
Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

Michel Steuwer, Philipp Kegel, and Sergei Gorlatch

Department of Mathematics and Computer Science
University of Münster, Münster, Germany

Email: {michel.steuwer,philipp.kegel,gorlatch}@uni-muenster.de

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/IPDPSW.2012.229

Abstract—Application programming for GPUs (Graphics
Processing Units) is complex and error-prone, because the
popular approaches — CUDA and OpenCL — are intrinsically
low-level and offer no special support for systems consisting of
multiple GPUs. The SkelCL library presented in this paper
is built on top of the OpenCL standard and offers pre-
implemented recurring computation and communication pat-
terns (skeletons) which greatly simplify programming for multi-
GPU systems. The library also provides an abstract vector
data type and a high-level data (re)distribution mechanism
to shield the programmer from the low-level data transfers
between the system’s main memory and multiple GPUs. In this
paper, we focus on the specific support in SkelCL for systems
with multiple GPUs and use a real-world application study
from the area of medical imaging to demonstrate the reduced
programming effort and competitive performance of SkelCL
as compared to OpenCL and CUDA. Besides, we illustrate
how SkelCL adapts to large-scale, distributed heterogeneous
systems in order to simplify their programming.

Keywords-GPU Computing, GPU Programming, Multi-GPU
Systems, SkelCL, OpenCL, Algorithmic Skeletons

I. INTRODUCTION

The two popular programming approaches for systems
with Graphics Processing Units (GPUs) — CUDA and
OpenCL [1]–[3] — work at a low level of abstraction. They
require the programmer to explicitly manage the GPU’s
memory, including data allocations and transfers to/from
the system’s main memory. This leads to long, complex
and, therefore, error-prone code. The emerging multi-GPU
systems are particularly challenging for the application de-
veloper: they additionally require explicit data exchanges
between individual GPUs, including low-level pointer arith-
metics and offset calculations, as well as an adaption of
algorithms for execution on multiple GPUs.

In this paper, we introduce SkelCL — a library for
high-level GPU programming. SkelCL comprises two major
abstraction mechanisms: a set of algorithmic skeletons [4]
and an abstract vector data type. Skeletons offer several fre-
quently used pre-implemented patterns of parallel communi-
cation and computation to the application developer [5]. The
vector data type enables implicit data transfers between the
system’s main memory and GPUs. Using these abstractions,
SkelCL frees the programmer from writing low-level and
error-prone boilerplate code when programming multi-GPU

systems, and still provides all useful features of the OpenCL
standard.

The focus of this paper, as compared to our introductory
article [6], is the set of specific features and mechanisms
of SkelCL for programming multi-GPU systems on a high
level of abstraction. We describe how SkelCL implements
skeletons on multi-GPU systems and show how SkelCL’s
concept of data distribution frees the user from low-level
memory management, without sacrificing performance in
real-world applications that use multiple GPUs.

The paper is organized as follows. Section II introduces
SkelCL’s key features, while Section III focuses on pro-
gramming multi-GPU systems using SkelCL. In Section IV,
we present a real-world application study from the area
of medical imaging and experimental results. Section VI
compares our approach to related work.

II. OVERVIEW OF SKELCL

We build our SkelCL approach on top of the OpenCL
standard [1], because OpenCL is hardware- and vendor-
independent. Thereby, we achieve that multi-core CPUs,
GPUs and other accelerators — called devices in OpenCL
— can be employed using a uniform programming model.
An OpenCL program is executed on a host system which is
connected to one or several OpenCL devices. In the next two
subsections, we describe particular problems of application
programming using OpenCL and demonstrate how SkelCL
addresses these problems.

A. Algorithmic Skeletons

In OpenCL, special functions (kernels) are executed in
parallel on a device. Kernels are compiled at runtime to al-
low for portability across different devices. The programmer
must specify in the host program how many instances of a
kernel are executed. Kernels usually take pointers to GPU
memory as input and contain program code for reading/writ-
ing data items. Pointers have to be used carefully, because
no boundary checks are performed by OpenCL.

To shield the programmer from these low-level pro-
gramming issues, SkelCL extends OpenCL by means of
algorithmic skeletons. A skeleton is, formally, a higher-order
function that executes one or more user-defined functions

http://dx.doi.org/10.1109/IPDPSW.2012.229

in a pre-defined parallel manner, hiding the details of par-
allelism and communication from the user [5]. The current
version of SkelCL provides four skeletons: map, zip, reduce,
and scan. We describe these skeletons semi-formally, with
[x1, . . . , xn] denoting a vector of size n:

• The map skeleton applies a unary function (f) to
each element of an input vector ([x1, . . . , xn]), i. e.
map(f)([x1, . . . , xn]) = [f(x1), . . . , f(xn)].

