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1. Introduction

This paper is an introduction to the discussion about the time in-
consistency of optimal policy, which arises in many dynamic problems
if rational expectations are assumed.1 The structure of this paper is
as follows: First I introduce the general problem of time inconsistency
mainly based on the arguments of Kydland and Prescott (1977).[23]
Since this paper concentrates on monetary models, I then give an
overview on the relevant literature. In the monetary context I explain
the Barro and Gordon setup under perfect information as a single and
also as a repeated game with two different reputation mechanisms. Fur-
ther on I make use of the Backus and Driffill model to explain how the
time inconsistency may not arise under asymmetric information about
the policymaker’s preferences. The models of Cukierman and Liviatan
(1991) and Cukierman (2000a) show that time inconsistency arises for
private information about the policymaker’s ability to precommit and
to control inflation. Furthermore there may be asymmetric informa-
tion about economic shocks or, as shown in this paper, with a timing
where the public has to built expectations about the shock prior to
its realization and the policymaker’s reaction to it. In this situation
a fix policy rule is welfare-inferior to a flexible rule policy, which in
addition is time consistent even for high uncertainty. Finally I give a
short comment on the empirical evidence for some of the models.2

1.1. The inconsistency of optimal plans. As pioneers of time con-
sistency research can be mentioned Strotz (1955-1956)[33], Friedman
(1969)[17] and (1971)[18] and Hammond (1976)[19].

Following Barro and Gordon (1983)[5], and assuming rational expec-
tations, time consistency is a property of a solution in which individuals
have correct expectations about a future policy. Whenever it is desir-
able for a policymaker to renege from today’s expectations by choosing
another policy in the future, under rational expectations, such a de-
viation will be anticipated and therefore it is not credible that the
policymaker will not renege. Due to this lack of credibility the time
consistent solution is generally inferior to those where cheating would
work or where no reneging from expectations would take place. Başar

1Kydland and Prescott (1977)[23, p. 474] show that time inconsistency also
arises under the assumption that agents cannot perfectly forecast future policy
choices. Rational expectations mean that agents correctly anticipate the expected
value given the value’s distribution function.[25, p. 439]

2Although there is quite a lot of math used in this paper and there is no appendix,
I find this structure necessary to support the main arguments. Whenever it was
possible I modified the notation of the original models a bit in the hope to make it
more convenient for readers to follow. At some points more or less extensive algebra
is necessary to come to the solutions but I am able to give a full documentation
to anyone who is interested. Finally I want to thank Alex Cukierman for the kind
correspondence.
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and Olsder (1999)[6, pp. 249-252] say that for a solution to be time
consistent, the players should have no rational reason, at any future
stage of the game, to deviate from the adopted policies. This charac-
terisation of time consistency is quite intuitive unlike the one implied
earlier in the work of Kydland and Prescott (1977)[23, pp. 475-476]:

Proposition 1. A policy is consistent if it ignores the effect of (ex-
pected) current policy on decisions in the past and the effect of past
decisions on the social objective function at all times.

Proposition 2. A consistent policy is suboptimal if both of these effects
are non-zero.

Kydland and Prescott (1977)[23, pp. 473-474] show that a discre-
tionary policy does not generally lead to optimality. They define a
discretionary policy as the policymaker’s best action given the current
situation. Unlike a rule policy here the action depends only on current
influences and thus is generally time variant. Using policy rules may
lead to Pareto-superior outcomes. Agents decide based on their expec-
tations of future policy decisions. Therefore current decisions are not
just affected by the present and the past but also by agents’ predic-
tions of the future. Agents’ expectations are altered according to their
experiences in the past and the current situation. Any unanticipated
policy will alter these expectations in the future. Whenever the effect
of current policy on agents’ decisions in the past and the effect of past
decisions on the social objective function at all times are both non-zero,
a consistent policy, which by Kydland and Prescott’s (1977)[23, p. 476]
definition ignores both of these effects, is suboptimal.

They demonstrate the incompatibility of a consistent policy and op-
timality as follows[23, p. 476]:

There is a world with two players, a policymaker who chooses a
policy πt and an agent who makes a decision xt simultaneously, in
every period t = 1, ..., T . Both players agreed on a social objective
function S(x1, ..., xT , π1, ..., πT ) prior to the game.

In a world that exists for two periods, in t = 2 the policymaker max-
imizes this social objective function by his policy choice π2 as follows:

max
π2

S(x1, x2, π1, π2) (1.1)

subject to the agent’s past (t = 1) and current (t = 2) choices:

x1 = X1(π1, π2) (1.2)

and

x2 = X2(x1, π1, π2) (1.3)

Notice that the agent’s first step in the world depends on the policy
of both periods. It is assumend that the agent has some sense of the
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policy choices for all periods.3 The agent’s second and last step in the
world also depends on his first step.

Solving this maximization-problem we end up with the following first
order condition (FOC):

∂S

∂x2

∂X2

∂π2

+
∂S

∂π2

+
∂X1

∂π2

[
∂S

∂x1

+
∂S

∂x2

∂X2

∂x1

]
= 0 (1.4)

A time consistent policy has no allowance for any effects of future
policy on today’s choices and therefore it ignores the effect of π2 upon
x1, that is

∂X1

∂π2

= 0 (1.5)

But if there is such a non-zero effect of future policy on today’s
decisions and we can assume the agent’s past decision to have a non-
zero effect on the social objective function, then the optimal policy rule
is different from the reduced FOC of a time consistent policy rule, that
is

∂S

∂x2

∂X2

∂π2

+
∂S

∂π2

= 0 (1.6)

This simple maximization problem of Kydland and Prescott (1977)[23,
p. 476] depicts the suboptimality of time consistent policy assuming
that the agent has some knowledge of how the policymaker decides,
which means that equation 1.5 does not hold, and that past decisions
of the agent matter for the social objective.

