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Abstract—Recently, the commutative anisotropic con-
volution has been defined for signals defined on the 2-
sphere. Here, we present exact and efficient methods for
computation of commutative convolution of two signals de-
fined on the sphere. For fast computation of commutative
convolution, we first review the use of existing efficient
techniques developed to evaluate SO(3) convolution. By
employing the factoring of a rotation into two rotations,
followed by the separation of variables, we propose a fast
algorithm for the efficient computation of commutative
convolution. In terms of computational complexity, our
proposed algorithm provides a saving of O(N) over
the existing algorithms, where the convolution output is
evaluated on O(N2) samples on the 2-sphere. Through
numerical experiments, we also verify the improvement in
the computational complexity.

Index Terms—convolution, 2-sphere (unit sphere), spher-
ical harmonics.

I. INTRODUCTION

Analysis and processing of signals defined on the
sphere have direct applications in various branches of
science and engineering such as as geophysics [1],
astrophysics [2], computer graphics [3], electromagnetic
inverse problems [4] and wireless channel modeling [5].
Signal processing techniques have been extended from
Euclidean domain to the spherical domain to deal with
the signals defined on the sphere (e.g., [6]–[10]). Among
these developments, the convolution of two signals on
defined on the sphere is one of the basic signal process-
ing tools.

There exist various formulations of convolution on the
sphere (e.g., [6], [11], [12]), which do not well emulate
the convolution definition in the Euclidean domain. The
convolution definition in [6] takes into account the rota-
tion of a signal by all independent three Euler angles in
order to keep the convolution output on the sphere, which
results in an extra averaging over an azimuthal rotation.

Due to this extra averaging, this convolution becomes
equivalent to an isotropic convolution [7] and therefore
the anisotropic or directional features of the rotated
signal do not contribute towards the convolution output.
Furthermore, due to an extra averaging over azimuthal
rotation, this convolution definition is not commutative
in general. In order to incorporate the directional features
of the rotated signal, the convolution has been defined
in [11] as anisotropic convolution, which involves the
rotation by all Euler angles, due to which the output of
the convolution is not defined on the 2-sphere, instead it
is defined on SO(3). We refer this convolution as SO(3)
convolution. We also note that SO(3) convolution is not
commutative either.

Recently, a convolution definition on the 2-sphere has
been proposed in [9] which simultaneously satisfies the
following properties: 1) it is anisotropic, 2) the output is
defined on 2-sphere and 3) it is commutative. This con-
volution has been referred as commutative anisotropic
convolution. In philosophy, the commutative anisotropic
convolution has been formulated by imposing a con-
trolled dependency between the two rotations around z-
axis involved in the SO(3) convolution [11]. Such con-
trolled dependency incorporates the anisotropy, yields
the commutativity and keeps the output of convolution
on 2-sphere.

In this work, we consider the problem to efficiently
evaluate the commutative anisotropic convolution. Since
the commutative anisotropic convolution [9] can be
considered as the mapping of SO(3) convolution with a
constraint that the two rotations around z-axis depend
on each other, the commutative anisotropic convolu-
tion [9] can be evaluated by employing the existing
fast techniques for the computation of SO(3) convo-
lution [11]. We show that evaluation of commutative
anisotropic convolution using existing SO(3) convolution
involves some computational redundancy and the com-
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mutative anisotropic convolution can be evaluated more
efficiently.

Here, we develop a method to efficiently compute the
commutative anisotropic convolution. We present a range
of algorithms from the direct quadrature evaluation, to a
semi-fast algorithm that employs the existing efficient
methods for SO(3) convolution, to the proposed fast
algorithm. We show that the proposed fast algorithm is
computationally efficient than the direct quadrature eval-
uation and semi-fast algorithm. Later, through numerical
experiments, we verify the computational complexity of
the proposed fast algorithm.

The rest of the paper is structured as follows. We
provide mathematical preliminaries for signals on the 2-
sphere, and briefly review the definitions of convolution
on the sphere in Section II. We present different algo-
rithms for the computation of commutative convolution
in Section III. Simulation results are presented in Sec-
tion IV and Section V concludes the paper.

