwell’s Equation

Maxwell’s famous equations were written as a single quaternionic equation
by Conway (1911)[12, 13], Silberstein (1912, 1914)[14, 15], and others. In
APS we can write

∂̄F = µ0j̄ , (5.1)

where µ0 = ε−10 = 4π× 3̇0 Ohm is the impedance of the vacuum, with 3̇ ≡
2.99792458 . The usual four equations are simply the four vector grades of
this relation, extracted as the real and imaginary, scalarlike and vectorlike
parts. It is also seen as the necessary covariant extension of Coulomb’s law
∇ ·E = ρ/ε0. The covariant field is not E but F = E+ iB, the divergence
is part of the covariant gradient ∂̄, and ρ must be part of j̄ = ρ− j . The
combination is Maxwell’s equation.11

Exercise 56 Derive the continuity equation h∂j̄iS = 0 in one step from
Maxwell’s equation. [Hint: note that the D’Alembertian ∂∂̄ is a scalar op-
erator and that hFiS = 0. ]

11We have assumed that the source is a real paravector current and that there are
no contributing pseudoparavector currents. Known currents are of the real paravector
type, and a pseudoparavector current would behave counter-intuitively under parity
inversion. Our assumption is supported experimentally by the apparent lack of magnetic
monopoles.
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5.1 Directed Plane Waves

In source-free space ( j̄ = 0 ), there are solutions F (s) that depend on
spacetime position only through the Lorentz invariant s = hkx̄i0 = ωt −
k · x, where k = ω + k 6= 0 is a constant propagation paravector. Since
∂ hkx̄i0 = k, Maxwell’s equation gives

∂̄F = k̄F0 (s) = 0 . (5.2)

In a division algebra, we could divide by k̄ and conclude that F0 (s) = 0 ,
a rather uninteresting solution. There is another possibility here because
APS is not a division algebra: k̄ may have no inverse. Then k has the form

k = ω
³
1 + k̂

´
, and after integrating (5.2) from some s0 at which F is

presumed to vanish, we get
³
1− k̂

´
F (s) = 0, which means

F (s) = k̂F (s) .

The scalar part of F vanishes and consequently
D
k̂F (s)

E
S
= k̂ · F (s) =

0 so that the fields E and B are perpendicular to k̂ and thus anticommute
with it. Furthermore, equating imaginary parts gives

iB = k̂E

and it follows that

F = E+ iB

=
³
1 + k̂

´
E (s)

with E = hFi1 real. This is a plane-wave solution with F constant on
spatial planes perpendicular to k̂. Such planes propagate at the speed
of light along k̂ . In spacetime, F is constant on the lightcone k̂ · x = t
.However, F is not necessarily monochromatic, since E (s) can have any

k

kx = 0 kx = 1

FIGURE 8. Constant spatial planes of a directed plane wave propagate at ω/k
.

functional form, including a pulse, and the scale factor ω, although it
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has dimensions of frequency, may have nothing to do with any physical
oscillation. Note further that F is null :12

F2 =
³
1 + k̂

´
E
³
1 + k̂

´
E =

³
1 + k̂

´³
1− k̂

´
E2 = 0 .

The energy density E =1
2

¡
ε0E

2 +B2/µ0
¢
and Poynting vector S = E×B/µ0

are given by
1

2
ε0FF

† = E + S = ε0E
2
³
1 + k̂

´
.

Example 57 Monochromatic plane wave of frequency ω linearly polarized
along E0 :

F =
³
1 + k̂

´
E0 cos s

Example 58 Monochromatic plane wave of frequency 5ω linearly polar-
ized along E0 :

F =
³
1 + k̂

´
E0 cos 5s

Example 59 Monochromatic plane wave circularly polarized with helicity
κ :

F =
³
1 + k̂

´
E0 exp

³
iκsk̂

´
=
³
1 + k̂

´
E0 exp (−iκs)

Note that the rotation factor has become a phase factor (a “duality rota-
tion”) in the last expression. This is a result of the “Pacwoman property”

in which 1 + k̂ gobbles neighboring factors of k̂ :
³
1 + k̂

´
k̂ =

³
1 + k̂

´
:³

1 + k̂
´
E0 exp

³
iκsk̂

´
=

³
1 + k̂

´
exp

³
−iκsk̂

´
E0

=
³
1 + k̂

´³
cosκs− ik̂ sinκs

´
E0

[gobble!] =
³
1 + k̂

´
(cosκs− i sinκs)E0

=
³
1 + k̂

´
E0 exp (−iκs) .

