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• The genesis of move semantics 
• Special member functions 
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How Did Move Semantics Get Started?

• It was all about optimizing std::vector<T>. 
• And everything else just rode along on its coattails.



vector

What is std::vector?
• Anatomy of a vector (simplified)

vector’s data

begin() end() capacity()



How does a vector copy?

vector

vector’s data

vector

vector’s data
copy



How does a vector move?

vector

vector’s data

vector

nullptr nullptr nullptr

copy



How Did Move Semantics Get Started?

• Remember these fundamentals about move 
semantics and vector, and you will have a 
basic understanding of all of move semantics. 

• The rest is just details…
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• The genesis of move semantics 
• Special member functions 
• Introduction to the special move members



Special Members

• What are they?



Special Members

• Special members are those member 
functions that the compiler can be asked 
to automatically generate code for.



Special Members

• How many special members are there?

6



Special Members

• They are: 
• default constructor 
• destructor 
• copy constructor 
• copy assignment 
• move constructor 
• move assignment

X();
~X();
X(X const&);
X& operator=(X const&);
X(X&&);
X& operator=(X&&);



Special Members

• The special members can be: 
• not declared 
• implicitly declared 
• user declared

defaulted

deleted

user-defined

or
or
or



Special Members
• What counts as user-declared?

struct X	
{	
    X() {}         // user-declared	
!

!

!

};

X();           // user-declared
X() = default; // user-declared
X() = delete;  // user-declared



Special Members
• What is the difference between 

not-declared and deleted?
Consider:

struct X	
{	
    template <class ...Args>	
        X(Args&& ...args);	
!

!

};

// The default constructor	
// is not declared



Special Members

• X can be default constructed by 
using the variadic constructor.

struct X	
{	
    template <class ...Args>	
        X(Args&& ...args);	
!

!

};

// The default destructor	
// is not declared



Special Members

• Now X() binds to the deleted default constructor 
instead of the variadic constructor. 

• X is no longer default constructible.

struct X	
{	
    template <class ...Args>	
        X(Args&& ...args);	
!

!

};
X() = delete;



Special Members

• Deleted members participate in overload resolution. 
• Members not-declared do not participate in 

overload resolution.

struct X	
{	
    template <class ...Args>	
        X(Args&& ...args);	
!

!

};
X() = delete;



Special Members

• Under what circumstances are special 
members implicitly provided?



default 
constructor destructor copy 

constructor
copy 

assignment
move 

constructor
move 

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

us
er
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compiler implicitly declares

Special Members

• If the user declares no special 
members or constructors, all 6 
special members will be defaulted.

• This part is no different from C++98/03



default 
constructor destructor copy 

constructor
copy 

assignment
move 

constructor
move 

assignment

Nothing defaulted defaulted defaulted defaulted defaulted defaulted

us
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compiler implicitly declares

Special Members

• “defaulted” can mean “deleted” if 
the defaulted special member would 
have to do something illegal, such 
as call another deleted function. 

• Defaulted move members defined 
as deleted, actually behave as not 
declared. 
• No, I’m not kidding!



default 
constructor destructor copy 
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copy 
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move 
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move 
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Nothing defaulted defaulted defaulted defaulted defaulted defaulted
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Special Members

• If the user declares any non-special 
constructor, this will inhibit the implicit 
declaration of the default constructor.



default 
constructor destructor copy 

constructor
copy 
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move 
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Special Members

• A user-declared default constructor will 
not inhibit any other special member.
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Special Members

• A user-declared destructor will inhibit the implicit 
declaration of the move members. 

• The implicitly defaulted copy members are 
deprecated. 
• If you declare a destructor, declare your copy 

members too, even though not necessary.
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Special Members

• A user-declared copy constructor will 
inhibit the default constructor and move 
members.
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Special Members

• A user-declared copy assignment 
will inhibit the move members.
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Special Members

• A user-declared move member will implicitly 
delete the copy members.
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Special Members

This is 
C++98/03
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class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = default;
X& operator=(X const&) = default;

X& operator=(X&&) = default;
X(X&&) = default;

Special Members
An alternate presentation 
of the same information.
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public:	
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X() = default;
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class X	
{	
public:	
!