• The zip skeleton operates on two input vectors
([x1, . . . , xn], [y1, . . . , yn]), applying an associative bi-
nary operator (⊕) to all pairs of elements, i. e.
zip(⊕)([x1, . . . , xn], [y1, . . . , yn]) =

[(x1 ⊕ y1), . . . , (xn ⊕ yn)].
• The reduce skeleton computes a scalar value from

an input vector using a binary operator (⊕), i. e.
reduce(⊕)([x1, . . . , xn]) = x1 ⊕ x2 ⊕ · · · ⊕ xn.
For the result to be correct the operator has to be
associative but may be non-commutative.

• The scan skeleton computes a vector of prefix-sums by
applying an associative binary operator (⊕), i. e.
scan(⊕)([x1, . . . , xn]) =

[x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn].

The aforementioned skeletons have been selected, because
they are useful for a broad range of applications. Moreover,
the computation patterns of these skeletons match the data-
parallel SIMD (Singe Instruction, Multiple Data) execution
model used by GPUs. In SkelCL, rather than writing low-
level kernels, the programmer customizes a suitable skeleton
with a user-defined function which takes a single data item
as input and returns a single result instead of working with
pointers (like traditional OpenCL kernels do). Input vectors
are provided as arguments on skeleton execution.

To customize a skeleton, the application developer passes
the source code of the user-defined function as a plain string
to the skeleton. SkelCL merges the user-defined function’s
source code with pre-implemented skeleton-specific program
code, thus creating a valid OpenCL kernel automatically.
The created kernel is then compiled by the underlying
OpenCL implementation before execution. Thanks to this
procedure SkelCL can operate on top of every standard
compliant OpenCL implementation and does not require a
customized compiler.

In real-world applications (see, e. g., Section IV), user-
defined functions often work not only on a skeleton’s input
vector, but may also take additional inputs. With only a fixed
number of input arguments, traditional skeletons would not
be applicable for the implementation of such applications.
The novelty of SkelCL skeletons is that they can accept
additional arguments which are passed to the skeleton’s
user-defined function. Since SkelCL’s skeletons rely on pre-
defined OpenCL code, they are by default not compatible
with additional arguments. Therefore, the SkelCL implemen-
tation at runtime adapts this code to the function it uses,

/* create skeleton Y <- a * X + Y */
Zip<float> saxpy (

"float func(float x, float y, float a)\
{ return a*x+y; }");

/* create input vectors */
Vector<float> X(SIZE); fillVector(X);
Vector<float> Y(SIZE); fillVector(Y);
float a = fillScalar();

Y = saxpy(X, Y, a); /* execute skeleton */

print(Y.begin(), Y.end()); /* print results */

Listing 1. The BLAS saxpy computation using a zip skeleton with
additional arguments

such that the skeleton passes its additional arguments to the
user-defined function.

Listing 1 shows an example implementation of the single-
precision real-alpha x plus y (SAXPY) computation – a
commonly used BLAS routine – in SkelCL. SAXPY is a
combination of scalar multiplication of a with vector X
followed by vector addition with Y . In the example, the
computation is implemented by a zip skeleton: vectors X
and Y are passed as input, while factor a is passed to
the user-defined function as an additional argument. The
additional argument is simply appended to the argument list
when the skeleton is executed. Note that all input values
of the user-defined function are scalar values rather than
vectors or pointers. Besides scalar values, like shown in the
example, vectors can also be passed as additional arguments
to a skeleton. This feature is implemented in SkelCL using
variadic templates from the new C++ standard [7], [8].

B. Data type Vector

OpenCL considers the system’s main memory, called host
memory, as separated from the device memory. Hence, the
programmer has to explicitly manage data transfers between
these distinct memory spaces. OpenCL offers functions for
allocating memory on devices and transferring data from the
host to the device (upload) or vice versa (download).

SkelCL hides low-level memory management and data
transfers by means of its abstract vector data type. A
vector defines a contiguous memory range where data is
accessible by both CPU and GPU, such that the application
developer does not have to program data transfers between
host memory and a GPU.

Internally, a vector holds pointers to ranges of host
memory and GPU memory. These memory ranges are kept
in a consistent state automatically: when a vector is accessed
by the CPU, its data is downloaded from the GPU to the
host memory implicitly. Likewise, the data is uploaded to
GPU memory before it can be accessed by this GPU.

