
Procedural Level Generation with Answer Set
Programming for General Video Game Playing

Xenija Neufeld
Otto von Guericke University Magdeburg

Institute of Knowledge and
Language Engineering
Magdeburg, Germany

xenija.neufeld@st.ovgu.de

Sanaz Mostaghim
Otto von Guericke University Magdeburg

Institute of Knowledge and
Language Engineering
Magdeburg, Germany

sanaz.mostaghim@ovgu.de

Diego Perez-Liebana
University of Essex

School of Computer Science
and Electronic Engineering,

Colchester, United Kingdom
dperez@essex.ac.uk

Abstract—This paper proposes an automatic way of evolving
level generators for arbitrary 2D games, which are described
in the Video Game Description Language (VGDL). The process
works as follows: a game described in VGDL is interpreted and
transformed in a set of rules defined in Answer Set Programming
(ASP), along with other general and customizable rules. Although
a set of rules described in ASP can generate multiple levels,
not all of them will be playable or well designed. Therefore,
an evolutionary process is run to determine the values of
the parameters of those customizable rules. The different level
generators are evaluated with general video game playing agents,
which are able to play any game and level in the framework. The
aim is to maximize the difference between their performance in
the levels generated, under the assumption that levels are better
designed if good skilled players play better than poor agents.
This work presents some initial experiments that suggest that it is
possible to evolve interesting level generators using this technique,
and outlines some lines of future work.

I. INTRODUCTION

There are many different approaches that can be used to
generate levels for video games. Most of them are search-
based and therefore need a fitness-function for evaluating
the created levels. These approaches show good results in
generating levels for the game they were created for. However,
they cannot be used for games with different game mechanics,
rules or aims, since the search space, the fitness function and
the content representation could change in these cases.

To overcome these difficulties while building a general level
generator, a method is needed that can specify the desired
properties of the content and the search space without being
bound to specific game rules. In this work, we propose a
fully automatic general level generator that is designed to
read descriptions of arbitrary games written in Video Game
Description Language (VGDL). We use a combination of An-
swer Set Programming (ASP) and an Evolutionary Algorithm
(EA). The former is used to generate maps for different games
of the GVG-AI framework, whereas the latter optimizes the
difficulties of the levels.

Recently, it has been shown that ASP can be used to create
not only new game mechanics [1] but also maps for mazes and
dungeons [2], [3] and puzzle games [4]. Its advantage is that
the game mechanics and the structure of the content can be
defined through logical expressions and the search space can

be easily reduced by constraints, so that no fitness function
is required at this point. Furthermore, style constraints can be
added to increase the aesthetic value of the maps generated.

In this paper, we develop a generator using VGDL within
the GVG-AI framework. The framework already offers de-
scriptions of 40 different Atari-like games, and further games
can be added following the rules of VGDL. In the work
proposed here, these game descriptions are converted into ASP
rules. It is important to highlight the limitations and difficulties
of this conversion, since the generator is kept general and
cannot identify all relationships between game objects as it
is done in [2]–[4].

While creating ASP rules, we integrate some of the Visual
Impression Distance measures (such as vertical and horizontal
balance) introduced in [5]. We assume that optimizing these
measures should improve the visual impression of the levels.
Then, we add some additional random constraints for the
unknown characteristics of game objects to the ASP program.
That way, we guide the generator towards different solutions
in the search space.

Afterwards, we test the generated maps by letting several
agents with different skill levels play them. This way, we
can test whether the levels are solvable. Furthermore, we use
the difference between the agents performance to distinguish
between levels, assuming that this difference should be higher
for better levels. This assumption is based on the findings
of [6], where rules for multiple games were evolved, and
the difference of performances between agents was higher for
well-designed than for worse-designed games. In general, one
may assume that levels where this difference is high require
more amount of skill to be solved than those where both good
and a poor agents behave similarly [7]. Finally, we evolve the
levels by mutating the randomly added constraints, searching
for maps with higher performance differences.

This paper is structured as follows. Section II introduces
some background on VGDL and ASP. Then, Section III details
the process of generating levels with ASP, followed by the
evolution of level generators in Section IV. Section V shows
some results, and finally Section VI concludes the paper and
outlines potential future work.

207



Fig. 1: Example of VGDL description of the game Aliens.

II. BACKGROUND

In this section, we describe VGDL, provide a short de-
scription of the GVG-AI Framework and briefly explain the
concepts behind ASP.