II. MATHEMATICAL BACKGROUND AND PROBLEM
FORMULATION

A. Mathematical Preliminaries
1) Signals on the Sphere: We consider the complex

valued square integrable functions f(θ,φ) defined on
the 2-sphere S2 ! {r ∈ R3 : |r| = 1}. Here (θ,φ)
parameterize a point on unit sphere, where θ ∈ [0,π]
denotes the colatitude measured from the positive z-axis
and φ ∈ [0, 2π) denotes the longitude from the positive
x-axis in the x−y plane. We also use ϑ and ϕ to denote
colatitude and longitude, respectively.

Define the inner product of two functions f(θ,φ) and
h(θ,φ) defined on the 2-sphere as

⟨f, h⟩ !
∫

S2

f(θ,φ)h(θ,φ) sin θdθdφ, (1)

where sin θdθdφ denotes the differential area element
and the integration is carried out over the 2-sphere. The
functions of the form f(θ,φ) with the inner product
defined in (1) form Hilbert space L2(S2). The norm
∥f∥ ! ⟨f, f⟩1/2 is induced by the inner product in
(1). We refer the functions with finite induced norm as
signals on the sphere.

2) Spherical Harmonics: The Hilbert space L2(S2)
is separable and spherical harmonics are archetype com-
plete orthonormal set of basis functions. The spherical
harmonic functions Y m

ℓ (θ,φ) are defined for integer
degree ℓ ≥ 0 and integer order |m| ≤ ℓ as

Y m
ℓ (θ,φ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimφ, (2)

where Pm
ℓ denotes the associated Legendre func-

tion [13]. By completeness of spherical harmonics, any
signal f ∈ L2(S2) can be expressed as

f(θ,φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

(
f
)
m
ℓ Y m

ℓ (θ,φ) (3)

where
(
f
)
m
ℓ denotes the spherical harmonic coefficient

of degree ℓ and order m and is given by
(
f
)
m
ℓ ! ⟨f, Y m

ℓ ⟩ =
∫

S2

f(θ,φ)Y m
ℓ (θ,φ) sin θdθdφ (4)

Also, the signal is defined to be band-limited function
on the sphere with maximum spherical harmonic degree
or band-limit Lf if

(
f
)
m
ℓ = 0, ∀ ℓ > Lf .

3) Rotation of a Signal on the 2-Sphere: Rotation of
a signal defined on the sphere is often parametrized in
terms of Euler angles [13], [14]. We define the Euler
angles (ϕ,ϑ,ω) ∈ SO(3), where ϑ ∈ [0,π], ϕ ∈ [0, 2π)
and ω ∈ [0, 2π). Also define the rotation operator
D(ϕ,ϑ,ω), which rotates a function on the sphere in
a sequence of ω rotation about z−axis, then ϑ rotation
about y−axis followed by the ϕ rotation about z−axis.
We also note the effect of rotation operator on spherical
harmonic coefficient of the signal given by [13], [14]
(
D(ϕ,ϑ,ω)f

)m
ℓ

!
〈
D(ϕ,ϑ,ω)f, Y m

ℓ

〉

=
ℓ∑

m′=−ℓ
Dm,m′

ℓ (ϕ,ϑ,ω)
(
f
)
m′

ℓ , (5)

where Dm,m′

ℓ (ϕ,ϑ,ω) are the Wigner-D functions given
by [14]

Dm,m′

ℓ (ϕ,ϑ,ω) = e−imϕdm,m′

ℓ (ϑ)e−im
′ω, (6)

and dm,m′

ℓ (ϑ) denotes the Wigner-d function [14].

B. Convolution on the 2-Sphere
There exist various formulations of convolution on the

sphere in the literature [6], [11], which do not well em-
ulate the definition of convolution in the Euclidean do-
main. Here, we first review the definition of anisotropic
convolution (SO(3) convolution) [11]. Later, we present
the commutative anisotropic convolution [9], which has
been recently proposed and serve as a close analog
of its counterpart in Euclidean domain. The following
definition has been referred as anisotropic convolution
in the literature [11]

g(ϕ,ϑ,ω) = h ⋆ f

!
∫

S2

(
D(ϕ,ϑ,ω)h

)
(θ,φ) f(θ,φ) sin θdθdφ.