Since GPU-based applications often perform consecutive
computations on data that is accessed only by the GPU,
SkelCL tries to optimize data transfers between the host

Host

Devices0 1
(a) single

Host

Devices0 1
(b) block

Host

Devices0 1
(c) copy

Figure 1. Distributions of a vector in SkelCL.

memory and GPU by performing them lazily: they are de-
ferred as long as possible or avoided completely if possible.
For example, when a map skeleton’s output vector is passed
as an input vector to a reduce skeleton, the vector’s data
resides on the GPU and no data transfer is performed.
Therefore, in this case SkelCL can avoid a costly data
transfer entirely.

III. PROGRAMMING MULTI-GPU SYSTEMS

Additional challenges arise when a system comprises mul-
tiple GPUs. In particular, communication and coordination
between multiple GPUs and the host have to be imple-
mented. Many low-level details, like pointer arithmetics and
offset calculations, are necessary when using OpenCL or
CUDA for this purpose. In this section, we demonstrate how
SkelCL helps the developer to program multi-GPU systems
at a high level of abstraction.

A. Data distribution

SkelCL’s vector data type abstracts from memory ranges
on multiple GPUs, such that the vector’s data is accessible by
each GPU. However, each GPU may access different parts of
a vector or may even not access it at all. For example, when
implementing work-sharing on multiple GPUs, the GPUs
will access disjoint parts of input data, such that copying
only a part of the vector to a GPU would be more efficient
than copying the whole data to each GPU.

For specifying partitionings of vectors in multi-GPU sys-
tems, the concept of distribution is introduced in SkelCL. A
distribution describes how the vector’s data is distributed
among the available GPUs. It allows the programmer to
abstract from the challenges of managing memory ranges
which are shared or partitioned across multiple devices: the
programmer can think of a distributed vector as of a self-
contained entity.

Figure 1 shows three distributions which are currently
implemented in SkelCL and offered to the programmer:
single, block, and copy. If set to single distribution (Fig-
ure 1a), vector’s whole data is stored on a single GPU (the
first GPU if not specified otherwise). With block distribution
(Figure 1b), each GPU stores a contiguous, disjoint part of
the vector. The copy distribution (Figure 1c) copies vector’s

entire data to each available device. A newly created vector
can adopt any of these distributions.

The vector distribution can be changed at runtime either
explicitly by the programmer or implicitly by the system. A
change of distribution implies data exchanges between mul-
tiple GPUs and the host, which are performed implicitly by
SkelCL. These implicit data exchanges are also performed
lazily, i. e. only if really necessary, as described in Section II.
Implementing such data transfers in OpenCL manually is a
cumbersome task: data has to be downloaded to the host
before it can be uploaded to other devices, including the
corresponding length and offset calculations; this results in
a lot of low-level code which is completely hidden when
using SkelCL.

A special situation arises when the distribution is changed
from the copy distribution, where each GPU holds its own
full copy of the data. In such a case, each GPU may hold
a different version of the vector as data modifications are
only performed locally on the GPU. In order to maintain
SkelCL’s concept of a self-contained vector, these different
versions must be combined using a user-specified function
when the distribution is changed. If no function is specified,
the copy of the first device is taken as the new version of
the vector; the copies of the other devices are discarded.

B. Skeletons for Multiple GPUs

The skeletons of SkelCL possess specific features for
working in multi-GPU systems. They take into account the
distribution of their input vectors: each GPU that holds a part
or a complete copy of a vector is involved in the execution of
the skeleton. Therefore, all GPUs automatically cooperate in
the skeleton execution if its input vector is block-distributed,
whereas the skeleton is executed on one GPU if the vector
distribution is single. If a skeleton’s input vector is copy-
distributed, then all GPUs execute the same skeleton on their
own copies.

Vectors can be passed to skeletons either as main inputs or
as additional arguments. For main input vectors, a skeleton-
specific default distribution is set automatically by SkelCL,
but the programmer can override the defaults, i. e., specify
a distribution that fits best for the application. For vectors
passed as an additional argument, no meaningful default

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 3 6 0 5 11 18 0 9 19 30 0 13 27 42

¬

0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

Map:6 + 4
Map:18 + 8

Map:30 + 12­

First GPU Second GPU Third GPU Fourth GPU

Figure 2. Scan on four GPUs: ¬ All GPUs scan their parts independently. ­ map skeletons are created automatically and executed to produce the result.

distribution can be provided by the system, because the
access pattern for the vector is determined by the user-
defined function. Therefore, the user has to specify explicitly
the distribution for these vectors.