A. Video Game Description Language (VGDL)

VGDL is a language that allows the description of many
2D games, and it was originally implemented by Tom Schaul
in Python [8]. Every game object can be defined as a sprite
in the SpriteSet, including some properties like orientation
and movement abilities. Furthermore, a LevelMapping section
contains the representation of each object on the 2D map.
The InteractionSet defines which effects are applied to objects
when they collide, and finally the TerminationSet defines
which conditions have to be met for the game to end. The
description of the game Aliens (based on Space Invaders) is
shown in Figure 1 as an example.

B. GVG-AI Framework

The GVG-AI framework was developed for the General
Video Game AI Competition [9] as an environment for agents
that should be able to play any game that is given to them. Cur-
rently, the framework provides 40 manually designed games
that are described in VGDL. The framework, games and agents
are implemented in Java.

C. ASP

Answer Set Programming (ASP) is a declarative program-
ming method that can be used to describe what problem is to
be solved instead of how it is to be solved. The problem can
be expressed through logical terms, which are then passed to
a solver that provides answer sets using deductive reasoning.
The logical expressions used hereby can be atoms (simple
statements), predicates (statements with parameters), choice
rules (allowing a choice of elements) or integrity constraints
(allowing conditions).

Fig. 2: Example of ASP description of the game Aliens.

Answer sets delivered by a solver are guaranteed to satisfy
all constraints defined in the problem description. That way,
the design space can be incrementally specified from which
undesired answers are excluded. For this reason, ASP can
be used for procedural content generation without using any
evaluation function. Nevertheless, the desired answers can
only be produced if the game logic and all dependencies
between game objects are completely known and are correctly
expressed in ASP. Some detailed explanations on building the
design space for a game are described in [10].

For example, if a level for the game Aliens should be
produced, the rules shown in Figure 2 could be sufficient for
the ASP solver to deliver acceptable maps. Here, lines 1–3
define the dimensions of the map saying that each grid cell
is a tile. Lines 4–11 define the borders of the map which is
surrounded by walls. Line 12 indicates that each tile has at
most one of the given sprites. Lines 13 and 14 define the
y-positions of the portal (which spawns the aliens) and the
avatar. Here, the portal is on the top of the level and the
avatar on its bottom, as this is the common structure of a
level of Aliens. The last two lines specify that there is exactly
one avatar and exactly one portal in the level. Since there is no
constraint on the number or position of the base sprites (wall
blocks), they can be created on any tile that has no other sprite
on it.

The ASP program shown was created ad hoc, with the rules
of the game known by the authors. However, this example
points out the problem of automatically mapping VGDL rules
into an ASP program. Especially the last four lines could not
be read out from the VGDL-description shown in Figure 1.
There is no information given about the amount or the position
of any object and thus, it is not possible to know that the
portal should be placed on the opposite side of the avatar, or
that there should be only one of each.

III. MAP GENERATION THROUGH ASP

Having introduced the basic elements of our level generator,
we now describe how the levels are created. Although not
all the information about game rules is available, it is still
possible to infer some dependencies between game objects
from the VGDL representation of the games. For that reason,

208



the main step towards generating levels for a given game is
the conversion of the traceable information into ASP rules
as far as it is possible. For a better handling of the game
data we use the GVG-AI framework that gives an access to
each sprite, interaction and termination through their Java class
representations.

A. Basic ASP rules

Before concentrating on game specific ASP constraints, we
create some basic rules that are common for every game and
can be used in further statements. These include definitions
like the (Manhattan) distance measure and adjacency of tiles.
Furthermore, the reachability of a tile A from a tile B is defined
here, saying that a tile is reachable from another one if there
is a path between them consisting of only passable tiles. Tiles
that are not passable are defined later within game specific
rules. An additional constraint is generated here, allowing to
have at maximum one sprite on a tile.

Moreover, the borders of a map are defined here using the
dimensions given by the user. Since without loss of generality
levels of all considered games are surrounded by walls, we
also create the corresponding rules at this point.

B. Game specific ASP rules

The most challenging part of this work is the creation of
game specific rules. Here, one important task of the generator
is the identification of the desired amount of each game object.
Sometimes, this information can be read out directly from
the characteristics of sprites given in VGDL. For example
the game object sam is marked as a singleton in Figure 1,
so its amount can directly be set to one. Nevertheless, in
most cases, no information about the number of sprites of
each type is given. Therefore, the generator needs to check
the termination conditions for them. The following example
illustrates the difficulty of this process.