(7)



Since the rotation operator is parameterized in terms of
three independent rotations, the domain of the output of
the convolution is SO(3), instead of S2. We refer this
convolution definition as SO(3) convolution. We refer
f(θ,φ) as signal and h(θ,φ) as filter, but they can be any
complex-valued signals on the sphere. Another definition
of convolution appears in [6] with output defined on S2,
but with a consideration that the filter is isotropic. We
note that none of these definitions are commutative in
general.

Recently, commutative and anisotropic convolution on
the sphere has been proposed, which accommodates
anisotropic filter, satisfies the commutativity property
and produces the output defined on the 2-sphere (S2).

Definition 1 (Commutative Anisotropic Convolution):
With the consideration that the convolution on the sphere
satisfies commutativity and only two independent
rotations should be involved in the convolution on the
sphere, the anisotropic and commutative convolution
has been defined in [9]

gc(ϑ,ϕ) = (f ⊙ h)(ϑ,ϕ)

!
∫

S2

(
D(ϕ,ϑ,π − ϕ)h

)
(θ,φ)f(θ,φ) sin θdθdφ,

(8)

with the convolution output defined on S2. Also, it
can be verified that this definition is commutative,
(f ⊙ h)(ϑ,ϕ) = (h⊙ f)(ϑ,ϕ).
This convolution definition can be interpreted as a special
case of SO(3) convolution in (7), where the rotation ω is
now constrained to be a function of ϕ, that is, ω = π−ϕ,
which is a necessary and sufficient condition in order
to preserve the convolution commutativity (Theorem 1
in [9]). Furthermore, following the spectral analysis of
the commutative anisotropic convolution given in [9], we
note that the convolution output gc(ϑ,ϕ) given in (8) is
not a band-limited function on the sphere, even when
both signal f(θ,φ) and filter h(θ,φ) are band-limited
functions.

C. Problem Statement
In this work, we consider the problem to efficiently

evaluate the commutative anisotropic convolution in
(8). Since the commutative anisotropic convolution is
a special case of SO(3) convolution, it can be com-
puted efficiently by employing the existing efficient algo-
rithms [11] for SO(3) convolution to compute g(ϕ,ϑ,ω)
in (7) and then mapping g(ϕ,ϑ,ω) to gc(ϕ,ϑ) in (8)
whose domain is S2 with a constrain ω = π − φ.
However, this method of computation of g(ϕ,ϑ) involves

redundancy as we do not need to compute the SO(3)
convolution for all values of ω, instead, we need to
compute for only ω = π − ϕ. In order to avoid this
redundancy, we present fast algorithm for the efficient
computation of commutative anisotropic convolution. In
terms of computational complexity, our proposed fast
algorithm provides a saving of O(N) over existing effi-
cient techniques, when the convolution output is defined
on O(N2) number of samples on the sphere.

III. EFFICIENT COMPUTATION OF COMMUTATIVE
ANISOTROPIC CONVOLUTION

For the computation of commutative anisotropic con-
volution given in (8), we present here a range of al-
gorithms, from the direct quadrature evaluation, to the
semi-fast algorithm that employs the existing efficient
methods for SO(3) convolution, to the proposed fast
algorithm where we use the factoring of rotation ap-
proach [15] and employ FFT for efficient computation.
We show that the proposed fast algorithm is computa-
tionally efficient than the direct quadrature evaluation
and semi-fast algorithm. Later, through numerical exper-
iments, we verify the computational complexity of the
proposed fast algorithm.

A. Discretization of S2 and SO(3)

For representation of a signal on the sphere, it is
required to define discretization of both the spherical
coordinates of the unit sphere and the Euler angle
representation of SO(3). We consider the equiangular
sampling scheme tessellation schemes, which support the
computation of exact quadrature for band-limited signals.

For the unit sphere domain, we use the equiangular
sampling scheme [16] S(L) = {θnθ = 2πnθ/(2L +
1), φnφ = 2πnφ/(2L+1) : 0 ≤ nθ ≤ L, 0 ≤ nφ ≤ 2L}
as a grid of (L + 1) × (2L + 1) sample points on the
sphere. Using the quadrature weights derived in [16],
the integral of a band-limited function f with band-
limit Lf over the sphere can be computed exactly as
quadrature using the sampling scheme S(Lf ). Since
the commutative convolution output gc(ϑ,ϕ) given in
(8) is not a band-limited function, therefore we cannot
associate the size of the sampling grid for output with the
band-limit of the output. The larger the size of the grid,
the better is the resolution of the convolution output. We
use N to characterize the sampling grid S(N) for the
commutative anisotropic convolution output.

