
Everything You Ever
Wanted To Know About

Move Semantics

Howard Hinnant
Senior Software Engineer

Ripple Labs
!

April 12, 2014

(and then some)

• The genesis of move semantics
• Special member functions
• Introduction to the special move members

Outline

How Did Move Semantics Get Started?

• It was all about optimizing std::vector<T>.
• And everything else just rode along on its coattails.

vector

What is std::vector?
• Anatomy of a vector (simplified)

vector’s data

begin() end() capacity()

How does a vector copy?

vector

vector’s data

vector

vector’s data
copy

How does a vector move?

vector

vector’s data

vector

nullptr nullptr nullptr

copy

How Did Move Semantics Get Started?

• Remember these fundamentals about move
semantics and vector, and you will have a
basic understanding of all of move semantics.

• The rest is just details…

Outline

• The genesis of move semantics
• Special member functions
• Introduction to the special move members

Special Members

• What are they?

Special Members

• Special members are those member
functions that the compiler can be asked
to automatically generate code for.

Special Members

• How many special members are there?

6

Special Members

• They are:
• default constructor
• destructor
• copy constructor
• copy assignment
• move constructor
• move assignment

X();
~X();
X(X const&);
X& operator=(X const&);
X(X&&);
X& operator=(X&&);

Special Members

• The special members can be:
• not declared
• implicitly declared
• user declared

defaulted

deleted

user-defined

or
or
or

Special Members
• What counts as user-declared?

struct X	
{	
 X() {} // user-declared	
!

!

!

};

X(); // user-declared
X() = default; // user-declared
X() = delete; // user-declared

Special Members
• What is the difference between

not-declared and deleted?
Consider:

struct X	
{	
 template <class ...Args>	
 X(Args&& ...args);	
!

!

};

// The default constructor	
// is not declared

Special Members

• X can be default constructed by
using the variadic constructor.

struct X	
{	
 template <class ...Args>	
 X(Args&& ...args);	
!

!

};

// The default destructor	
// is not declared

Special Members

• Now X() binds to the deleted default constructor
instead of the variadic constructor.

• X is no longer default constructible.

struct X	
{	
 template <class ...Args>	
 X(Args&& ...args);	
!

!

};
X() = delete;

Special Members

• Deleted members participate in overload resolution.
• Members not-declared do not participate in

overload resolution.

struct X	
{	
 template <class ...Args>	
 X(Args&& ...args);	
!

!

};
X() = delete;

Special Members

• Under what circumstances are special
members implicitly provided?

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• If the user declares no special
members or constructors, all 6
special members will be defaulted.

• This part is no different from C++98/03

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• “defaulted” can mean “deleted” if
the defaulted special member would
have to do something illegal, such
as call another deleted function.

• Defaulted move members defined
as deleted, actually behave as not
declared.
• No, I’m not kidding!

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• If the user declares any non-special
constructor, this will inhibit the implicit
declaration of the default constructor.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• A user-declared default constructor will
not inhibit any other special member.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted not

declared
not

declared

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• A user-declared destructor will inhibit the implicit
declaration of the move members.

• The implicitly defaulted copy members are
deprecated.
• If you declare a destructor, declare your copy

members too, even though not necessary.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted not

declared
not

declared
copy

constructor
not

declared defaulted user
declared defaulted not

declared
not

declaredus
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• A user-declared copy constructor will
inhibit the default constructor and move
members.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted not

declared
not

declared
copy

constructor
not

declared defaulted user
declared defaulted not

declared
not

declared
copy

assignment defaulted defaulted defaulted user
declared

not
declared

not
declared

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• A user-declared copy assignment
will inhibit the move members.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted not

declared
not

declared
copy

constructor
not

declared defaulted user
declared defaulted not

declared
not

declared
copy

assignment defaulted defaulted defaulted user
declared

not
declared

not
declared

move
constructor

not
declared defaulted deleted deleted user

declared
not

declared

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

• A user-declared move member will implicitly
delete the copy members.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted not

declared
not

declared
copy

constructor
not

declared defaulted user
declared defaulted not

declared
not

declared
copy

assignment defaulted defaulted defaulted user
declared

not
declared

not
declared

move
constructor

not
declared defaulted deleted deleted user

declared
not

declared
move

assignment defaulted defaulted deleted deleted not
declared

user
declared

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

default
constructor destructor copy

constructor
copy

assignment

Nothing defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted

copy
constructor

not
declared defaulted user

declared defaulted

copy
assignment defaulted defaulted defaulted user

declared

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

This is
C++98/03

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

Any
constructor

not
declared defaulted defaulted defaulted defaulted defaulted

default
constructor

user
declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user
declared defaulted defaulted not

declared
not

declared
copy

constructor
not

declared defaulted user
declared defaulted not

declared
not

declared
copy

assignment defaulted defaulted defaulted user
declared

not
declared

not
declared

move
constructor

not
declared defaulted deleted deleted user

declared
not

declared
move

assignment defaulted defaulted deleted deleted not
declared

user
declared

us
er

 d
ec

la
re

s

compiler implicitly declares

Special Members

class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = default;
X& operator=(X const&) = default;

X& operator=(X&&) = default;
X(X&&) = default;

Special Members
An alternate presentation
of the same information.

class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = default;
X& operator=(X const&) = default;

X& operator=(X&&) = default;
X(X&&) = default;

Special Members
An alternate presentation
of the same information.

class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = default;
X& operator=(X const&) = default;

Special Members
An alternate presentation
of the same information.

class X	
{	
public:	
!