C. Implementation of Skeletons on Multiple GPUs

Map and zip: In a multi-GPU setting, each GPU
executes the map’s unary function on its part of the input
vector. The same holds for the zip skeleton, but it requires
both input vectors to have the same distribution, and, in case
of the single-distributed vectors, they also have to be stored
on the same GPU. If this requirement is not satisfied, SkelCL
automatically changes the input vector distribution to block
distribution. This distribution is also set by default for input
vectors with no distribution specified by the user. Both, the
map and zip skeleton, set their output vector distribution to
that of their input vectors.

Reduce: The reduce skeleton automatically performs
all necessary synchronization and communication between
CPU and GPUs, in three steps:

1) Every GPU executes a local reduction for its local part
of data;

2) The results of all GPUs are gathered by the CPU;
3) The CPU reduces these intermediate results to com-

pute the final result.
The output vector of the reduce skeleton holds only a single
element, therefore, the output vector distribution is set to
single.

Scan: An example of the scan skeleton executed on
four devices using addition as operation is shown in Fig-
ure 2. The input vector [1, . . . , 16] is distributed using the
block distribution by default (shown in the top line). After
performing the scan algorithm on all devices (second line
of the figure), map skeletons are built implicitly using the
marked values and executed on all devices except the first
one. This produces the final result, as shown in the bottom
line.

The SkelCL implementation of the scan skeleton assumes
the GPUs to have a fixed order, such that each GPU (except
the first one) has a predecessor:

1) Every GPU executes a local scan algorithm for its
local part of data;

2) The results of all GPUs are downloaded to the host;
3) For each GPU (except the first one), a map skeleton

is implicitly created that combines the result of the
GPU’s predecessors with all elements of its part using
the user-defined operation of the scan skeleton;

4) The newly created map skeletons compute the final
results on all GPUs.

The output vector is block-distributed among all GPUs.

IV. APPLICATION STUDY: LIST-MODE OSEM
To demonstrate the advantages of SkelCL as compared

to the contemporary GPU programming models, we imple-
mented a real-world application from the field of medical
imaging using SkelCL, OpenCL, and CUDA. In this section,
we compare these three implementations regarding: 1) pro-
gramming effort, and 2) runtime performance.

List-Mode Ordered Subset Expectation Maximization (list-
mode OSEM) [9], [10] is a time-intensive, production-
quality numerical algorithm for Positron Emission Tomog-
raphy (PET): it reconstructs three-dimensional images from
huge sets of so-called events recorded by a tomograph. Each
event recorded represents a Line Of Response (LOR) which
intersects the scanned volume.

A simplified sequential code of list-mode OSEM is shown
in Listing 2. The algorithm splits the events into subsets
which are processed iteratively: all LORs of subset events
and their corresponding intersection paths are computed and
merged into an error image. The error image is merged
with the initially empty reconstruction image, which is then
refined in each iteration. In the following, we refer to the
computation of the error image as step 1 (lines 5 to 13), and
the update of the reconstruction image as step 2 (lines 15
and 16) of the algorithm.

G
P
U

0
h
o
st

G
P
U

1

s f

s f

s f

c

c

⇒

⇒

c

c

c

f

f

f

f

f

⇒

⇒

f

upload redistribution download

step 1 step 2

Figure 3. Data distribution changes and computations during a single subset iteration of list-mode OSEM using two GPUs.

1 for (l = 0; l < num_subsets; ++l) {
2 /* read subset from file */
3 events = read_events();
4 /* compute error image c (step 1) */
5 for (i = 0; i < num_events; ++i) {
6 /* compute path of LOR */
7 path = compute_path(events[i]);
8 /* compute error */
9 for (fp = 0, m = 0; m<path_len; ++m)

10 fp += f[path[m].coord] * path[m].len;
11 /* add path to error image */
12 for (m = 0; m<path_len; ++m)
13 c[path[m].coord] += path[m].len / fp;
14 }
15 /* update reconstruction image f (step 2) */
16 for (j = 0; j < image_size; ++j)
17 if (c[j] > 0.0) f[j] *= c[j];
18 }

Listing 2. Simplified sequential code of list-mode OSEM.

A. Parallelization strategy

For parallelization, we consider two possible decomposi-
tion strategies for the OSEM algorithm as initially suggested
in [11]: Projection Space Decomposition (PSD) and Image
Space Decomposition (ISD).