2. Monetary policy and time inconsistency

Auernheimer (1974)[1] may be among the first researchers who men-
tion a time consistency problem in a monetary context, although John-
son (1969)[21, pp. 132-133] already doubts policymakers’ ability to ex-
ploit the Phillips curve4. Phelps (1967)[27] and Friedman (1968)[16] ar-
gued that the Phillips trade-off does not persist in the long-run. Rather
in the long-run there is a natural rate of unemployment, independent
of the steady state inflation.5 Under rational expectations surprise in-
flation cannot arise. Every rise in inflation would be anticipated and
therefore would have no decreasing effect on unemployment.

Kydland and Prescott (1977)[23] demonstrate the inconsistency of
optimal inflation policy and Barro and Gordon (1983)[5] refine their
idea in their famous model which we will discuss in the following sub-
sections.

3Perfect foresight is not needed but rather there has to be some correlation
between X1 and π2, specifically ∂X1

∂π2
6= 0.

4See Fisher (1926)[15] and Phillips (1958)[28].
5That is a vertical Phillips curve in the long-run.
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2.1. Perfect information and single interaction. Barro and Gor-
don (1983)[5] introduce a game theoretic framework with a monetary
policymaker and the public playing a simultaneous prisoners’ dilemma6

against each other.
The policymaker’s utility function is

UPol
t = θb(πt − πe

t )−
a

2
π2

t (2.1)

πt is the actual inflation rate chosen by the policymaker, whereas πe
t

represents public’s expectations about the inflation rate. Whenever
there is an unanticipated inflation, the policymaker can generate a
decrease in unemployment according to the Phillips curve. The second
term represents the negative impact of inflation, be it unanticipated or
not. θ is a dummy variable being either 0 for a policymaker who does
not care about the benefit from exploiting the Phillips curve at all and
being 1 otherwise. Later we assume θ to be private information of the
policymaker. For any positive b, assuming θ = 1 any rise of πt above
πe

t is beneficial for the policymaker.
By a

2
π2

t they assume the costs of inflation to rise with inflation in-
creasingly.

The public has the following utility function

UPub
t = −(πt − πe

t )
2 (2.2)

such that every deviation of the actual inflation rate πt from the ex-
pected inflation rate πe

t means a quadratic and negative utility for the
public.

In the following subsections we consider a one-stage prisoners’ dilemma
with perfect information and the assumption of a weak policymaker,
that is θ = 1, in which both players, the policymaker and the public,
move simultaneously.

2.1.1. Discretionary policy. The unconstrained optimization problem
and solution of the weak policymaker is

max
πt

UPol
t = b(πt − πe

t )−
a

2
π2

t (2.3)

FOC:

π̂t =
b

a
(2.4)

where the weak policymaker does not take into account that agents
have rational expectations. As we see later this leads to the discre-
tionary and third best (from the weak policymaker’s perspective) out-
come with an anticipated inflation rate of π̂t = πe

t = b
a

and payoffs

ÛPol
t = − b2

2a
< ÛPub

t = 0. Any choice of a lower inflation rate would
result in a negative effect on employment and is not in the interest of
the weak policymaker.

6See Rapoport and Chammah (1965)[29].



5

2.1.2. Rational expectations. By solving the unconstrained optimiza-
tion problem of the public,

max
πe

t

UPub
t = −(πt − πe

t )
2 (2.5)

FOC:
πt = πe

t (2.6)

rational expectations can be assumed. In the next subsection we will
see that this leads to the inefficient but time consistent outcome because
systematic cheating cannot take place under this assumption.

2.1.3. Rule policy. Now the policymaker maximizes his utility given
that the public anticipates his choice of πt correctly:

max
πt

UPol
t = b(πt − πe

t )−
a

2
π2

t (2.7)

s.t.
πt = πe

t (2.8)

FOC:
π∗t = 0 (2.9)

The public’s best response to this result is to choose πe
t = 0, which

is confirmed by the policymaker’s action, such that πt = πe
t = 0.

Payoffs UPol∗
t = UPub∗

t = 0 are Pareto-optimal but time inconsistent
and there is a profitable deviation for the policymaker: Given πe

t = 0
the policymaker’s best response is π̃t = b

a
as we will see in the next

subsection. We therefore call π∗t = 0 to be the ideal rule, which leads
to the second best solution, from the weak policymaker’s perspective.7

2.1.4. Cheating. Assuming that the public expects the optimal rule
zero inflation πe

t = π∗t = 0, the maximization problem of the weak
policymaker becomes:

max
πt

UPol
t = b(πt − πe

t )−
a

2
π2

t (2.10)

s.t.
πe

t = π∗t = 0 (2.11)

FOC:

π̃t =
b

a
(2.12)

Given that cheating was successful, the resulting payoffs

ŨPol
t = b2

2a
> ŨPub

t = −
(

b
a

)2
are sub-optimal but time consistent and

7In the literature it is generally assumed that the policymaker’s objective func-
tion somehow represents welfare. From this perspective, the solution with the
highest welfare (first best) is the one where cheating takes place, although looking
at the payoffs in the game matrix reveals that Pareto-optimality is given in the
solution under the ideal rule (here considered the second best solution).
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considered the first best solution from the weak policymaker’s perspec-
tive.