In many cases, a termination condition for a game is a
(Multi)SpriteCounter. This clause specifies the number of
sprites of certain game objects that should be reached for
the game to end. For example the line “MultiSpriteCounter
stype1=portal stype2=alien limit=0 win=True” in Figure 1 says
that the game can be won when there is no alien and no portal
anymore. This indicates that at the beginning of the game,
there should be at least one sprite of any of these two types.

However, it is still not possible to use this information
directly, because neither portal, nor alien are listed in the
LevelMapping, so no ASP constraints should be created for
them. Thus, the generator has to find their relationships with
other game objects to recognize that an alien is spawned by a
portal and a portal has two different subtypes (portalSlow and
portalFast). This means that there should be at least one of
the two sprite types, portalFast and portalSlow. To make sure
that the right ASP constraints are created for all game objects,
the minimum and maximum limits are saved for each object,
provided they are found in the description.

Another type of a relation can be a key-lock-dependency.
Many games contain a mechanic where locks/doors have to

be opened with keys that the player has to pick up before.
Having recognized a key-lock pair in the VGDL description,
the generator should create the same amount of both. Such
type of dependency is also saved for each of the involved
object types.

Furthermore, if there is a door and a key that opens it, it is
very likely that there is some third object hidden behind the
door (e.g. an exit). In most cases, the third object can be found
in the TerminationSet (e.g. there would be a SpriteCounter for
the exit). Thus, the generator should ensure that whatever is
behind the door should not be reachable by the avatar at the
beginning of the game. For that reason, one important ASP
rule is the definition of impassable tiles.

In most games provided by the GVG-AI framework, walls
are not passable by the avatar. However, this is not true for
some games where the avatar can destroy them. Therefore, the
generator checks the InteractionSet for those sprites that the
avatar can collide without destroying them, and that would
make the avatar to step back. Moreover, sprites that are
not moveable but can kill the avatar are also regarded as
impassable. One example of such a sprite could be a fire or
a water tile. These sprites are then added to the definition of
an impassable tile and can be used to make sure that certain
objects are not reachable by the avatar. If there is a door in the
game, it should be placed in such a way that after it is opened,
the object behind it becomes reachable. Having identified these
relationships, the generator adds appropriate rules to the ASP
program.

In addition, some rules are added here that optimize the
Visual Impression Distance measure of each object. Currently,
there are two rules implemented providing that vertical and
horizontal balance are sustained in every level for every object
type. For the former, a rule is created that minimizes the
difference of the number of certain game objects on the left
half and those on the right half of the map. The latter rule
is created similarly for the upper half and lower half. It is
conceivable that further measures introduced in [5] can be
added here for optimizing the maps.

ASP allows the optimization of multiple functions at the
same time. Hereby, the importance of each function can either
be set by its priority, or by setting weights for each function
and optimizing the weighted sum. Since the balance of all
objects is regarded equally important, all balance functions
get the same priority. These optimization functions are treated
as soft constraints in ASP. Therefore, they are not conflicting
with hard constraints and can be used even if there is a rule
that e.g. says that the enemies should spawn only in the upper
half of the map.

C. Additional ASP rules

Although some important ASP rules are created in the
previous steps, many properties of game objects are still not
traceable by the generator due to its generality. For example,
Figure 3 left shows that multiple portals and too many bases
are created for the game Aliens. This comes from the fact that
there is no upper limit given on the number of portals or base

209



Fig. 3: Example maps for Aliens. Left: results of basic
and game specific rules; right: results after adding horizon-
tal/vertical balance rules and number constraints. (0 - base;
1 - portalSlow; 2 - portalFast; A - avatar; w - wall)

sprites in a level. A human designer would recognize that a
high number of portals is too difficult for the player to handle.
Only one or two portals would be enough, since each of them
spawns 20 aliens.

For such cases, we propose limiting the number of game
objects that have no limits given through game dependencies
yet. Therefore, the generator is supposed to examine each
object as well for lower limits as for upper limits and add
missing rules. As a lower limit, we propose creating at least
one object of each type, and as an upper limit at most one
fourth of the map size. In case there are several subtypes of
an object, they should be handled in one rule. So, e.g. it is
known that there should be at least one of the two portalFast
or portalSlow in Aliens. Although it is not known how many
of them should be present at most. Having a map size of 80
grid cells, the generator creates a rule defining an upper limit
of 20 for both of them together.