Example 60 Linearly polarized gaussian pulse of width ∆/ω :

F =
³
1+ k̂

´
E
0
exp

µ
−1
2
s2/∆2

¶
Example 61 A circularly polarized gaussian pulse with center frequency
ω :

F =
³
1+ k̂

´
E
0
exp

µ
−1
2
s2/∆2 + is

¶

12 In fact, F is what Penrose calls a null flag. The flagpole
³
1 + k̂

´
lies in the plane of

the flag but is orthogonal to it. This becomes important below when we discuss charge
dynamics. The null flag structure is beautiful and powerful, but you miss it entirely if
you write only separate electric and magnetic fields!
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These all have the common form

F =
³
1 + k̂

´
E =

³
1 + k̂

´
E0f (s)

where f (s) is a scalar function, possibly complex valued. We will use this
below.13

5.2 Polarization Basis

A beam of monochromatic radiation can be elliptically polarized as well
as linearly or circularly polarized. There are two degrees of freedom, so
that arbitrary polarization can be expressed as a linear combination of two
independent polarization types. There is a close analogy to the 2-D oscilla-
tions of a pendulum formed by hanging a mass on a string. Both linear and
circular polarization bases are common, but we find the circular basis most
convenient, partially because of the relation noted above between spatial
and duality rotations. Circularly polarized waves also have the simple form
used popularly by R. P. Feynman[16] in terms of the paravector potential
as a rotating real vector:

Aκ = a exp
³
iκsk̂

´
,

with s = hkx̄iS = ωt− k · x and a · k = 0, where κ = ±1 is the helicity.
The corresponding field is

Fκ =

∂Ā
®
V
= iκka exp

³
iκsk̂

´
=
³
1 + k̂

´
E0 exp

³
iκsk̂

´
,

with E0 = iκka = κa× k .
A linear combination of both helicities of such directed waves is given by

F =
³
1 + k̂

´
Ê0e

iδk̂
³
E+e

isk̂ +E−e−isk̂
´

=
³
1 + k̂

´
Ê0e

−iδ ¡E+e−is +E−eis
¢
,

where E± are the real field amplitudes, δ gives the rotation of E about k̂
at s = 0, and in the second line, we let Pacwoman gobble the k̂ ’s. Because

every directed plane wave can be expressed in the form F =
³
1 + k̂

´
E (s) ,

13Warning: Don’t assume from the last relation that E (s) is E0f (s) . It doesn’t

follow when f is complex. Remember that
³
1 + k̂

´
has no inverse, so we can’t simply

drop it. Instead, since E0 is real and k̂E0 is imaginary,

E =
D³
1 + k̂

´
E0f (s)

E
<
= E0 hfi< + k̂E0 hfi= .
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it is sufficient to determine E (s) = hFi< :

E =
D³
1 + k̂

´
Ê0E+e

−iδe−is +
³
1 + k̂

´
Ê0E−e−iδeis

E
<

=
Dh³

1 + k̂
´
Ê0E+e

−iδ + Ê0
³
1 + k̂

´
E−eiδ

i
e−is

E
<

=

(²+, ²−)Φe−is

®
< ,

where the complex polarization basis vectors ²± = 2−1/2
³
1± k̂

´
Ê0 are

null flags satisfying ²− = ² †+, ²+ · ² †+ = 1 = ²− · ² †−, and the Poincaré
spinor

Φ =
√
2

µ
E+e

−iδ

E−eiδ

¶
gives the (real) electric-field amplitudes and their phases, and thus contains
all the information needed to determine the polarization and intensity of
the wave.14

Stokes Parameters

Physical beams of radiation are not fully monochromatic and not neces-
sarily fully polarized. To describe partially polarized light, we can use the
coherency density, which in the case of a single Poincaré spinor is defined
by

ρ = ε0ΦΦ
† = ρµσ µ ,

where the σ µ are the usual Pauli spin matrices and the normalization
factor ε0 has been chosen to make ρ0 the time-averaged energy density:

hE + Sit-av =
Dε0
2
FF†

E
t-av

=
ε0
2

D³
1 + k̂

´
E2
³
1 + k̂

´E
t-av

= ε0

³
1 + k̂

´ 
E2
®
t-av = ρ0

³
1 + k̂

´
.

14The direction of the magnetic field at s = 0 is B̂0 = k̂× Ê0. In terms of it

²± =
1√
2

³
Ê0 ± iB̂0

´
.