Figure 1. A weak policymaker

Figure 2. A strong policymaker

2.1.5. Weak versus strong policymaker. Like Backus and Driffill (1985)
[3], we consider now a so called strong government8, which does not care
about the benefit from surprise inflation at all, that is θ = 0. For a

8The expressions government, policymaker and central bank are used here as
synonyms.
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policymaker of this type playing the discretionary inflation rate π̂t = b
a

is a strictly dominated strategy. Therefore he never reneges from the
ideal rule π∗t = 0 and thus no time inconsistency arises. On the opposite
for a weak policymaker playing πt = 0 is a strictly dominated strategy.9

2.2. Perfect information and repeated interaction.

2.2.1. Finite time horizon - the chain store paradox. Under a finite
time horizon the appropriate solution concept is that of backward in-
duction. By solving the game beginning in the final period and consid-
ering only such strategies for all earlier stages that are themselves Nash
equilibria in the subgames of the later stages, strategies that are not
played under discretion will not be equilibrium strategies. The resulting
subgame perfect Nash equilibrium is by construction time consistent.
In the current setup this means that the discretionary equilibrium from
the final period will occur in all preceding subgames. This paradox be-
comes very clear in the well known chain-store game of
Selten (1978)[32]. Under perfect information assuming an infinite hori-
zon therefore becomes necessary to avoid this paradox.[8, p. 18]

2.2.2. Infinite horizon - private sector plays tit for tat. Barro and Gor-
don (1983)[5, p. 108] consider a ”tit for tat” strategy10 played by the
public:

πe
t = π∗t = 0 if πt−1 = πe

t−1

πe
t = π̂t = b

a
if πt−1 6= πe

t−1

The public expects zero inflation if the policymaker met peoples
expectations in the preceding period. Otherwise the public expects the
discretionary inflation rate. Since it takes the public only one period
to fully update their expectations, the government gets punished for
one period only and its credibility is completely restored thereafter.

A mechanism to enforce cooperation, that is here the ideal rule
π∗t = 0, has to satisfy the following incentive constraint:

UPol∗
t+1 − ÛPol

t+1︸ ︷︷ ︸
Enforcement

≥ ŨPol
t − UPol∗

t︸ ︷︷ ︸
Temptation

(2.13)

δ
a

2

[(
b

a

)2

− π2

]
︸ ︷︷ ︸

Enforcement

≥ a

2

[
b

a
− π

]2

︸ ︷︷ ︸
Temptation

(2.14)

δ is the discount factor, which determines the degree of discounting
future payoffs.

9See figures 1 and 2.
10See Axelrod (1984)[2] and Rogoff (1987)[30] for more about trigger

mechanisms.
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If π is assumed to be the ideal rule π∗t = 0 the incentive constraint
reduces to

δ
a

2

[
b

a

]2

︸ ︷︷ ︸
Enforcement

≥ a

2

[
b

a

]2

︸ ︷︷ ︸
Temptation

(2.15)

or

δ ≥ 1 (2.16)

which cannot be true for plausible values of δ satisfying 0 < δ < 1.
Assuming δ = 1, that is future payoffs are valued the same as current
payoffs, as Backus and Driffill (1985) do, it is generally possible to
enforce the ideal rule using the above mechanism. But whenever we
take into account discounting of future payoffs it is impossible to enforce
the ideal rule, that is zero inflation at all times, with the described
mechanism.

Figure 3. Enforcement vs. temptation utility surplus
under a tit for tat mechanism[5, p. 112]

If not the ideal rule, what rule can be enforced here? Let π be some
positive inflation rule. Then solving for π we get



9

[
1− δ

1 + δ

]
b

a︸ ︷︷ ︸
πBER

≤ π ≤ b

a︸︷︷︸
π̂

(2.17)

where πBER is the Best Enforceable Rule (BER), that is the lowest
enforceable inflation rate using the above mechanism. This BER is
in fact a weighted average of π∗ = 0 and π̂ = b

a
. The weights are

determined by the discount factor δ. For δ = 1 the BER would be the
ideal rule (πBER = π∗ = 0) and for δ = 0 it would be the discretionary
inflation rate (πBER = π̂ = b

a
).11

2.2.3. Inifinite horizon - private sector plays grim trigger. Public now
plays the following punishment mechanism called ”grim trigger”12[24,
pp. 67, 68]:

πe
t = π∗t = 0 if πs = πe

2 ∀s < t
πe

t = π̂t = b
a

otherwise

The present value of the policymaker’s expected payoff if he always
plays the ideal rule π∗t = 0 is

PV Pol
Enforcement =

T∑
t=0

δt · 0︸ ︷︷ ︸
π∗=0

= 0 (2.18)

whereas his present value when surprising once in the first period and
being punished forever afterwards is

PV Pol
Temptation =

b2

2a︸︷︷︸
π̃t=0>πe

t=0=0

+
T∑

t=1

δt

(
− b2

2a

)
︸ ︷︷ ︸

π̂t>0=πe
t>0= b

a

(2.19)