In PSD, the subsets are split into sub-subsets that are
processed simultaneously while all processing units access
a common reconstruction and error image. Using this ap-
proach, we are able to parallelize step 1 of the algorithm, but
step 2 is performed by a single processing unit. On a multi-
GPU system, we have to copy the reconstruction image to
all GPUs before each iteration, and we have to merge all
GPUs’ error images computed in step 1 before proceeding
with step 2. While both steps are easy to implement, step 2
does not efficiently use the available processing units.

In ISD, the reconstruction image is partitioned, such that
each processing unit processes the whole subset with respect
to a single part of the reconstruction image. Thus we are

able to parallelize both steps of list-mode OSEM, but each
processing unit still accesses the whole reconstruction image
in order to compute the error value for each path before
merging it with the error image. On a multi-GPU system,
the whole subset has to be copied to each GPU in step 1.
ISD requires large amounts of memory (up to several GB
in practically relevant cases) to save all paths computed in
step 1. Summarizing, it is hard to implement step 1 on the
GPU, while step 2 can be parallelized easily.

Therefore, we decided to use a hybrid strategy for imple-
menting list-mode OSEM on a multi-GPU system: Step 1
is parallelized using the PSD approach, while we use ISD
for step 2. This results in the sequence of five phases shown
both in Figure 3 and Listing 3:

1) Upload: the subset (s) is divided into sub-subsets,
one sub-subset per GPU. One sub-subset and the
reconstruction image (f) are uploaded to each GPU.

2) Step 1: each GPU computes a local error image (c)
for its sub-subset using a map skeleton with additional
arguments.

3) Redistribution: the local error images that are dis-
tributed on all GPUs are downloaded and combined
into a single error image on the host by performing
element-wise addition. Afterwards, the combined error
image and reconstruction image are partitioned, in
order to switch the parallelization strategy from PSD
to ISD. The corresponding parts of both images are
distributed to the GPUs again.

4) Step 2: each GPU updates its part of the reconstruction
image using a zip skeleton

5) Download: finally, all parts of the reconstruction im-
age are downloaded from the GPUs to the host and
merged into a single reconstruction image.

The SkelCL program in Listing 3 reflects the described

1 for (l = 0; l < num_subsets; l++) {
2 /* 1. Upload: distribute events to devices*/
3 Vector<Event> events(read_events());
4 events.setDistribution(Distribution::block);
5 f.setDistribution(Distribution::copy);
6 c.setDistribution(Distribution::copy(add));
7 /* 2. Step 1: compute error image
8 (map skeleton) */
9 mapComputeC(index,events,events.sizes(),f,c);

10 c.dataOnDevicesModified();
11 /* 3. Redistribution: distribute
12 reconstruction image to devices; reduce
13 (element-wise add) all error images and
14 distribute result to devices */
15 f.setDistribution(Distribution::block);
16 c.setDistribution(Distribution::block);
17 /* 4. Step 2: update reconstruction image
18 (zip skeleton) */
19 zipUpdate(f, c, f);
20 /* 5. Download: merge reconstruction image
21 (is performed implicitly) */ }

Listing 3. Parallel implementation of list-mode OSEM in SkelCL.

five phases in a concise, high-level manner, as shown by
the corresponding comments. The subset, the error image,
and the reconstruction image are declared as SkelCL vectors
which enables an easy and automatic data transfer between
GPUs. As data transfers are performed implicitly by SkelCL,
the upload phase (1.) is implemented by simply setting
vector distributions (lines 4–6), while the download phase
(5.) is omitted entirely.

B. Programming effort: SkelCL vs. OpenCL & CUDA

Using the described hybrid parallelization strategy, we de-
veloped three parallel implementations of list-mode OSEM
using: 1) CUDA, 2) OpenCL, and 3) SkelCL. To study the
programming effort, we compare the program sizes in LOC
(lines of code). Though LOC is not a universal measure
for programming effort, we consider it as a reasonable first
approximation.

We observe (see Figure 4a) that while the kernel size in
CUDA and OpenCL, or the user-defined function in SkelCL,
respectively, are rather similar (about 200 LOC), the lengths
of the corresponding host programs differ considerably.
Unlike CUDA, OpenCL requires code for selecting the target
platform and an OpenCL device and for compiling kernel
functions at runtime. For a single GPU, the OpenCL-based
implementation has the longest code (206 LOC), i. e. about
2.5 times longer than the CUDA-based host program (88
LOC) and more than 11 times longer than the SkelCL
program. Our SkelCL-based implementation has 18 LOC,
i. e. its length is only about 20% of the CUDA-based version.