For the discretization of Euler angle representation
of SO(3), we consider equiangular tessellation scheme
C(L) = {ϕnϕ = 2πnϕ/(2L + 1), ϑnϑ = 2πnϑ/(2L +



1), ωnω = π(2nω + 1)/(2L + 1) : 0 ≤ nϑ ≤ L, 0 ≤
nϕ, nω ≤ 2L} as a grid of (2L+1)× (L+1)× (2L+1)
sample points.

B. Direct Quadrature Evaluation

Here, we discuss computation of the commutative
convolution by evaluating the integral in (8) directly
using quadrature rule on the sphere. If the output is
required to be computed on the equiangular grid S(N)
on the sphere, the signals f and h are required to
be sampled on the same grid. By virtue of sampling
theorem for band-limited signals on the sphere [16],
if N ≥ max(Lf , Lh), the integral can be computed
exactly as summation over the spatial domain samples
by employing the quadrature weights associated with the
sampling scheme. Since the integral is computed as two
dimensional summation over the grid S(N), evaluated
for each sample point on the two dimensional grid S(N)
of the output, the computational complexity to obtain the
convolution output gc(ϑ,ϕ) in (8) on the grid S(N) is
O(N4).

C. Semi-Fast Algorithm - SO(3) Convolution Case

Here, we present the computation of commutative
convolution using the fast algorithm for SO(3) convo-
lution described in [11] to obtain the convolution output
g(ϕ,ϑ,ω) given in (7) and defined on SO(3), followed
by the mapping along ω = π − ϕ to obtain gc(ϑ,ϕ) as

gc(ϕ,ϑ) = g(ϕ,ϑ,ω)

∣∣∣∣
w=π−ϕ

. (9)

By using the effect of rotation operator on the spher-
ical harmonic coefficients of the signal as described in
(5) and employing the orthonormal property of spherical
harmonics, we can write the SO(3) convolution defined
in (7) in spherical harmonic domain as

g(ϕ,ϑ,ω) =
L∑

s=0

s∑

t=−s

s∑

t′=−s
(−1)t

(
f
)−t
s

(
h
)
t′
sD

t,t′
s (ϕ,ϑ,ω)

=
L∑

s=0

s∑

t=−s

s∑

t′=−s
(−1)t

(
f
)−t
s

(
h
)
t′
s

× e−itϕdt,t′
s (ϑ)e−it

′ω, (10)

where L = min(Lf , Lh). The direct computation of (10)
involves three summation for sample points defined on
three dimensional grid and therefore has the complexity
O(L3N3). We note that the summations over t and
t′ involve complex exponentials and therefore can be
computed efficiently by using FFT, that reduces the

overall complexity to O(LN3 log2N), which is not
better than the complexity of the direct quadrature case
if L log2N > N . However, it can be further lowered
by using the factoring of rotation approach, originally
presented in [15] and then applied for fast computation
of SO(3) convolution [11].

By factoring the single rotation ϑ around y-axis as

D(0,ϑ, 0) = D(−π/2,−π/2,ϑ)D(0,π/2,π/2) (11)

and again incorporating the effect of rotation on spherical
harmonic coefficients given in (5) and the definition of
Wigner-D function in (6), we can write the Wigner-d in
(10) as

dt,t′
s (ϑ) = it−t

′
s∑

t′′=−s
dt′′,t
s (π/2) dt′′,t′

s (π/2) e−it
′′ϑ,

(12)

which is used to express the SO(3) convolution formu-
lated in (10) as

g(ϕ,ϑ,ω) =
L∑

s=0

s∑

t=−s

s∑

t′=−s

s∑

t′′=−s
i3t−t

′(
f
)−t
s

(
h
)
t′
s

× dt′′,t
s (π/2) dt′′,t′

s (π/2) e−itϕ−it
′′ϑ−it′ω,

(13)

and the rearrangement of the terms yields

g(ϕ,ϑ,ω) =
s∑

t=−s

s∑

t′=−s

s∑

t′′=−s
e−itϕ−it

′′ϑ−it′ω,

×
L∑

s=max(|t|,|t′|,|t′′|)

i3t−t
′(
f
)−t
s

(
h
)
t′
s d

t′′t
s (π/2) dt′′t′

s (π/2)

︸ ︷︷ ︸
I(t,t′,t′′)

.