Assuming T = ∞ this becomes

PV Pol
Temptation =

b2

2a︸︷︷︸
π̃t=0>πe

t=0=0

+
δ

1− δ

(
− b2

2a

)
︸ ︷︷ ︸

π̂t>0=πe
t>0= b

a

(2.20)

The policymaker will comply with the announced zero inflation with-
out an explicit agreement over a the ideal rule whenever

PV Pol
Enforcement ≥ PV Pol

Temptation (2.21)

which is

11See figure 3, which depicts enforcement versus temptation utility surplus under
a tit for tat mechanism.[5, p. 112]

12Also known as ”Friedman”[2, p. 36].
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δ ≥ 1

2
(2.22)

For δ ≥ 1
2

there is no time inconsistent behavior and the policymaker
always follows the zero inflation rule. We therefore get a an optimal
and time consistent solution here.

2.3. Intrinsic uncertainty.

2.3.1. Different preferences over surprise inflation. Backus and Driffill
(1985)[3] introduced public uncertainty over the policymaker’s prefer-
ences13 to the Barro and Gordon (1983) setup. Public is uncertain
about government’s objective function[3, p. 532]. θ be the policy-
maker’s private information and can be either 0 or 1. The game is
now repeated finitely with t = 0, ..., T periods. As for now we assume
T = 2.

Let yT−1 be the probability that a government of type θ = 1 plays
zero inflation in the penultimate period T − 1, pT−1 be the probability
(reputation) that government is of type θ = 0 in T − 1 and pT be the
probability (reputation) that government is of type θ = 0 in T given
that it has played zero inflation in the preceding period T − 1.

Looking at the final period T we know that the policymaker reveals
his true type θ because he cannot be punished. Therefore in T a type
who cares about the benefits of surprise inflation will play π̂T = b

a
.

In a hypothetical Separating Equilibrium (SEQ) a government of
type θ = 1 does not pretend to be of type θ = 0 and plays π̂T−1 = b

a
.

The expected inflation rate in T − 1 is

πe
T−1 = [pT−1 · 1 + (1− pT−1)yT−1]︸ ︷︷ ︸

prob(πT−1=0)

0+[(1− pT−1)(1− yT−1)]︸ ︷︷ ︸
prob(πT−1= b

a
)

b

a
(2.23)

or

πe
T−1 = [(1− pT−1)(1− yT−1)]︸ ︷︷ ︸

prob(πT−1= b
a
)

b

a
(2.24)

The policymaker’s expected utility in T − 1 consequently is

UPol
T−1 =

b2

a

[
1

2
− (1− pT−1)(1− yT−1)

]
(2.25)

In a SEQ the policymaker of type θ = 1 reveals his type in T − 1.
Therefore πe

T = πT = b
a
, that is the public knows the inflation rate in

the final period T .

13Public is uncertain whether the policymaker is of the strong type (θ = 0) or
the weak type (θ = 1).
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The present value (PV) of the policymaker’s expected utility then
is:

PV Pol
SEQ =

b2

a

[
1

2
− (1− pT−1)(1− yT−1)

]
︸ ︷︷ ︸

T−1

+ δ

[
− b2

2a

]
︸ ︷︷ ︸

T

(2.26)

or

PV Pol
SEQ =

b2

a

[
1

2
(1− δ)− (1− pT−1)(1− yT−1)

]
(2.27)

In a hypothetical Pooling Equilibrium (PEQ) a policymaker of type
θ = 1 pretends to be of type θ = 0 and plays πT−1 = 0 and the public
builds its expectations πe

T according to what it has seen in T − 1.
The policymaker’s payoff in T − 1 is

UPol
T−1 = −b2

a
(1− pT−1)(1− yT−1) (2.28)

Using Bayes’ rule the probability that government is of type θ = 1
whenever it has played zero inflation in the preceding period T − 1 is:

prob(θ = 1|πT−1 = 0) =
prob(πT−1 = 0|θ = 1) · prob(θ = 1)

prob(πT−1 = 0)
(2.29)

or

1− pT =
yT−1 · (1− pT−1)

1 · pT−1 + yT−1 · (1− pT−1)
(2.30)

The expected inflation rate in T is

πe
T = (1− pT )

b

a
=

yT−1(1− pT−1)

1 · pT−1 + yT−1(1− pT−1)

b

a
(2.31)

Thus we see that the expected inflation rate in T is lower as in T −1:

yT−1(1− pT−1)

pT−1 + yT−1(1− pT−1)

b

a︸ ︷︷ ︸
πe

T

< [(1− pT−1)(1− yT−1)]
b

a︸ ︷︷ ︸
πe

T−1

(2.32)

The present value of the policymaker’s expected utility in a hypo-
thetical PEQ is

PV Pol
PEQ = −b2

a
(1− pT−1)(1− yT−1)︸ ︷︷ ︸

T−1

+ δ

[
b

(
b

a
− πe

T

)
− b2

2a

]
︸ ︷︷ ︸

T

(2.33)

or
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PV Pol
PEQ =

b2

a

[
−(1− pT−1)(1− yT−1) + δ

(
1

2
− (1− pT )

)]
(2.34)

A SEQ exists if the policymaker of type θ = 1 has no incentive to
pretend to be of type θ = 0, that is

b2

a

[
−(1− pT−1)(1− yT−1) + δ

(
1

2
− (1− pT )

)]
︸ ︷︷ ︸

PV Pol
PEQ

≤ b2

a

[
1

2
(1− δ)− (1− pT−1)(1− yT−1)

]
︸ ︷︷ ︸

PV Pol
SEQ

(2.35)

This implies δ ≤ 1
2

given the pure strategy yT−1 = 0 (revelation) is

the best response. For δ > 1
2

1
pT−1

given the pure strategy

yT−1 = 1 (pretending) is the best response and players end up in a
perfect Bayesian PEQ!