The electric field E can be transformed to the familiar Jones-vector basis by a unitary
matrix:

E =
D³
Ê0, B̂0

´
ΦJ e−is

E
<

ΦJ = UJΦ =

µ
E+e−iδ + E−eiδ

i
¡
E+e−iδ −E−eiδ

¢ ¶³
Ê0, B̂0

´
= (²+, ²−)U†J

UJ =
1√
2

µ
1 1
i −i

¶
.
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The coefficients ρµ are the Stokes parameters. The coherency density can
be treated algebraically in C 3 to study all polarization and intensity prop-
erties of the beam.15

The Stokes parameters are given by

ρµ = hρσ µiS =
1

2
tr (ρσ µ) .

Explicitly

ρ0 = ε0
¡
E2+ +E2

−
¢

ρ1 = 2ε0E+E− cosφ
ρ2 = 2ε0E+E− sinφ
ρ3 = ε0

¡
E2+ −E2

−
¢
,

where φ = 2δ is the azimuthal angle of ρ = ρ1σ k + ρ2σ 2 + ρ3σ 3 .
The coherency density is a paravector in the space spanned by the basis
{σ 1, σ 2, σ 3}

ρ = ρ0 + ρ .

This space, called Stokes subspace, is a 3-D Euclidean space analogous to
physical space. It is not physical space, but its geometric algebra has exactly
the same form as (is isomorphic to) APS, and it illustrates how Clifford
algebras can arise in physics for spaces other than physical space. As in
APS, it is the algebra and not the explicit matrix representation that is
significant.
As defined for a single Φ, ρ is null: det ρ = ρρ̄ = 0. Thus,

ρ = ρ0 (1 + n)

where n is a unit vector in the direction of ρ . It fully specifies the type
of polarization. In particular, for positive helicity light, n = σ 3, for nega-
tive helicity polarization n = −σ 3, and for linear polarization at an angle
δ = φ/2 with respect to E0, n = σ 1 cosφ + σ 2 sinφ. Other directions
correspond to elliptical polarization.

Polarizers and Phase Shifters

The action of ideal polarizers and phase shifters on the wave is modeled
mathematically by transformations on the Poincaré spinor Φ of the form

15Many optics texts still use the 4 × 4 Mueller matrices for this purpose, but this
strikes me as even more perverse than using 4×4 matrices for Lorentz transformations.
The coherency density, introduced by Born and Wolf as the “coherency matrix” by the
time of the third edition of their Principles of Optics book in 1964, is really much
simpler. Transformed as here into the helicity basis, it matches the quantum formulation
of the spin-1/2 density matrix as well as the standard matrix representation of APS.
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ρ

σ2

σ1

σ3

φ

θ

FIGURE 9. The direction of ρ gives the type of polarization.

Φ→ TΦ. For polarizers T is a projector

Pn =
1

2
(1 + n) ,

where n is a real unit vector in Stokes subspace that specifies the type of
polarization. Projectors are real idempotent elements: Pn = P†n = P

2
n , just

as we would expect for ideal polarizers. For example, a circular polarizer
allowing only waves of positive helicity corresponds to the projector P σ 3 =
1
2 (1 + σ 3) , which when applied to Φ eliminates the contribution E− of
negative helicity without affecting the positive-helicity part:

Φ :=
√
2

µ
E+e

−iδ

E−eiδ

¶
→ P σ 3Φ :=

√
2

µ
E+e

−iδ

0

¶
.

A second application of Pσ3 changes nothing further. The polarizer rep-
resented by the complementary projector P̄ σ 3 eliminates the upper com-
ponent of Φ . Generally, since P̄nPn = P−nPn = 0 , opposite directions in
Stokes subspace correspond to orthogonal polarizations.
Multiplication of Φ by exp(iα) phase shifts the wave by an angle α An

overall phase shift in the wave is hardly noticeable since the total phase is
in any case changing very rapidly, but the effect of giving different polar-
ization components different shifts can be important. If the wave is split
into orthogonal polarization components (±n ) and the two components
are given a relative shift of α , the result is equivalent to rotating ρ by α
about n in Stokes subspace:

T = Pne
iα/2 + P̄ne

−iα/2 = einα/2.
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If n = σ 3 , this operator represents the effects of passing the waves through
a medium with different indices of refraction for circularly polarized light
of different helicities, as in the Faraday effect or in optically active organic
solutions, and the result is a rotation of the plane of linear polarization by
α/2 about k. On the other hand, if n lies in the σ 1σ 2 plane, the above
operator T represents the effect of a birefringent medium with polarization
types n and −n corresponding to the slow and fast axes, respectively. In a
quarter-wave plate, for example, α = π/2 . Incident light linearly polarized
half way between the fast and slow axes will be rotated by π/2 to ±σ 3,
giving circularly polarized light.
The basic technique of splitting the light into opposite polarizations ±n ,

acting differently on the two polarization components, and then recombin-
ing is modeled by the operator

T = PnA+ + P−nA− .