(14)

We note that the convolution output in (14) is a 3-
dimensional FFT of I(t, t′, t′′). The rotation ϑ, which
accounts for the computation of Wigner-d function for
all ϑ, can be performed as a rotation around z-axis
by employing the factoring of rotation given in (11),
the effect of which can be expressed using complex
exponential and Wigner-d functions evaluated at π/2
only.

The evaluation of I(t, t′, t′′) involves the summa-
tion over s for three dimensions t, t′, t′′ and there-
fore has the complexity O(L4). Using I(t, t′, t′′), the
SO(3) convolution output g(ϕ,ϑ,ω) in (14) on the grid
C(N) can be computed in O(N3 log2N). The overall
complexity to evaluate SO(3) convolution is therefore



O(L4 +N3 log2N) which is better than the complexity
of the exact quadrature case.

As we mentioned earlier, once the SO(3) convolu-
tion output g(ϕ,ϑ,ω), it can be used to determine
the commutative convolution output gc(ϕ,ϑ) using (9).
This method of using existing fast algorithms for SO(3)
convolution to evaluate the commutative convolution
enables the efficient computation in the harmonic space,
however it involves redundancy in the computation as the
current efficient method evaluates the SO(3) convolution
output for all ω ∈ [0, 2π). Instead, we only need the
SO(3) convolution output for ω = π − ϕ. We remove
this redundancy in the computation and propose fast
algorithm in the next subsection.

Remark 1: Although both ϕ and ω are defined for
[0, 2π), we have deliberately chosen different sampling
criterion along ϕ and ω during the definition of adopted
SO(3) sampling scheme C(N) (see Section III-A), where
we have considered 2N+1 (odd number) samples along
both ϕ and ω, but the sampling points along ϕ are
symmetric around ϕ = 0 and the sampling points along
ω are symmetric around ω = π. This is in contrast
to the conventional SO(3) sampling [17]. However, it
is necessary here as we are evaluating the commutative
convolution gc(ϕ,ϑ) using SO(3) convolution g(ϕ,ϑ,ω)
with a constrain ω = π−φ, which can only be applied if
the proposed sampling C(N) for SO(3) domain is used.

D. Proposed Fast Algorithm

Here, we propose a fast algorithm for the evaluation
of commutative convolution on the sphere defined in (8).
Following the harmonic domain formulation of SO(3)
convolution in (13) and the relation between the convo-
lution output on SO(3) and S2, we can express gc(ϑ,ϕ)
as

gc(ϑ,ϕ) =
L∑

t′′=−L
e−it

′′ϑJ(t′′,ϕ)K(t′′,ϕ), (15)

where

J(t′′,ϕ) =
s∑

t=−s

L∑

s=max(|t|,|t′′|)

(−i)t
(
f
)−t
s dt

′′t
s (π/2)e−itϕ

(16)

and

K(t′′,ϕ) =
s∑

t′=−s

L∑

s=max(|t′|,|t′′|)

(i)t
′(
h
)
t′
s dt

′′t′
s (π/2)eit

′ϕ.

(17)

We note that the constrain ω = π − φ, which yields the
commutativity also allows the decoupling of Wigner-D
function in (15), so that the summation over t and t′,
given in (16) and (17) respectively, can be computed
independently. Since the computation of both J(t′′,ϕ)
and J(t′′,ϕ) involves the summation over complex expo-
nentials, we can employ FFT to compute the summations
efficiently. For the convolution output on the grid S(N)
with N ≥ max(Lf , Lh), both J(t′′,ϕ) and K(t′′,ϕ)
for each t′′ and for all 2N + 1 points along ϕ can be
computed in O(LN log2N) using FFT and the product
of J(t′′,ϕ) and K(t′′,ϕ) can be computed in O(N)
computations for each t′′. Thus the overall complexity
to obtain the product of J(t′′,ϕ) and K(t′′,ϕ) for
each s and for each t′′ is O(LN log2N) and for all
t′′ is O(LN2 log2N). Finally, the sum over t′′ can
be computed efficiently in O(N2 log2N) again using
the FFT. Therefore, the overall complexity of proposed
fast algorithm is O(LN2 log2N), which is better than
the complexities of both exact quadrature and semi-fast
algorithm.