For 1
2

< δ ≤ 1
2

1
pT−1

there is a mixed perfect Bayesian equilibrium

(PBEQ) in which the policymaker plays the mixed strategy
yT−1 = pT−1

1−pT−1
(2δ − 1) and the public has beliefs about θ according to

Bayes’ rule.
A reputational equilibrium where we see zero inflation from a poli-

cymaker of type θ = 1 in T − 1 exists for a low degree of discounting
(high δ) and high initial reputation pT−1. Intuitively the more impor-
tant future payoffs are, the more likely is it to play zero inflation and
to foster reputation, to transfer payoffs from today into the future. For
lower values of these variable the policymaker does either play no zero
inflation at all or as a mixed strategy 0 < yT−1 < 1.

For 1
2

< δ ≤ 1
2

1
pT−1

the expected rate of inflation in T − 1 then is

πe
T−1 = (1− 2δpT−1)

b

a
(2.36)

In the mixed PBEQ inflation declines with a rise in δ or pT−1.
Backus and Driffill originally ignored discounting in their setup.14

For δ = 1 the mixed equilibrium expected inflation becomes

πe
T−1 = (1− 2pT−1)

b

a
(2.37)

which implies πe
T−1 = 0 for pT−1 = 1

2
and πe

T−1 = b
a

for

pT−1 = 0. Further assuming πe
t ∈

[
0, b

a

]
∀t, the public expects πe

T−1 = 0

for pT−1 ≥ 1
2
.

14They assume δ = 1.
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These results may be applied to finite and infinite horizons. As
Blackburn and Christensen (1989) point out, subgame perfection is a
sufficient but not a necessary condition for time consistency.[8, p. 7]
Thus ensuring subgame perfection leads Backus and Driffill (1985) to
a dynamically consistent equilibrium behavior for a finite time horizon
15:[3, p. 534]

The public expects zero inflation with probability

zt = 1 if pt >
(

1
2

)T−t+1
,

zt = 1
2

if pt =
(

1
2

)T−t+1
and

zt = 0 if pt <
(

1
2

)T−t+1
.

A government of type θ = 1 chooses zero inflation with probability

yt = 1 if pt >
(

1
2

)T−t
,

yt = pt

1−pt

1−( 1
2)

T−1

( 1
2)

T−1 if 0 < pt ≤
(

1
2

)T−t
and

yt = 0 if pt = 0.

For a sufficiently high current reputation zero inflation will be played
in equilibrium. The more time is left until the final period, that is the
higher T − t, the lower is the minimum current reputation required for
zero inflation being played and believed. As we can see, in this setup,
the problem of time inconsistency of the optimal rule of zero inflation
may disappear for sufficient initial reputation if the policymaker’s inter-
est in surprise inflation is not known to the public but can be signalled
according to Bayes’ rule.

Here the presence of incomplete information has positive effects on
welfare because it enables strong types to signal their type by keep-
ing initial inflation low. This being anticipated by the public reduces
inflationary expectations as well.[34, pp. 444-454]

2.3.2. Different abilities to precommit and to control inflation. Barro
(1986) shows that a commitment to zero inflation is optimal under
full credibility but recognizes that zero inflation need not be the op-
timal value to commit when there is uncertainty about the ability of
commitment.[4] Cukierman and Liviatan (1991) show that zero infla-
tion is only optimal under full credibility because otherwise a strong
government has an incentive to announce and deliver a positive infla-
tion rate.[13]

A government is considered strong if it adheres to the announced
policy, while a weak government does so only if it finds it optimal
at every point in time. When these two types are not observable, it

15Ignoring discounting again.
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is the weak type of government that brings in uncertainty about a
government’s credibility. A weak government may pretend to be of
the strong type without being bound by its announcemt. Thus even a
strong government finds it optimal to deliver a positive inflation rate,
because otherwise it would generate surprise deflation and an increase
in unemployment. Since a strong government can only deliver what it
has announced before, it announces a positive inflation rate, which is
below the discretionary level however.[13, pp. 101, 105]

The timing here makes the difference: First the government makes
its announcement which influences the public’s expectations. This en-
ables the strong government to signal its type prior to the formation
of expectations. [13, p. 102]

We now have identical preferences for both types:

UPol(π, πe) = b(π − πe)− a

2
π2 (2.38)

Expectations are formed as follows:

πe = απa + (1− α)
b

a
(2.39)

The expected inflation rate is a convex combination of the announced
and the discretionary value. α is the probability that the policymaker
is strong.

A strong policymaker solves the following maximization problem:

max
π

b(π − απa − (1− α)
b

a
)− a

2
π2 (2.40)

s.t.
π = πa (2.41)

FOC:

πa =
b

a
(1− α) ≡= π∗ (2.42)

As we see now, the optimal inflation rate for a strong policymaker
depends on the distribution of its type. Under certainty it would be
either b

a
for α = 0 or 0 for α = 1.