Limit constraints are one possibility to decrease the search
space and exclude levels that are very likely to be unplayable.
At the moment, these are the only additional rules imple-
mented in the generator. Although other constraints could
be added maintaining dependencies between arbitrary game
objects e.g. ensuring that object A is reachable by object B.

IV. EVOLUTION OF ASP CONSTRAINTS

A. Evaluation

Even with all constraints described in the previous section,
not all generated maps are solvable or have the desired
difficulty. To find rulesets that generate solvable levels that are
interesting to play, we test them letting agents play each map
multiple times. Therefore, we use the sampleMCTS controller
as one that is supposed to have a higher skill level in playing
games. The random controller is used as a worse-playing
agent.

For each ASP ruleset, we measure the difference between
the average scores achieved by each agent while playing the
maps that were generated from this ruleset. We add a score
bonus of 1000 points every time an agent wins the game to
favour solvable levels. Maps with higher score differences are
assumed to have a better difficulty meaning that the more
intelligent agent could handle the game better than the one
applying random actions. Similarly, levels with lower differ-
ences are assumed to have a worse difficulty level, meaning
that either the level was too hard or too easy for both agents.
At this point, the validation depends strongly on the quality of
agents, implying that meaningful results can only be achieved
for those games that are playable by the agents.

We generate small populations of 10 rulesets/individuals
with 5 levels each, since playing each map e.g. 3 times by
two agents may take up to hours. At this point, the evaluation
of a map with the help of a human could be a faster method.
Nevertheless, we aim to have a completely automatic generator
and use the agents limiting the maximum number of game
steps to 1000 (at the GVG-AI Competition, each game lasts
for max. 2000 steps). Additionally, an archive is kept with the
best 10 individuals found during all generations. Note that this
has a double purpose: apart from allowing us to determine
the evolution of the rulesets, it also permits saving the best
(but different) level generators found during the evolutionary
process.

B. Mutation of additional ASP rules

As already described in section III-C, the generator adds
missing rules defining amount limits for all game objects.
Nevertheless, it can be seen on the right part of Figure 3 that
with an upper limit of one fourth of the map size, there are
still too many portals (represented by 1 and 2) in the level of
Aliens. So, it is desired to decrease their upper limit.

With the aim to change the shape of the search space and to
guide the solver into different directions, we propose evolving
the rule set using a mutation operator. For that purpose, each
additional rule described in section III-C has a 50% chance
of being mutated. Thus, one of the limits is changed to a
random value between 1 and one fourth of the map size,
always ensuring that the upper limit is equal or higher than the
lower limit. The difficulties of resulting maps are evaluated as
described in previous section. A (µ+λ) strategy is followed,
and elitism is used to keep the best solution of the population.
We also save the best solutions found so far on each generation
to build an archive of generators.

V. RESULTS

Some interim results are shown in Figure 4. Here, we used
three games in total, and we show one per row. Each of them
was evolved over 10 generations × 10 rulesets (with each 5
levels) × 3 repetitions. The described mutator was applied
using a (µ+λ)-selection with µ = λ = 10.

Although a fast increase of score differences between the
two game-playing agents can already be seen in Figure 4, there
is still room for improvement. Especially, the conversion of

210



(a) Chase - Population Average (b) Chase - Archive

(c) Survive Zombies - Population Average (d) Survive Zombies - Archive

(e) Zelda - Population Average (f) Zelda - Archive

Fig. 4: Score differences for the games Chase, Survive Zombies, Zelda, one per row. Fitness is the average difference of scores
between the two agents. On the left column, the minimum, average and maximum fitness in the population per generation
is shown. The right column shows the min, average and maximum fitness of the individuals present in the archive at each
generation, as described in section IV-A.

VGDL descriptions into ASP rules needs to be complemented.
For example, Table I shows that the number of keys in the
game Zelda can reach up to 7 and the number of goals can
reach up to 11. This is not very conventional, since having
collected only one key, the player is able to open any door
(according to the given game description). In that case, it
would have been enough to have only one of each object in
the level.