E. Computation of Wigner-d Function

We note that both semi-fast algorithm and fast algo-
rithm require Wigner-d functions evaluated for argument
π/2. By reviewing (14), (16) and (17), we note that we
need to compute Wigner-d function dt′′,t

s (π/2) on the
entire (t′′, t) plane. During implementation, the Wigner-
d function dt′′,t

s (π/2) can be computed on the plane
(t′′, t) for a given s by using the recursion method
proposed in [18] with complexity O(L2), which do not
alter the overall complexity of the algorithms (both semi-
fast and fast).

IV. COMPUTATION TIME COMPARISON

In this section, we demonstrate and compare the com-
putation time of semi-fast algorithm and fast algorithm
to evaluate the commutative anisotropic convolution.
We have implemented our algorithms using MATLAB,
adopting the defined equiangular tessellations. We have
recorded the computation time τ (in seconds) to evaluate
convolution output gc(ϑ,ϕ) in (8) on the grid S(N)
for L = 32 and L = 64 and for different values
of N . We generate the band-limited test signal on the
sphere by using uniformly distributed spherical harmonic
coefficients with real and imaginary parts in the range
of [−1, 1]. The numerical experiments on a 2.4 GHz
Intel Xeon processor with 64 GB of RAM and the
computation times are averaged over twenty test signals.



32 64 128 256 512

102

104

106

N

τ

SemiíFast (L=32)
SemiíFast (L=64)

Fig. 1: The computation time τ in seconds for semi-fast
algorithm to compute the convolution output gc(ϑ,ϕ) in
(8) on grid S(N) for L = 32 and 64. The computation
time scales as N3 log2N as indicated by red solid
line (without markers).

The computation time τ taken by semi-fast algorithm
to compute convolution output gc(ϑ,ϕ) is shown in
Fig. 1 on log-log axes for different values of N , where
the computation time grows as N3 log2N . For the pro-
posed fast algorithm, the computation time τ scales as
N2 log2N as shown in Fig. 2. For comparison, we have
also plotted the computation time for both semi-fast and
fast algorithm on a linear scale along time axis as shown
in Fig. 3. We note that the simulation results agree with
the theoretically evaluated computational complexities of
the algorithms and thus corroborate the mathematical
developments.

V. CONCLUSION

In this work, we have served an objective to efficiently
evaluate the commutative anisotropic convolution on
the 2-sphere. With the consideration of commutative
anisotropic convolution as a special case of SO(3) convo-
lution, we have first presented semi-fast algorithm based
on the existing efficient techniques of SO(3) convolution.
Later, we have proposed the fast algorithm which em-
ploys the factoring of rotation approach followed by the
separation of variables technique. For the evaluation of
the commutative convolution output on O(N2) samples
on the 2-sphere, the proposed fast algorithm provides
the saving of O(N) in terms of the computational
complexity over the semi-fast algorithm. Our proposed
method evaluates the convolution of the signals given
in spectral domain, which makes the evaluation exact

32 64 128 256 512 1024 2048

100

102

104

106

N

τ

Fast (L=32)
Fast (L=64)

Fig. 2: The computation time τ in seconds for pro-
posed fast algorithm to compute the convolution output
gc(ϑ,ϕ) in (8) on grid S(N) for L = 32 and 64. The
computation time scales as N2 log2 N as indicated by
red solid line(without markers).

32 64 128 256 512 1024 2048
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τ

SemiíFast (L=32)
Fast (L=32)
SemiíFast (L=64)
Fast (L=64)

1024

10

12

14

Fig. 3: The comparison of the computation time τ (in
seconds) for semi-fast and fast algorithm to compute the
convolution output gc(ϑ,ϕ) in (8) on grid S(N) for L =
32 and 64.

with the only assumption that one of the two signals
involved in the convolution is band-limited. We have
also presented simulation results to verify the theoretical
improvement in the computational complexity.
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