!

!

!

!

!

};

~X() = default;
X(X const&) = default;
X& operator=(X const&) = default;

Special Members
An alternate presentation
of the same information.

class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = default;
X& operator=(X const&) = default;

Special Members
An alternate presentation
of the same information.

class X	
{	
public:	
!

!

!

!

!

!

};

~X() = default;
X(X const&) = delete;
X& operator=(X const&) = delete;
X(X&&) = default;

Special Members
An alternate presentation
of the same information.

class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = delete;
X& operator=(X const&) = delete;

X& operator=(X&&) = default;

Special Members
An alternate presentation
of the same information.

Outline

• The genesis of move semantics
• Special member functions
• Introduction to the special move members

What does a defaulted
move constructor do?

class X	
 : public Base	
{	
 Member m_;	
!

 X(X&& x)	
 : Base(static_cast<Base&&>(x))	
 , m_(static_cast<Member&&>(x.m_))	
 {}	
};

What does a typical user-
defined move constructor do?
class X	
 : public Base	
{	
 Member m_;	
!

 X(X&& x)	
 : Base(std::move(x))	
 , m_(std::move(x.m_))	
 {	
 x.set_to_resourceless_state();	
 }

What does a defaulted
move assignment do?

class X	
 : public Base	
{	
 Member m_;	
!

 X& operator=(X&& x) {	
 Base::operator=	
 (static_cast<Base&&>(x));	
 m_ = static_cast<Member&&>(x.m_);	
 return *this;	
 }

What does a typical user-
defined move assignment do?
class X	
 : public Base	
{	
 Member m_;	
!

 X& operator=(X&& x) {	
 Base::operator=(std::move(x));	
 m_ = std::move(x.m_);	
 x.set_to_resourceless_state();	
 return *this;	
 }

Can I define one special
member in terms of another?

Yes.

Should I define one special
member in terms of another?

No!

Should I define one special
member in terms of another?

No!

• Give each special member the tender
loving care it deserves.

• The entire point of move semantics is
to boost performance.

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

class X	
{	
 std::vector<int> v_;	
public:	
 X& operator=(X x) { // Implements	
 v_.swap(x.v_); // both copy and	
 return *this; // move assignment	
 }	
}; What’s not to love?

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

class X	
{	
 std::vector<int> v_;	
public:	
 X& operator=(X const& x);	
 X& operator=(X&& x);	
};

I’ve written highly
optimized versions of
the copy and move
assignment operators.

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

0% 25% 50% 75% 100%
How often is lhs capacity sufficient?

co
py

/s
w

ap
 p

en
al

ty

Best case
(same speed)

Average case
(70% slower)

Worst case
(almost 8 times slower)

Speed of
optimized copy
assignment
operator vs “copy/
swap” assignment

lhs always needs to
reallocate vector

lhs never needs to
reallocate vector

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

How hard is it to make separate
optimized copy and move
assignment operators for this case?

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

class X	
{	
 std::vector<int> v_;	
public:	
 // Just keep your grubby fingers	
 // off of the keyboard.	
 // The defaults are optimal!	
!

}; What’s not to love?

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

But the copy/swap idiom gives
me strong exception safety!

Good point. Are all of your clients willing
to pay a giant performance penalty for
strong exception safety on assignment?

Should I define one special
member in terms of another?
Case study: the copy/swap idiom
Perhaps you could interest the portion of
your clients that do need strong exception
safety in this generic function:
template <class C>	
C& strong_assign(C& dest, C src) {	
 using std::swap;	
 swap(dest, src);	
 return dest;	
}	

Should I define one special
member in terms of another?
Case study: the copy/swap idiom

Now clients who need speed can:
x = y;

And clients who need strong exception
safety can:

strong_assign(x, y);

In A Hurry?
• If you don’t have time to carefully consider all 6

special members, then just delete the copy
members:

class X	
{	
public:	
 X(X const&) = delete;	
 X& operator=(X const&) = delete;	
};

Summary

• Know when the compiler is defaulting or deleting
special members for you, and what defaulted
members will do.

• Always define or delete a special member when
the compiler’s implicit action is not correct.

• Give tender loving care to each of the 6 special
members, even if the result is to let the compiler
handle it.