Cukierman and Liviatan (1991)[13, p. 103] conclude that πe = b
a

if
there is no announcement at all. In such a case the policymaker’s NEQ
utility will be the well known outcome under discretion
ÛPol = − b2

2a
< U∗

Pol = − (1− α2) b2

2a
for α > 0. Obviously a strong type

is better off announcing π∗.
A weak policymaker could simply announce the same inflation rate

πa = b
a
(1 − α) but is, in contrary to the strong policymaker, not

bound by this announcement and would therefore consequently choose
an unanticipated π̂ = b

a
which is larger than the convex combination of

itself and the strong type’s optimal rate of inflation for positive values
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of α. And indeed it is optimal for a weak type to announce π∗ because
any other announcement would reveal his true type. This is because the
public knows that the strong type will always choose the optimal value.
Public’s expectations are then πe = απ∗ + (1− α) b

a
= (1− α2) b

a
. The

weak policymaker’s payoff from cheating ŨPol = b2

a

(
α2 − 1

2

)
is strictly

larger than that from adhering to his anouncement
U∗

Pol = − (1− α2) b2

2a
for positive values of α.

In the resulting NEQ both types play the same announcement
π∗ = πa but different inflation rates, although both choose positive
inflation rates under uncertainty. This result contradicts the results of
Backus and Driffill (1985)[3] and Vickers (1986)[34].

The lower the reputation α of a strong policymaker is, the more it
adjusts his behavior to that of the weak one.

Cukierman (2000a)[10] refines this work by adding a control error to
the model.

He considers again the two types of government16 as in his co-work
with Liviatan from 1991 with different abilities to precommit. In addi-
tion to this now the two types also differ in their precision of controlling
inflation, represented by an individual control error εi, i = s, w being
uniformely distributed in the range (−ri, ri). By assuming 0 < rs < rw,
that is the strong type has better control over inflaton as the weak type,
he follows the evidence for a positive correlation of the average level of
inflation and its variance.17

Both types have the same two-period present value function:

b(π̂T−1,i + εT−1,i − πe
T−1)−

a

2
(π̂T−1,i + εT−1,i)

2

+ δ
[
b(π̂T,i + εT,i − πe

T )− a

2
(π̂T,i + εT,i)

2
]

(2.43)

π̂t,i is the type’s planned inflation rate in period t which will only
partly determine the actual inflation rate πt,i = π̂t,i + εt,i.

The timing now is as follows: First the policymaker announces the
inflation rate πA

t,i he promises to choose in the current period and the
public builds its expectation about the actual inflation rate that will
be chosen according to πe

t = βtπ
A
t,i +(1− βt) π̂t,i. The policymaker then

choses the actual inflation rate πt and finally nature chooses εt,i.
Following again the method of backward induction to exclude such

strategies that are not credible, Cukierman (2000a)[10] then looks at
the subgame in T, where a weak type has the following maximization
problem:

max
π̂T,w

b (π̂T,w + E [εT,w]− πe
T )− a

2

(
πA

T,w + E [εT,w]
)2

(2.44)

16Strong (s) and weak (w).
17See Devereux (1989)[14].
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s.t.
E [εt,i] = 0∀t, i (2.45)

FOC:

π̂T,w =
b

a
(2.46)

The resulting FOC again is the well known discretionary inflation
rate from above. Since T is the last period and no punishment may
follow, a weak type always wants to imitate the strong type by announc-
ing πA

T,w = πA
T,s. The public expectations are πe

T = βT πA
T,s + (1− βT ) b

a
.

For the weak type the second-period payoffs under no separation
(NS) and separation (SEP) are18

E
[
UNS

T,w

]
=

b2

a
β2

T −
1

2

(
b2

a
− aσ2

ε,T,w

)
(2.47)

E
[
USEP

T,w

]
= −1

2

(
b2

a
− aσ2

ε,T,w

)
(2.48)

A weak type does not want separation because his second period
payoff would be smaller under separation, that is E

[
USEP

T,w

]
< E

[
UNS

T,w

]
.

The strong type is dependable and chooses always π̂T,s = πA
T,s and

public’s expectations about his choice again are πe
T = βT πA

T,s+(1− βT ) b
a
.

His maximization problem then becomes:

max
π̂T,s

b (π̂T,s + E [εT,s]− πe
T )− a

2

(
πA

T,s + E [εT,s]
)2

(2.49)

s.t.
E [εt,i] = 0∀t, i (2.50)

π̂T,s = πA
T,s (2.51)

πe
T = βT πA

T,s + (1− βT )
b

a
(2.52)

FOC:

π̂T,s = πA
T,s =

b

a
(1− βT ) (2.53)

Obviously the strong type partially accomodates public suspicions.
Again his choice of inflation is higher for lower reputation. Consider-
ing the maximization processes of both types in the final stage public
expectations become:

πe
T = βT

b

a
(1− βT ) + (1− βT )

b

a
=

b

a

(
1− β2

T

)
(2.54)

The strong type’s second period payoffs are either

E
[
UNS

T,s

]
= −1

2

b2

a

(
1− β2

T

)
− a

2
σ2

ε,T,s (2.55)

or

18Assuming that E
[
ε2t,i

]
= σ2

ε,t,i is the control error’s variance.
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E
[
USEP

T,s

]
= −a

2
σ2

ε,T,s (2.56)

Contrary to a weak type, a strong type does want separation because
his second period payoff would be higher under separation, that is
E

[
UNS

T,s

]
< E

[
USEP

T,s

]
.