However, the results show that in most cases, the amounts
of game objects are acceptable. The number of e.g. scared
entities in Chase can vary between 1 and 9 which can be
handled by the player on a map size of 10 × 8 cells. Also the
wall blocks whose amount can reach up to 9 (32 blocks are
used to define the map borders) provide enough obstacles for

the scared entities to run and hide from the player.
Furthermore, all generated levels show an equal distribution

of game objects having good vertical and horizontal balance.
An example of a level generated for Survive Zombies is given
in Figure 5.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an automatic way of evolving rule sets
for level generators, for any game described in the Video Game
Description Language (VGDL). The definitions of sprites and
interactions that govern the game are parsed into Answer
Set Programming (ASP), which is a declarative programming
method that provides answer sets by means of deductive rea-
soning. The rules provided by ASP are then evolved in order
to obtain interesting level generators, using the performance

211



Game Game Object Min. number Max. number

Chase scared 1 9
wall 32 41

Survive Zombies zombies 1 4
slowHell 1 4
fastHell 1 1
honey 7 7
flower 1 12
wall 32 37

Zelda monsterQuick 1 1
monsterSlow 3 5

monsterNormal 1 3
key 1 7
goal 1 11
wall 32 34

TABLE I: Amount values for game objects of the three games
evolved by the generator

Fig. 5: An example of Survive Zombies level generated by the
proposed approach. (0 - flower; 1 - slowHell; 2 - fastHell; . -
honey; - - zombie; A - avatar; w - wall)

of different general video game playing agents as a way to
measure this. Concretely, we assume that a feasible and well
designed level would differentiate between poor and good
agents, an hypothesis that can be found in the literature [6],
[7].

The work proposed here shows how it is possible to parse
and evolve rules for a level generator for three different
games in the GVGAI framework. The generated levels have
a structure similar to many of the existing levels, although in
some cases the number of game objects could be more fine-
tuned.

Furthermore, albeit the Evolutionary Algorithm (EA) em-
ployed in this study is a simple approach, it still shows good
performance in the games tested, even considering that not
many generations were run due to long execution times. Our
initial piece of future work consists of extending this study
with longer execution times, bigger population sizes and also
to all games in the GVGAI framework. Another piece of future
work would involve trying new evolutionary approaches and
the addition of new mutation operators, like the ruleset mutator
introduced in [11], which would effectively increment and
decrement the number of additional rules in the ASP program.

Moreover, one possibility consists of co-evolution between
level generators and general video-game bots aiming at an
improvement of performance for those games that are not
yet playable by the current agents. Additionally, there is
scope for other techniques such as Multi-Objective EA that
optimizes several metrics of the levels (e.g. agent performance,
game-play duration, player experience, a measure of beauty,
etc.). Finally, there are also plans in place to perform human
evaluations of the generated levels, in order to search for
further quality measures.

REFERENCES

[1] A. Zook and M. O. Riedl, “Automatic game design via mechanic
generation,” in Proceedings of the 28th AAAI Conference on Artificial
Intelligence, 2014.

[2] M. J. Nelson and A. M. Smith, “Asp with applications to mazes and
levels (draft),” in Procedural Content Generation in Games: A Textbook
and an Overview of Current Research, N. Shaker, J. Togelius, and M. J.
Nelson, Eds. Springer, 2015.

[3] A. M. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” Computational Intelli-
gence and AI in Games, IEEE Transactions on, vol. 3, no. 3, pp. 187–
200, 2011.

[4] A. M. Smith, E. Butler, and Z. Popovic, “Quantifying over play:
Constraining undesirable solutions in puzzle design.” in FDG, 2013,
pp. 221–228.

[5] M. Preuss, A. Liapis, and J. Togelius, “Searching for good and diverse
game levels,” in Computational Intelligence and Games (CIG), 2014
IEEE Conference on. IEEE, 2014, pp. 1–8.

[6] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General
video game evaluation using relative algorithm performance profiles,” in
Applications of Evolutionary Computation. Springer, 2015, pp. 369–
380.

[7] D. Perez, J. Togelius, S. Samothrakis, P. Rohlfshagen, and S. Lucas,
“Automated Map Generation for the Physical Travelling Salesman
Problem,” IEEE Transactions on Evolutionary Computation, vol. 18:5,
pp. 708–720, 2014.

[8] T. Schaul, “A video game description language for model-based or
interactive learning,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[9] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas,
A. Couetoux, J. Lee, C. Lim, and T. Thompson, “The 2014 general
video game playing competition,” Computational Intelligence and
AI in Games, IEEE Transactions on, 2015. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038214

[10] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in Computa-
tional Intelligence and Games (CIG), 2010 IEEE Symposium on. IEEE,
2010, pp. 273–280.

[11] C.-U. Lim and D. F. Harrell, “An approach to general videogame
evaluation and automatic generation using a description language,” in
Computational Intelligence and Games (CIG), 2014 IEEE Conference
on. IEEE, 2014, pp. 1–8.

212

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7038214