If the actions A± are the same, the result is the identity operator: nothing
happens. The ideal filter is the special case A+ = 1, and A− = 0, that is
one of the polarization parts is discarded.

Coherent Superpositions and Incoherent Mixtures

A superposition of two waves of the same frequency is coherent because
their relative phase is fixed. Mathematically, one adds spinors in such cases:

Φ = Φ1 +Φ2 ,

where the subscripts refer to the two waves, not to spinor components.
Coherent superpositions of monochromatic waves are always fully polarized
and can be represented by a single Poincaré spinor or Jones vector.
However, real beams of waves are never fully monochromatic. Two waves

of different frequencies have a continually changing relative phase, and
when their product Φ1Φ

†
2 is averaged over periods large relative to their

beat period, such terms vanish. The waves then combine incoherently, and
one should add their coherency densities rather than their Poincaré spinors:

ρ = ρ1 + ρ2.

In such an incoherent superposition, the polarization can vary from 0 to
100%.
Any transformation T of spinors, Φ → TΦ , transforms the coherency

density by
ρ→ TρT †.

Example 62 Consider a sandwich of two crossed linear polarizers, with a
third linear polarizer of intermediate polarization inserted in between. If ρ
is initially unpolarized, the first polarizer, say of type n, produces

Pnρ
0Pn = ρ0Pn =

1

2
ρ0 (1 + n) ,
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that is, fully polarized light with half the intensity. The crossed polarizer,
represented by P−n, would annihilate the polarized beam, but if a different
polarizer, say type m, is applied before the −n one, we get

Pmρ
0PnPm = ρ0

¡
PmPn + P̄nP̄m

¢
Pm

= 2ρ0 hPmPniS Pm
= ρ0

(1 +m · n)
2

Pm

Application of the final polarizer of type −n then yields

ρ0
(1 +m · n)

2
P−nPmP−n = ρ0

(1 +m · n)
2

(1−m · n)
2

P−n

= ρ0

³
1− (m · n)2

´
4

P−n .

The maximum intensity is 1/8th the initial, reached when m · n = 0, that
is when the linear polarization of the intervening polarizer is at 45◦ to each
of the crossed polarizers.

In addition, many other transformations that do not preserve the polar-
ization can be applied. For example, depolarization of a fraction f of the
radiation is modeled by

ρ→ (1− f) ρ+ f hρiS ,

and detection itself takes the form

ρ→ hρDiS ,

where the detection operator may equal D = 1 in an ideal case, but more
generally it can have different efficiencies D± for opposite polarization
types:

D = D+Pn +D−P−n .

A number of other transformations are possible.

5.3 Standing Waves and EkB Fields

Standing waves are formed from the superposition of oppositely directed
plane waves:

F =
³
1 + k̂

´
E0f (ωt− k · x) +

³
1− k̂

´
E0f (ωt+ k · x)

=
³
f+ − f−k̂

´
E0
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where f± = f (ωt+ k · x)± f (ωt− k · x) . For the monochromatic circu-
larly polarized wave f (s) = exp is of negative helicity,

f+ = 2 exp (iωt) cosk · x
f− = 2i exp (iωt) sink · x

and

F = 2
³
cosk · x− ik̂ sink · x

´
E0 exp (iωt)

= 2E0 exp
³
ik̂ k · x

´
| {z }
real: spatial rot.

exp (iωt)| {z }
duality rot.