Using multiple GPUs in OpenCL and CUDA requires
explicit code for additional data transfers between GPUs.
Prior to CUDA 4.0, also multi-threaded code was required
to manage several GPUs. This accounts for additional 42
LOC for the CUDA-based implementation and additional
37 LOC for the OpenCL-based one. In SkelCL, only 8

additional LOC are necessary to describe the changes of
data distribution. These lines are easily recognizable in the
SkelCL program (lines 4–6, 11–12 in Listing 3, plus 3
lines during the initialization) and make this high-level code
arguably better understandable and maintainable than the
CUDA and OpenCL versions.

C. Performance experiments: SkelCL vs. OpenCL & CUDA

We evaluated the runtimes of our three implementations of
list-mode OSEM, by reconstructing an image of 150×150×
280 voxels from a real-world PET data set with about 108

events. From this data set, about 102 equally sized subsets
are created. In our experiments, we measured the average
runtime of processing one subset. In a full reconstruction
application, all subsets are processed multiple times, thus
making list-mode OSEM a time-intensive application that
runs several hours on a single-core CPU. Unlike CUDA,
both OpenCL and SkelCL compile kernels at runtime. As
compilation is only required once, when launching the
implementation, but not during the subset iterations, we
excluded compilation time from our runtime measurements.
We ran our implementations on a system comprising a quad-
core CPU (Intel Xeon E5520, 2.26 GHz) and an NVIDIA
Tesla S1070 system with 4 Tesla GPUs. Each GPU consists
of 240 streaming processors. The CPU has 12 GB of main
memory, while each GPU owns 4 GB of dedicated memory.

Figure 4b shows the runtime of our three implementations
of list-mode OSEM using up to four GPUs. We observe that
CUDA always provides best performance, being about 20%
faster than OpenCL and SkelCL on the same number of
GPUs. As compared to the OpenCL-based implementation,
SkelCL introduces only a moderate overhead of less than
5%. Hence, the runtime overhead of SkelCL as compared
to CUDA is mainly caused by the fact that SkelCL is built
on top of OpenCL.

V. ENHANCING SKELCL TOWARDS EXASCALE SYSTEMS

SkelCL itself is not limited to stand-alone systems with
a single or multiple GPUs but is able to handle an arbitrary
number of OpenCL devices. However, it relies on OpenCL
which by default gives access to the devices of a stand-alone
system only. Hence, to enable SkelCL to use devices from a
distributed system comprising multiple stand-alone systems
(nodes) with GPUs, a distributed OpenCL implementation is
required that connects the stand-alone systems and provides
access to all their devices.

We develop dOpenCL [12], a distributed implementation
of the OpenCL API. When using dOpenCL, all CPUs, GPUs
and accelerators of a distributed system become accessible
as OpenCL devices. dOpenCL integrates the native OpenCL
implementations on the nodes (we view them as servers) of
the distributed system into a unified OpenCL implementation
on a single dedicated node which can be viewed as a
client. The client runs the OpenCL applications, while all

450

0
50

100
150
200
250
300
350
400

Type of Implementation

Pr
og

ra
m

 S
ize

 (L
O

C
)

SkelCL OpenCL CUDA

single multi single multi single multi

(a) Lines of code for host (light gray) and GPU (dark gray)

4

0

1

2

3

Number of GPUs

Ru
nt

im
e i

n
Se

co
nd

s

SkelCL OpenCL CUDA

1 2 4 1 2 4 1 2 4

(b) Average runtime of one subset iteration

Figure 4. Program size (a) of parallel list-mode OSEM (single- and multi-
GPU versions), and runtime (b) for processing one subset using SkelCL,
OpenCL, and CUDA.

computations are executed on the servers’ devices. For
example, in our laboratory we use dOpenCL to connect our
GPU system described in Section IV-C and two other GPU
systems, each equipped with 1 multi-core CPU and 2 GPUs
(3 servers) to a desktop PC (the client) with no OpenCL
capable devices. To an OpenCL application that is executed
on the desktop PC, all 8 GPUs and 3 multi-core CPUs of
this distributed system appear as if they were local devices.
Since dOpenCL is a drop-in replacement for any OpenCL
implementation, it can be used together with SkelCL without
any modifications.