The second period payoffs of both types depend on the variance of the
control error σ2

ε,T,i and on the reputation βT which is, under separation,
either equal to 0 or 1. For 0 < βT < 1 there is no separation and
reputation is intertemporally determined by Bayes’ rule19:

βT =
βT−1

βT−1 + rs

rw
(1− βT−1)

(2.57)

From 0 < rs

rw
< 1 it follows that βT > βT−1, that is reputation grows

over time with speed determined by rs

rw
.

We now turn to the first stage equilibrium where we only consider
equilibrium strategies from the second stage. The weak type faces the
following maximization problem:

max
π̂T−1,w

b
(
π̂T−1,w + E [εT−1,w]− πe

T−1

)
− a

2

(
πA

T−1,w + E [εT−1,w]
)2

+ δ

[
−1

2

(
b2

a
− aσ2

ε,T,w

)
+ prob (NS|w)

b2

a
β2

T

]
(2.58)

s.t.
E [εt,i] = 0 ∀t, i (2.59)

prob (NS|w) =
1

2rw

(π̂T−1,s − π̂T−1,w + rs + rw) (2.60)

FOC:

π̂T−1,w =
b

a
−

δ
(

b
a

)2
β2

T

2rw

(2.61)

And for the strong type:

max
π̂T−1,s

b
(
π̂T−1,s + E [εT−1,s]− πe

T−1

)
− a

2

(
πA

T−1,s + E [εT−1,s]
)2

+ δ

[
−a

2
σ2

ε,T,s − prob (NS|s) 1

2

b2

a

(
1− β2

T

)]
(2.62)

s.t.
E [εt,i] = 0 ∀t, i (2.63)

prob (NS|s) =
1

2rs

(π̂T−1,s − π̂T−1,w + rs + rw) (2.64)

π̂T−1,s = πA
T−1,s (2.65)

19With βT−1 = 1− prob(w) = prob(s) and prob (πT−1|i) = 1
2ri

.
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πe
T−1 = βT−1π

A
T−1,s + (1− βT−1)

b

a
(2.66)

FOC:

π̂T−1,s =
b

a
(1− βT−1)−

δ

4rs

(
1− β2

T

) b2

a
(2.67)

Cukierman’s (2000a)[10, p. 65] conclusions are:
If there is no separation, reputation grows over time. βT and βT−1

are positively correlated. A higher initial reputation βT−1 therefore
leads to lower planned inflation of the weak type in the first period.
Reputation grows with speed determined by rs

rw
. The lower this ratio,

the higher second period reputation.
He further shows that the planned inflation of a strong policymaker

decreases with initial reputation if and only if the discount factor δ is
sufficiently low.[10, p. 67] Note that in the models of Barro and Gor-
don (1983)[5] and Backus and Driffill (1985)[3] the discount factor had
to be high enough for the time inconsistency to disappear. In Cukier-
man’s (2000a) model under a high enough discount factor the marginal
benefit of a higher planned inflation rises with initial reputation more
as the losses of such an expansion. The threshold value of δ decreases
with policymakers’ relative preferences over unemployment versus price
stability. So the more weight is given to unemployment relative to price
stability, the closer is the range of discount factors that are associated
with a positive correlation of initial reputation and planned inflation
of the strong type.

Planned inflation of both types is lower for better control precision
of the strong type, that is for lower values of rs. This effect stems
from the increase in second period reputation, which is connected with
increased losses under separation for both types. Also the more precise
the weak type’s control of inflation, the lower is the strong type’s choice
of inflation. The second effect is due to an increase in incentive for the
strong type to be even more conservative aiming to reveal his depend-
ability to the public. In general more transparency, that is lower values
of ri, induces all policymakers to be less inflationary. This means that
here intrinsic uncertainty about the inflation control precision leads to
higher inflation.

2.4. Extrinsic uncertainty. There is also of course the possibility of
extrinsic supply or demand shocks over which players may be informed
asymmetrically. The optimal rule of zero inflation may then not be op-
timal. Instead a flexible rule can allow reactions to the shocks without
raising inflation expectations above zero. Such a model can be found in
Persson and Tabellini (2002)[26, pp. 19 et sqq.] and in Bofinger et al.
(1996)[9, pp. 163-170]. This is basically a modified version of the Barro
and Gordon model from 1983[5] with a stochastic Phillips curve of the
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form u = un− (π − πe + ε)20, where u is the rate of unemployment and
un is the natural rate of unemployment.

Timing is as follows: First the public builds expectations πe, then
the shock ε is realized and finally the policymaker chooses the actual
inflation rate π.

The policymaker has the following maximization problem:21

max
π
−c (un − π + πe + ε)2 − π2 (2.68)

s.t.
E [ε] = 0 (2.69)

FOC:
π̂ =

c

1 + c
(un + πe + ε) (2.70)

The public has rational expectations:

πe = E [π] = cun (2.71)

A lot of algebra using the above conditions as well as the assumption
that E [ε2] = σ2

ε , leads to the expected welfare22 under discretion:

E
[
Ŵ

]
= − (1 + c) cu2

n −
c

1 + c
σ2

ε (2.72)

Under the optimal rule policy of the Barro and Gordon model, that
is π∗ = πe = 0, expected welfare becomes:

E [W ∗] = −cu2
n − cσ2

ε (2.73)

Assuming now that E
[
Ŵ

]
< E [W ∗] and solving for σ2

ε , which rep-

resents the level of ex-ante uncertainty about the shock ε, leads to the
result that the shock variance has to be small enough for a rule policy
being better than a discretionary policy:

σ2
ε < (1 + c) u2

n (2.74)

This shows that if the public is uncertain about a future shock and
has to build expectations about it, a rule policy will only be efficient
for sufficiently low uncertainty. More uncertainty requires flexibility by
the policymaker to react appropriately to the extrinsic shock.