,

which represents electric and magnetic fields that are aligned on the radii of
a spiral fixed in space. The field rotates in duality space (E→ B→ −E )
at every point in space. Thus at t = 0, there is only an electric field
throughout space, and a quarter of a cycle later, there is only a magnetic
field. At intermediate times, both electric and magnetic fields exist and
they are aligned. To change to a wave of positive helicity plus its reflection,
replace i by −i.
The roles of time and space are reversed if waves of opposite helicity are

superimposed. In this case, the fields throughout space point in a single
direction at a given instant in time, and that direction rotates about k̂ in
time. How much of the field is electric and how much magnetic depends only
on the spatial position along k̂. The energy density for both circular-wave
superpositions are constant and their Poynting vectors vanish: E + S =
1
2ε0FF

† = 2ε0E20 .
16

5.4 Charge Dynamics in Plane Waves

We saw above how eigenspinors made easy work of the problem of charge
dynamics in constant uniform fields. What about motion in the more com-
plicated field of a directed plane wave? A derivation of the relativistic mo-
tion of a charge in a linearly polarized monochromatic plane wave was given
by A. H. Taub[17] in 1948, using 4× 4 matrix Lorentz transformations of

16There was considerable controversy about such fields when they were first proposed
by Chu and Ohkawa in 1982 [C. Chu and T. Ohkawa, Phys. Rev. Lett. 48 (1982) 837]. A
surprising number of physicists were convinced that the rule E ·B = 0 for directed plane
waves and other simple fields also had to be true of superpositions in free space. The
result and its interpretation are quite obvious with some geometric algebra. Now EkB
fields are used routinely in the laser cooling of atoms to submicrokelvin temperatures.
Opposite helicities, as naturally obtained by reflection, are required for the operation of
the Sisyphus effect.
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the charge. The derivation is simpler using eigenspinors (or rotors) in Clif-
ford’s geometric algebra, as shown by Hestenes in 1974[18]. Here we review
the extension[6] to arbitrary plane waves and plane-wave pulses in APS.
The fields of directed plane waves are null flags of the form

F (s) =
³
1 + k̂

´
E (s) , s = hkx̄iS , k̂ ·E = 0.

All null flags on a given flagpole annihilate each other and therefore com-
mute:

F (s1)F (s2) =
³
1 + k̂

´
E (s1)

³
1 + k̂

´
E (s2) = 0 = F (s2)F (s1)

and as a result, the solution to the equation of motion (4.2) is the expo-
nential expression

Λ (τ) = exp

½
e

2m

Z τ

0

F [s (τ 0)] dτ 0
¾
Λ (0) ,

which by virtue of the nilpotency of F reduces to

Λ (τ) =

½
1 +

e

2m

Z τ

0

F [s (τ 0)] dτ 0
¾
Λ (0) . (5.3)

The problem is that F [s (τ)] is the electromagnetic field at the charge at
proper time τ , and we need to know the world line x (τ) of the charge to
know its value. We could get the world line by integrating u (τ) = ΛΛ†,
but it’s Λ we’re trying to find! This looks hopeless, but there’s a surprising
symmetry that comes to the rescue.
From k̄F = 0, it follows that k̄Λ̇ (τ) = 0, the bar conjugate of which is

Λ̇k = 0 , and from the definition of Λ, Λ̄kΛ̄† = krest is the propagation
paravector as seen in the instantaneous rest frame of the charge. Since k
is constant in the lab,

k̇rest =
d

dτ

¡
Λ̄kΛ̄†

¢
= 2

D
Λ̇kΛ̄†

E
<
= 0 ,

and it is also constant in the rest frame of the charge. Now that is unex-
pected because the charge, as we will see, is accelerating ! In particular, the
scalar part of krest ,

ṡ = hkūiS = ωrest ,

is constant. Thus, s = s0 + ωrestτ and we can solve (5.3) above:

Λ (τ) =

·
1 +

e

2mωrest

Z s

s0

F (s0) ds0
¸
Λ (0)

=

1 + e
³
1 + k̂

´
E0

2mωrest

Z s

s0

f (s0) ds0

Λ (0) ,
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where in the second line we noted that every plane wave with flag pole

1 + k̂ can be expressed by
³
1 + k̂

´
E0f (s) . This is the solution since we

know f (s) and can integrate it, but there’s another form, using

F (s) = ∂Ā (s) = kĀ0 (s) ,

which is valid in the Lorenz gauge

∂Ā
®
S
= 0. The integral over F is thus

trivially expressed as

Λ (τ)− Λ (0) = ek

2mωrest

£
Ā (s)− Ā (s0)

¤
Λ (0) , (5.4)

giving a change in the eigenspinor that is linear in the change in the par-
avector potential. This can lead to substantial accelerations in the plane
of k and A (s)−A (s0) , especially when the charge is injected with high
velocity along k into the beam so as to produce a large Doppler shift and
thus a large ratio ω/ωrest. Curiously, however, the acceleration occurs al-
ways in a way that conserves hkūiS . There can therefore be substantial
first- and even second-order Doppler shifts from the acceleration caused by
the field, but the total Doppler shift in the frame of the charge is constant.