!

!

!

!

!

};

~X() = default;
X(X const&) = delete;
X& operator=(X const&) = delete;
X(X&&) = default;

Special Members
An alternate presentation 
of the same information.



class X	
{	
public:	
!

!

!

!

!

!

};

X() = default;
~X() = default;
X(X const&) = delete;
X& operator=(X const&) = delete;

X& operator=(X&&) = default;

Special Members
An alternate presentation 
of the same information.
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• Introduction to the special move members



What does a defaulted 
move constructor do?

class X	
  : public Base	
{	
  Member m_;	
!

  X(X&& x)	
    : Base(static_cast<Base&&>(x))	
    , m_(static_cast<Member&&>(x.m_))	
  {}	
};



What does a typical user-
defined move constructor do?
class X	
  : public Base	
{	
  Member m_;	
!

  X(X&& x)	
    : Base(std::move(x))	
    , m_(std::move(x.m_))	
  {	
    x.set_to_resourceless_state();	
  }



What does a defaulted 
move assignment do?

class X	
  : public Base	
{	
  Member m_;	
!

  X& operator=(X&& x) {	
    Base::operator=	
            (static_cast<Base&&>(x));	
    m_ = static_cast<Member&&>(x.m_);	
    return *this;	
  }



What does a typical user-
defined move assignment do?
class X	
  : public Base	
{	
  Member m_;	
!

  X& operator=(X&& x) {	
    Base::operator=(std::move(x));	
    m_ = std::move(x.m_);	
    x.set_to_resourceless_state();	
    return *this;	
  }



Can I define one special 
member in terms of another?

Yes.



Should I define one special 
member in terms of another?

No!



Should I define one special 
member in terms of another?

No!

• Give each special member the tender 
loving care it deserves. 

• The entire point of move semantics is 
to boost performance.



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

class X	
{	
  std::vector<int> v_;	
public:	
  X& operator=(X x) { // Implements	
    v_.swap(x.v_);    // both copy and	
    return *this;     // move assignment	
  }	
}; What’s not to love?



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

class X	
{	
  std::vector<int> v_;	
public:	
  X& operator=(X const& x);	
  X& operator=(X&& x);	
};

I’ve written highly 
optimized versions of 
the copy and move 
assignment operators.



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

1
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Best case 
(same speed)

Average case 
(70% slower)

Worst case 
(almost 8 times slower)

Speed of 
optimized copy 
assignment 
operator vs “copy/
swap” assignment

lhs always needs to 
reallocate vector

lhs never needs to 
reallocate vector



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

How hard is it to make separate 
optimized copy and move 
assignment operators for this case?



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

class X	
{	
  std::vector<int> v_;	
public:	
  // Just keep your grubby fingers	
  //  off of the keyboard.	
  // The defaults are optimal!	
!

}; What’s not to love?



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

But the copy/swap idiom gives 
me strong exception safety!

Good point.  Are all of your clients willing 
to pay a giant performance penalty for 
strong exception safety on assignment?



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom
Perhaps you could interest the portion of 
your clients that do need strong exception 
safety in this generic function:
template <class C>	
C& strong_assign(C& dest, C src) {	
    using std::swap;	
    swap(dest, src);	
    return dest;	
}	



Should I define one special 
member in terms of another?
Case study: the copy/swap idiom

Now clients who need speed can:
x = y;

And clients who need strong exception 
safety can:

strong_assign(x, y);



In A Hurry?
• If you don’t have time to carefully consider all 6 

special members, then just delete the copy 
members:

class X	
{	
public:	
  X(X const&) = delete;	
  X& operator=(X const&) = delete;	
};



Summary

• Know when the compiler is defaulting or deleting 
special members for you, and what defaulted 
members will do. 

• Always define or delete a special member when 
the compiler’s implicit action is not correct. 

• Give tender loving care to each of the 6 special 
members, even if the result is to let the compiler 
handle it.