In combination with dOpenCL, SkelCL allows for pro-
gramming all devices of a distributed system using a single,
unified high-level programming model. While dOpenCL
hides the communication details of the distributed system,
these systems still pose new challenges for SkelCL: devices
are more likely to be heterogeneous, like in our aforemen-
tioned laboratory system which comprises several multi-core
CPUs and GPUs with different characteristics. To use the
heterogeneous devices efficiently, in particular to employ all

devices during the complete execution of a skeleton, SkelCL
should not assign evenly-sized workload to the devices. Even
a simple skeleton like map requires to schedule appropriate
workloads to each device. For example, compute-intensive
user-defined functions are usually executed faster on GPUs
than on CPUs. Hence, GPUs will be assigned larger work-
loads in this case. A more complex scheduling problem
arises in case of the reduce skeleton (see Section III-C).
Firstly, CPUs can also be involved to perform a local
reduction, though they will not be able to process the same
workload as GPUs. Moreover, the local reduction on each
GPU should not compute a single value but an intermediate,
small result vector. CPUs will be faster to perform the final
reduction of these vectors than GPUs which provide poor
performance when reducing only few elements. In order to
decide when to use CPU rather than the GPU to perform
this final reduction, a scheduling mechanism is required.

Currently, SkelCL employs a static scheduling approach
based on an enhanced performance prediction approach:
While the performance of pure OpenCL-based programs
can only be predicted based on the low-level program
code and device properties including benchmark results,
SkelCL provides additional information about a program
based on the known implementation of skeletons and data
distributions. In SkelCL, performance prediction based on
statistical code analysis and benchmarks is only used for the
user-defined functions rather than the whole program code.
The results of this performance prediction are completed by
analytical performance models for the skeletons; this enables
a more accurate prediction and leads to a more efficient
scheduling of workloads on heterogeneous devices.

VI. CONCLUSION AND RELATED WORK

In this paper, we presented SkelCL – a high-level
multi-GPU programming library. The novel contributions of
SkelCL are two-fold: 1) using the vector data type and the
built-in mechanism of data distributions, it considerably sim-
plifies memory management in multi-GPU programs; 2) the
high-level algorithmic skeletons are used for programming
multi-GPU systems, resulting in shorter, better structured
programs as compared to OpenCL and CUDA. Moreover,
SkelCL extends the flexibility of skeletons with its additional
arguments feature, as demonstrated on a real-world, medical
imaging application.

Our case study showed that SkelCL significantly reduces
programming effort in terms of lines of code, and greatly
improves program structure and maintainability, while it
causes less than 5% performance decrease as compared to
the low-level OpenCL-implementation. We obtained similar
results about the programming effort and performance for
the Mandelbrot benchmark application [6].

SkelCL is a runtime, library-based approach for GPU
programming, unlike compiler-based approaches, e. g.,
HMPP [13] and the PGI Accelerator compilers [14]. It offers

the user a consistent high-level API while still allowing the
programmer to use all features of the underlying OpenCL
standard.

There are other library-based approaches for high-level
GPU programming.

SkePU [15] is a skeleton-based framework for multi-core
CPUs and multi-GPU systems. An architecture-independent
macro language is used which, however, makes architecture-
specific optimizations impossible, like the use of local mem-
ory in OpenCL. SkelCL avoids this drawback by building
on top of OpenCL. SkePU provides memory abstractions
similar to SkelCL, but does not support different data dis-
tributions on multi-GPU systems as in SkelCL: vectors are
always distributed to all available devices, with no possibility
of data exchanges between devices. Therefore, our list-
mode OSEM application which heavily relies on multiple
data exchanges between devices cannot be implemented
efficiently using SkePU.

Thrust [16] provides an interface similar to the C++
Standard Template Library (STL). For data management,
two distinct dynamic containers, a host_vector and
a device_vector, can be used like STL vectors for
managing host and device memory respectively. In addition,
Thrust offers common parallel algorithms, including search-
ing, sorting, reductions, and transformations. Thrust is based
on CUDA, therefore, restricting the user to NVIDIA GPUs.

GPUSs [17] is an implementation of the Star Superscalar
model for multi-GPU systems. While SkelCL is focused on
data parallelism, GPUSs provides simple task parallelism;
annotations are used for data transfers between host and
GPU. SkelCL offers a higher level of memory abstrac-
tion: communication is specified implicitly by a distribution
scheme instead of individual data transfers.

Rabhi and Gorlatch [5] present different approaches of
skeletal programming for parallel as well as distributed sys-
tems. González-Vélez and Leyton [18] provide an overview
of available skeleton frameworks.