Example 63 For the field pulse

F (s) = kA0/ cosh
2 s

there is a net change in the paravector potential of −2A0 so that from
(5.4),

Λ (∞) =
µ
1 +

ka0
ωrest

¶
Λ (0) .

With injection of the charge along k̂, one finds a final proper velocity

u (∞) = Λ (∞)Λ† (∞) = u0 + 2a0 +
2ka20
ωrest

where a0 = eA0/m is the dimensionless amplitude of the vector potential.

Exercise 64 Show that the energy gain in the last example is

2ωa20
ωrest

m .

Exercise 65 Verify that uū is conserved in the last example. [Hint: recall
hkū0iS = ωrest and note u0a0 = a0ū0 and ka0 = a0k̄ .]

Insight into why krest stays constant in the frame of the accelerating
charge is provided by the geometry of the null flag. The rotation occurs in
the flag plane, and the propagation paravector lies along the flagpole which
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light cone

F

k

e 1

E

e 0

FIGURE 10. The electromagnetic field of a directed plane wave is a flag tangent
to the light cone. Its flagpole lies along the propagation paravector k.

lies in the plane. However, the flagpole is also orthogonal to the plane and
therefore invariant under rotations in it.
Modern lasers possess high electric fields and seem excellent candidates

for particle accelerators. Our result (5.4) above shows why simply hitting a
charge with a laser has rather limited effect. The net change in the eigen-
spinor is linear in the change in paravector potential. You can gain energy
only for about a half cycle of the laser. Continue into the next half cycle
and the charge starts losing energy.
Another scheme is possible that avoids these problems. It is called the

autoresonant laser accelerator (ALA) and combines a constant magnetic
field along the k̂ axis of a circularly polarized plane wave. When the cy-
clotron frequency of the charge is resonant with the frequency of the laser,
the acceleration along k̂ is continuous and the frequencies remain resonant.
This can lead to substantial energy gains. Eigenspinors and projectors pro-
vide a powerful tool for solving trajectories of charges in such cases, as well
as for cases of superimposed electric fields[19].
The electromagnetic field in the case of a longitudinal magnetic field has

the form
F = kĀ0 (s) + iB0k̂

from which the equation of motion times k̄ follows:

k̄Λ̇ =
e

2m
k̄FΛ = − iωc

2
k̄Λ ,

where ωc = eB0/m is the proper cyclotron frequency. The solution

k̄Λ = exp (−iωcτ/2) k̄Λ (0)
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implies
ṡ =


Λ†k̄Λ

®
S
= ωrest = const.

as before, so that we can again solve for Λ̇. At resonance ωc = ωrest in

a circularly polarized wave A = m exp
³
i (s− s0) k̂

´
a/e , we find energy

gains of m∆γ with

∆γ = u (0) · k× aτ + 1
2
ωωc (aτ)

2 .

These can be substantial, accelerating 100 MeV electrons to 1 TeV within
2 km in a 10 Tesla magnetic field with a Ti:Sapphire laser pulse.[19]

5.5 Potential of Moving Point Charge

Accelerating charges radiate. Indeed, radiation reaction had to be calcu-
lated for the ALA, even though it turned out to be small over a wide range
of parameters. The potentials and fields of point charges in general motion
are derived in most electrodynamics texts. The traditional derivation of the
retarded fields is tricky and the final result rather messy and opaque. APS
helps clear the fog and provides insight into the origin and nature of the
radiation.

R

x

r(τ)

u

FIGURE 11. x is field point, r (τ) is world line of charge.

The potential of a moving point charge was derived (before special rela-
tivity!) by A. Liénard (1898) and E. Wiechert (1900). It is easily obtained
from the rest-frame Coulomb potential:

Φrest =
K0e

hRrestiS
with K0 = (4πε0)

−1 and R (τ) = x − r (τ) , the difference paravector
between the field position x and the world line of the charge at the retarded
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proper time τ . The denominator hRrestiS is the time component of the
difference in the commoving inertial frame. It is a Lorentz invariant simply
because it is measured in the rest frame of the charge at the retarded time,
but we make it manifestly invariant by writing

hRrestiS = hRūiS ,

where u is the proper velocity of the charge at τ and R = R (τ) can be
in any inertial frame. We only need to boost Φrest to the proper velocity
of the charge at the retarded τ to get the paravector potential for a charge
in general motion:

A (x) = ΛΦrestΛ
† =

K0eu

hRūiS
.