A possible solution is a flexible rule policy of the form πflex = 0+kε,
which allows a proportional reaction on the shock. Rational expecta-
tions are then πe = E [πflex] = kE [ε] = 0. k determines the degree of
flexibility in this alternative policy rule. The optimal degree of flexi-
bility k∗ can be gained by maximizing as follows:

20E [ε] = 0
21The policymaker’s objective function is now assuming quadratic benefits from

exploiting the Phillips curve.
22Assuming that the policymaker’s objective function represents welfare.
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max
k
−c (un − πflex + πe + ε)2 − π2

flex (2.75)

s.t.

πflex = kε (2.76)

E [ε] = 0 (2.77)

E
[
ε2

]
= σ2

ε (2.78)

FOC:

k∗ =
c

1 + c
(2.79)

The resulting expected welfare under a flexible rule policy

E [Wflex] = − c

1 + c

[
(1 + c) u2

n + σ2
ε

]
(2.80)

Comparing with the expected welfare under a fix policy rule and a
discretionary policy, it follows that

E [Wflex] > E
[
Ŵ

]
(2.81)

and

E [Wflex] > E [W ∗] (2.82)

The flexible rule policy, by construction, welfare-dominates both
other alternative policies. The reason intuitively is that with such
a flexible rule an appropriate reaction on the shock is possible, without
raising inflation expectations above zero. While the fixed zero inflation
rule is only time consistent for sufficiently low uncertainty about the
shock, there is a flexible rule which does even better in terms of welfare
and is also time consistent.

2.5. Empirical Evidence. Ireland (1998) tests whether the Barro
and Gordon model from 1983 explains the behavior of inflation in the
United states.[20] Short-run dynamics of inflation and unemployment
must be rejected while the long-run dynamics of a linear and positive
cointegrated relationship are supported.

He uses a bivariate time-series model for inflation and unemployment
with US quaterly data from 1960 to 1997. The finding is that the model
does indeed serve as a positive theory for the inflation behavior during
this period.

The data shows a rise in inflation between 1960 and 1980 and a
subsequent fall. The unemployment rate moves somewhat correspond-
ingly, not behaving consistent with a Philipps curve, showing a positive
correlation instead.[20, p. 14] Unemployment is highest when inflation
also has its peak.[20, pp. 16-17] According to the model, in the long-run
inflation and unemployment should be nonstationary and cointegrated,
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that is they move together somehow.[5][20, p. 5]23 This is confirmed
by Ireland’s results.[20, pp. 13-14]

Therefore these empirical results support the hypothesis that long-
run trends of unemployment are coupled with similiar trends in the
long-run behavior of inflation when the central bank cannot commit
to a policy of price stability. Thus the time consistency problem may
indeed underlie the behavior of inflation in the United States.[20, p. 9]

Ruge-Murcia (2002)[31] constructs a general model with asymmet-
ric preferences in which the Barro and Gordon model from 1983 and
another model of Cukierman (2000b)[11] are treated as special cases.
The results basically confirm Ireland’s results from 1998 but Likelihood
Ratio (LR) tests suggest that US inflation can be explained better by
Cukierman’s model (2000b), where a central banker targets the ex-
pected natural rate of unemployment and weighs more severely the
losses from positive than from negative deviations from the expected
natural rate.[11, p. 1][31, pp. 4,12] This leads to an inflation bias
even if the targeted employment is the normal level because of precau-
tionary monetary expansion. Cukierman’s data supports this source of
inflation bias for the United States at least until 1985. Thereafter cen-
tral banks became increasingly independent but precautionary motives
may still be relevant for individual central banks.[12, pp. 560-561]

3. Final conclusions

Time inconsistent monetary planning may lead to positive inflation
bias. Barro and Gordon (1983) show that zero inflation will be chosen
by a weak policymaker under perfect information in a single stage game,
due to rational expectations of the public. In the infinitely repeated
game the tit for tat strategy played by the public will not lead to a zero
inflation equilibrium for plausible discount factors but the unforgiving
strategy grim trigger will.

In a repeated signalling game policymakers’ different and invisi-
ble preferences over surprise inflation may lead to a zero inflation
equilibrium for sufficiently high initial reputation and low degree of
discounting.[3] Committing to zero inflation is only optimal under full
credibility.[4] When there is private information about the ability to
commit, even a strong government announces and delivers a positive
inflation rate.[13] Uncertainty over policymakers’ ability to control in-
flation also leads to higher inflation bias.[10]

Excessive public uncertainty about shocks also leads to time incon-
sistency of the zero inflation policy. Instead there is an optimal and
time consistent flexible policy which does not raise inflation expecta-
tions above zero.[9][26]

23Technically: The correlation coefficient between the inflation rate and the
unemployment rate is positive, in contradiction to the Phillips curve.
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There is evidence for time inconsistency underlying US inflation
behavior.[20][31]
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