ACKNOWLEDGEMENT

The authors would like to thank NVIDIA for their hardware
donation, as well as Thomas Kösters and Klaus Schäfers
(European Institute for Molecular Imaging, WWU Münster)
for providing the reconstruction software EMRECON [10]
and the quadHIDAC PET data used in our application case
study.

REFERENCES

[1] A. Munshi, The OpenCL Specification, 2011, version 1.2.

[2] NVIDIA CUDA API Reference Manual, 2012, version 4.1.

[3] D. B. Kirk and H. W. W., Programming Massively Parallel
Processors - A Hands-on Approach. Morgan Kaufman, 2010.

[4] M. Cole, Algorithmic Skeletons: Structured Management of
Parallel Computation. Pitman and MIT Press, 1989.

[5] F. A. Rabhi and S. Gorlatch, Eds., Patterns and skeletons for
parallel and distributed computing. Springer-Verlag, 2003.

[6] M. Steuwer, P. Kegel, and S. Gorlatch, “SkelCL – A portable
skeleton library for high-level gpu programming,” in 2011
IEEE International Symposium on Parallel and Distributed
Processing Workshops (IPDPSW), 2011, pp. 1176–1182.

[7] D. Gregor and J. Järvi, “Variadic templates for C++0x,”
Journal of Object Technology, vol. 7, no. 2, pp. 31–51,
February 2008.

[8] ISO/IEC 14882:2011 Information technology – Programming
languages – C++, ISO/IEC JTC1/SC22/WG21 – The C++
Standards Committee, 2011.

[9] A. J. Reader, K. Erlandsson, M. A. Flower, and R. J. Ott, “Fast
accurate iterative reconstruction for low-statistics positron
volume imaging,” Physics in Medicine and Biology, vol. 43,
no. 4, pp. 823–834, April 1998.

[10] T. Kösters, K. Schäfers, and F. Wübbeling, “EMRECON:
An expectation maximization based image reconstruction
framework for emission tomography data,” in NSS/MIC
Conference Record, IEEE, 2011. [Online]. Available: http:
//emrecon.uni-muenster.de

[11] J. P. Jones, W. F. Jones, and F. Kehren, “SPMD cluster-based
parallel 3-D OSEM,” IEEE Transactions on Nuclear Science,
vol. 50, no. 5, pp. 1498–1502, 2003.

[12] P. Kegel, M. Steuwer, and S. Gorlatch, “dOpenCL: Towards a
uniform programming approach for distributed heterogeneous
multi-/many-core systems,” in 2012 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops
(IPDPSW), 2012.

[13] R. Dolbeau, F. Bihan, and B. F., “HMPP: A Hybrid Multi-
core Parallel Programming Environment,” in Proceedings of
the Workshop on General Purpose Processing on Graphics
Processing Units, 2007.

[14] T. P. Group, PGI Accelerator Programming Model for Fortran
& C, 2010.

[15] J. Enmyren and C. Kessler, “SkePU: A multi-backend skele-
ton programming library for multi-gpu systems.” in Proceed-
ings 4th Int. Workshop on High-Level Parallel Programming
and Applications (HLPP-2010), 2010.

[16] J. Hoberock and N. Bell, “Thrust: A Parallel Template
Library,” 2009, version 1.1. [Online]. Available: http:
//www.meganewtons.com

[17] E. Ayguadé, R. M. Badia, F. D. Igual et al., “An Extension of
the StarSs Programming Model for Platforms with Multiple
GPUs,” in Euro-Par 2009 Parallel Processing, ser. Lecture
Notes in Computer Science, H. J. Sips, D. H. J. Epema, and
H. Lin, Eds., vol. 5704. Springer, 2009, pp. 851–862.

[18] H. González-Vélez and M. Leyton, “A survey of algorithmic
skeleton frameworks: high-level structured parallel program-
ming enablers,” Software: Practice and Experience, vol. 40,
no. 12, pp. 1135–1160, 2010.

http://emrecon.uni-muenster.de
http://emrecon.uni-muenster.de
http://www.meganewtons.com
http://www.meganewtons.com

	Introduction
	Overview of SkelCL
	Algorithmic Skeletons
	Data type Vector

	Programming Multi-GPU Systems
	Data distribution
	Skeletons for Multiple GPUs
	Implementation of Skeletons on Multiple GPUs

	Application Study: List-mode OSEM
	Parallelization strategy
	Programming effort: SkelCL vs. OpenCL & CUDA
	Performance experiments: SkelCL vs. OpenCL & CUDA

	Enhancing SkelCL towards exascale systems
	Conclusion and Related Work
	References