It is that simple. Note that A (x) is covariant and depends only on the
relative position and proper velocity of the charge at the retarded τ . It is
independent of the acceleration or any other properties of the trajectory.
The retarded time τ is determined by the light-cone condition RR̄ = 0,
where causality demands that R0 > 0.

Liénard-Wiechert Field

The electromagnetic field is found from F =

∂Ā
®
V
with the complication

that the light-cone condition makes τ a function of x, that is a scalar field,
so that there are two contributions to the gradient term:

∂ = (∂)τ + [∂τ (x)]
d

dτ
.

The first term is differentiation with respect to the field position x with τ
held fixed. The second term arises from the dependence on x of the scalar
field τ (x) . If we apply this to RR̄ = 0, we find directly

∂τ (x) =
R

hRūiS
.

The evaluation of the field is now straightforward:

F (x) =
K0e

hRūi3S

µ
hRūiV +

1

2
Ru̇uR̄

¶
= Fc +Fr

and has a simple interpretation: Fc is the boosted Coulomb field and Fr is
a directed plane wave propagating in the direction R̂ that is linear in the
acceleration. Both Fc and Fr are simple fields, with Fc predominantly
electric, Fc ·Fr = 0, and Fr a null flag. The spacetime plane of Fc is the
plane of hRūiV = γ

¡
R− vR0 − hRviV

¢
. The real part gives the electric

field in the direction of R from the retarded position of the charge, minus
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v times the time R0 for the radiation to get from the charge to the field
point. The electric field thus points from the instantaneous “inertial image”
of the charge, that is the position the charge would have at the instant the
field is measured if its velocity remained the constant. If the charge moves at
constant velocity, the electric field lines are straight from the instantaneous
position of the charge. It is obvious that this had to be that way: in the
rest frame of the charge the lines are straight from the charge, and the
Lorentz transformation is linear and transforms straight lines into straight
lines. The radiation field in the constant-velocity case vanishes, of course,
because there is no acceleration. The magnetic field lines are normal to the
spatial plane hRviV swept out by R as the charge moves along v. They
thus circle around the charge path. With APS, we easily decipher both the
spacetime geometry and the spatial version with the same formalism.
When a charge accelerates, its inertial image can move rapidly, even at

superluminal speeds, and lines need to shift laterally. The Coulomb field
lines are broken, and Fc no longer satisfies Maxwell’s equations by itself.
The radiation field Fr is just the transverse field needed to connect the
Coulomb lines. Only the total field F = Fc+Fr is generally a solution to
Maxwell’s equation.
The APS is sufficiently simple that calculations such as the field of a

uniformly accelerated charge are easily made and provide simple analytical
results that help unravel questions about the relation of such a radiating
system to the nonradiating charge at rest in a uniform gravitational field.[6]
One can also simplify the derivation of the Lorentz-Dirac equation for the
motion of a point charge with radiation reaction and lay bare its relation
to related equations such as the Landau-Lifshitz equation.[22]
There are many other cases where relativistic symmetries can simplify

electrodynamics, and in many of them, relativity at first seems to play no
significant role. For example, the currents induced in a conductor by an
incident wave is easily calculated, and the oblique incident case is simply
related to the normal incident one by a boost. Similarly, wave guide modes
can be generated by boosting standing waves down the guide. APS plays
a crucial role in unifying relativity with vectors and simple geometry.

6 Quantum Theory

As seen above, classical relativistic physics in Clifford algebra has a spino-
rial formulation that gives new geometrical insights and computational
power to many problems. The formulation is closely related to standard
quantum formalism. The algebraic use of spinors and projectors, together
with the bilinear relations of spinors to observed currents, gives quantum-
mechanical form to many classical results, and the clear geometric content
of the algebra makes it an illuminating probe of the quantum/classical in-
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terface. This section summarizes how APS has provided insight into spin-
1/2 systems and their measurement.
Consider an elementary particle with an extended distribution. Its cur-

rent density j (x) is related by an eigenspinor field Λ (x) to the reference-
frame density ρref :

j (x) = Λ (x) ρref (x)Λ
† (x) . (6.1)

This form allows the velocity (and orientation) to be different at different
spacetime positions x. The current density (6.1) can be written in terms
of the density-normalized eigenspinor Ψ as

j = ΨΨ†, Ψ = ρ
1/2
ref Λ ,

and it is independent of gauge rotations Ψ → ΨR of the reference frame.
The momentum of the particle p = mu = mΛΛ† can be multiplied from
the right by Λ̄† =

¡
Λ†
¢−1

to obtain

pΛ̄† = mΛ .

