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ON A CONJECTURE OF ERDŐS AND STEWART

FLORIAN LUCA

Abstract. For any k ≥ 1, let pk be the kth prime number. In this paper, we
confirm a conjecture of Erdős and Stewart concerning all the solutions of the
diophantine equation n! + 1 = pakp

b
k+1, when pk−1 ≤ n < pk.

1. Introduction

For any k ≥ 1 let pk be the kth prime number. From [3], we found out that
Erdős and Stewart conjectured that the only solutions of the equation

n! + 1 = pakp
b
k+1 for some a ≥ 0, b ≥ 0 and pk−1 ≤ n < pk(1)

are obtained for n ≤ 5.
In this paper, we prove the following

Theorem. Equation (1) has no solutions for n ≥ 6.

One can check that equation (1) has no solutions for 5 < n ≤ 11. From now on,
we work with a potential solution of (1) with n ≥ 12.

2. An elementary lemma

The following elementary result turns out to be helpful when searching for the
values of n.

Lemma. In equation (1), one has ab 6= 0.

Proof of the Lemma. Assume that this is not so and write

n! + 1 = pa for some p ∈ {pk, pk+1}.(2)

Let a = 2ia1 where a1 ≥ 1 is odd. Then,

ord2(n!) = ord2(pa − 1) ≤ max(ord2(p± 1)) + i ≤ log2(pk+1 + 1) + log2(a).(3)

From equation (2), we know that

na < pa = n! + 1 < nn,(4)

therefore a < n. Since the interval [n + 1, 2n] contains at least two primes for
n ≥ 12, we get pk+1 + 1 ≤ 2n. Hence, inequality (3) implies

ord2(n!) < log2(2n) + log2(n) = 2 log2(n) + 1.(5)
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From Lemma 1 in [1], we know that

ord2(n!) ≥ n− log2(n+ 1).(6)

From inequalities (5) and (6), we get

n− log2(n+ 1) < 2 log2(n) + 1,(7)

which implies n ≤ 11. This contradicts the assumption on n ≥ 12.

3. A linear form in logarithms and a bound on n

Write

n! = pakp
b
k+1 − 1 = pbk+1

(
pak −

(
1

pk+1

)b)
.(8)

We find an upper bound for ord2(n!). We apply Théoréme 4 in [1] with the choices

p = 2, D = 1, g = 1,

α1 = pk, α2 =
1

pk+1
, b1 = a, b2 = b,

A1 = pk, A2 = pk+1

and

µ = 15, ν = 10, c(µ, ν) = 18.

From the result in [1], it follows that

ord2(n!) ≤ 36
(log 2)4

(max{log b′ + log log 2 + 0.4, 15 log 2})2 log pk log pk+1,(9)

where

b′ =
a

log pk+1
+

b

log pk
.(10)

We now find a bound on b′ in terms on n. Since

pakp
b
k+1 = n! + 1 < nn,

it follows that

a log pk + b log pk+1 = log pakp
b
k+1 < lognn = n logn.(11)

Hence,

b′ =
a

log pk+1
+

b

log pk
=
a log pk + b log pk+1

log pk log pk+1
<

n logn
log pk log pk+1

<
n

logn
.(12)

Since the interval [n + 1, 2n] contains at least two primes, it follows that pk <
pk+1 < 2n. Inequality (9) now implies

ord2(n!) <
36

(log 2)4

(
max

{
log
(

n

logn

)
+ log log 2 + 0.4, 15 log 2

})2

log2(2n).

(13)

When

log
(

n

logn

)
+ log log 2 + 0.4 ≤ 15 log 2,
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we get n < 409 506. When

log
(

n

logn

)
+ log log 2 + 0.4 > 15 log 2,

we get, by inequalities (6) and (13), that

n− log2(n+ 1) <
36

(log 2)4

(
log
(

n

logn

)
+ log log 2 + 0.4

)2

log2(2n),(14)

which implies n < 7 242 116. The conclusion is that n < pk < pk+1 < 7.5 · 106.

4. The remaining computations

For the remaining computations, we used the following result due to Erdős and
Obláth (see [2]).

Theorem EO. The equation

xp ± yp = n!(15)

has no solutions such that p > 2 is prime and gcd(x, y) = 1.

Case 1. n > 193.

The idea here was to check, computationally, that if n leads to a solution of (1),
then a ≡ b ≡ 0(mod 3). Once we prove this, the impossibility of (1) follows from
Theorem EO for p = 3.

Assume, for example, that (1) has a solution such that either 3 - a or 3 - b. Write

n! + 1 = Ax3 where A = pδ1k p
δ2
k+1 for some δ1, δ2 ∈ {0, 1, 2} with (δ1, δ2) 6= (0, 0).

(16)

Let q ≤ 193 be a prime congruent to 1 modulo 3. Equation (1) implies that
Ax3 ≡ 1(mod q) for every such q. It now follows that A is a cubic residue modulo
q for every q ≤ 193 which is congruent to 1 modulo 3. Since a number y is a cubic
residue modulo q if and only if y2 is a cubic residue modulo q, it follows that we
need to identify only those numbers A of the form

A = pk or A = pkpk+1 or A = p2
kpk+1(17)

in the range 193 < pk < pk+1 < 7.5 · 106 which are cubic residues with respect
to every prime q ≤ 193 which is congruent to 1 modulo 3. Achim Flammenkamp
wrote a computer program which checked in a few minutes that there are no such
A’s. Hence, n ≤ 193.

Case 2. n ≤ 193.

By the Lemma, we know that if n leads to a solution of (1), then ab > 0.
Achim Flammenkamp wrote another computer program which checked in less than
a second that in this range n! + 1 6≡ 0(mod pkpk+1).

The Theorem is therefore proved.
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