This is the classical Dirac equation.[20] It is a real linear equation: real
linear combinations of solutions are also solutions. In particular, since ρ

1/2
ref

is a scalar, it also holds for Ψ = ρ
1/2
ref Λ :

pΨ̄† = mΨ. (6.2)

The classical Dirac equation (6.2) is invariant under gauge rotations, and
its real linear form suggests the possibility of wave interference.
Consider the eigenspinor Ψp for a free particle of well-defined constant

momentum p = mu. In this case, we can define a proper time τ for the
particle, and we look for an eigenspinor Ψp that depends only on τ . The
continuity equation for j implies a constant ρref :

h∂j̄iS = 0 = h(∂ρref) ūiS =
dρref
dτ

,

Gauge rotations Ψ → ΨR include the possibility of a time-dependent
rotation R. For the free particle of constant momentum, we assume a
fixed rotation rate, and using gauge freedom to orient the reference frame,
we take the rotation axis to be e3 in the reference frame. Including this
rotation, the free eigenspinor Ψp has the form

Ψp (τ) = Ψp (0) e
−iω0τe3 .

Now the proper time is given explicitly in Lorentz-invariant form by

τ = hux̄iS =
D p

m
x̄
E
S
,
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and therefore the free eigenspinor Ψp has the spacetime dependence

Ψp (x) = Ψp (0) e
−i(ω0/m)hpx̄iSe3 . (6.3)

The gauge rotation is associated with the classical spin of the particle,
and the spacetime dependence of Ψp (6.3) gives the behavior of de Broglie
waves provided we identify ω0/m = ~.
A further local gauge rotation by φ (x) about e3 in the reference frame

can be accommodated without changing the physical momentum p in (6.3)
by adding a gauge potential A (x) that undergoes a compensating gauge
transformation (to be determined below)

Ψp (x) = Ψp (0) e
−iω0τe3 = Ψp (0) e−ih(p+eA)x̄iSe3/~ .

The real linear form of the classical Dirac equation (6.2) suggests that real
linear combinations

Ψ (x) =

Z
a (p) e−ih(p+eA)x̄iSe3/~d3p,

where a (p) is a scalar amplitude, may form more general solutions for
particles of a given mass m . Such linear combinations are indeed solutions
to (6.2) if p is replaced by the momentum operator defined by

pΨ = i~∂Ψe3 − eAΨ.

With this replacement, the classical Dirac equation (6.2) becomes Dirac’s
quantum equation. The gauge transformation in A that compensates for
the local gauge transformation Ψ→ Ψe−iφ(x)e3 is now seen to be

A→ A+
~
e
∂φ (x) . (6.4)

The gauge potential A is identified as the electromagnetic paravector po-
tential, and the coupling constant e is the electric charge of the particle.
The gauge transformation (6.4) is easily seen leave the electromagnetic field
F =


∂Ā
®
V
invariant. The traditional matrix form of the Dirac equation

follows by splitting (6.2) into even and odd parts and projecting both onto
the minimal left ideal C 3Pe3 , where Pe3 =

1
2 (1 + e3) .

The Dirac theory is the basis for current understanding about the rela-
tivistic quantum theory of spin-1/2 systems. The brief discussion above sug-
gests that its foundations lie largely in Clifford’s geometric algebra of clas-
sical systems. This suggestion is explored more fully elsewhere,[11] where it
is shown that the basic two-valued property of spin-1/2 systems is indeed
associated with a simple property of rotations in physical space. Extensions
to higher dimensional spaces have succeeded in explaining the gauge sym-
metries of the standard model of elementary particles in terms of rotations
in C 7, [24] and extensions to multiparticle systems promise to demystify
entanglement.
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7 Conclusions

In the space of this lecture, we have only scratched the surface of the many
applications of Clifford’s geometric algebra to physics. There has been no
attempt at a thorough review of the work, the extent of which may be
gleaned from texts[4, 6, 9, 28, 29], proceedings of recent conferences and
workshops[5, 25, 26, 27, 30, 31] and from several websites.[32] I have instead
tried to illustrate the conceptual and computational power the algebra
brings to physics. Many of its tools arise from the spinorial formulation
inherent in the algebra and are familiar from quantum mechanics. Had
the electrodynamics and relativity of Maxwell and Einstein been originally
formulated in APS, the transition to quantum theory would have been less
of a “quantum leap.”
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