
A novel approach makes higher order wavelets really

efficient for radiosity

François Cuny, Laurent Alonso, Nicolas Holzschuch

To cite this version:

François Cuny, Laurent Alonso, Nicolas Holzschuch. A novel approach makes higher or-
der wavelets really efficient for radiosity. Computer Graphics Forum, Wiley, 2000, 19
(3), pp.C99-108. <http://www.eg.org/EG/CGF/Volume19/Issue3/402.pdf>. <10.1111/1467-
8659.00402>. <inria-00099344>

HAL Id: inria-00099344

https://hal.inria.fr/inria-00099344

Submitted on 30 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract
Since wavelets were introduced in the radiosity algorithm5, surprisingly little research has been devoted to higher
order wavelets and their use in radiosity algorithms. A previous study13 has shown that wavelet radiosity, and
especially higher order wavelet radiosity was not bringing significant improvements over hierarchical radiosity
and was having a very important extra memory cost, thus prohibiting any effective computation. In this paper,
we present a new implementation of wavelets in the radiosity algorithm, that is substantially different from pre-
vious implementations in several key areas (refinement oracle, link storage, resolution algorithm). We show that,
with this implementation, higher order wavelets are actually bringing an improvement over standard hierarchical
radiosity and lower order wavelets.

1. Introduction

Global illumination simulation is essential for realistic ren-
dering of virtual scenes. In global illumination, we take
the geometric definition of a virtual scene, we simulate the
propagation of light throughout the scene, modelling its vi-
sual and physical effects, such as shadows and reflections.
Global illumination simulation has applications in all the ar-
eas where a realistic rendering is interesting, such as archi-
tecture, archeology, urban planning and computer-aided de-
sign.

The radiosity method is one of the methods used in global
illumination simulation. In the radiosity method, we model
the exchanges of energy between the objects of the scene in
order to compute the radiant energy per unit area (orradios-
ity) on all the surfaces of all the objects in the scene. The
radiosity can be used directly to display the objects of the
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scene and the quality of the simulation is directly linked to
the precision we have on the radiosity function.

The radiosity function is usually computed using finite
element methods. The most efficient of these methods are
hierarchical and use a multi-scale representation of the ra-
diosity function6 to reduce the algorithmic complexity of
the computations. Hierarchical methods have been extended
with wavelets5. The simplest wavelet base is piecewise con-
stant (Haar wavelets), but many other wavelet bases can be
used in radiosity computations.

In theory, higher order wavelets are providing a more
compact representation of complex functions. Hence they
use less memory and give a smoother representation of the
function, that looks better on display. Higher order wavelets
should be the ideal choice for radiosity computations.

In practice, the memory required to store the interactions
between objects grows with thefourth power of the order
of the wavelet base, prohibiting any real computation with
complex wavelets. Furthermore, Haar wavelets allow many
simplifications and optimisations that exploit their great sim-
pleness. If these optimisations are kept with higher order
wavelets, they can inhibit some of their properties. In one
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experimental study13 the practical problems of higher order
wavelets were largely overcoming their theoretical benefits.

However, these practical problems are not inherent to
higher order wavelets themselves, only to their implemen-
tation in the radiosity method. In this paper, we present a
new approach to higher order wavelets, that is substantially
different from previous implementations in several key ar-
eas, such as refinement oracle, link storage and resolution
algorithm. Our approach has been developed by taking a
complete look at higher order wavelets and at the way they
should integrate with the radiosity method. With this imple-
mentation, we show that the theoretical advantages of higher
order wavelets are overcoming the practical problems that
have been encountered before. Higher order wavelets are
now providing a better approximation of the radiosity func-
tion, with faster convergence to the solution. They also re-
quire lessmemory for storage.

Our paper is organised as follows: in section2, we review
the previous research on wavelet radiosity and higher order
wavelets. Then in section3, we present our implementation,
concentrating on the areas where it is substantially different
from previous implementations: the refinement oracle, not
storing the interactions and the consequences it has on the
resolution algorithm.

The main result that we present in this paper is the exper-
imental study we have conducted on higher order wavelets
with our implementation. Section4 is devoted to this exper-
imentation and its results, namely that higher order wavelets
are providing a faster convergence, a solution of better qual-
ity and require less memory for their computations. Finally,
section5 presents our conclusions and future areas of re-
search.

2. Previous work

In this section we review the basis of the wavelet radiosity
algorithm (section2.1), then we present the implementation
details of previous implementations for key areas of the al-
gorithm (section2.2): the refinement oracle, the visibility es-
timation and the memory problem. This review will help for
the presentation of our own implementation of these areas,
in section3.

2.1. The wavelet radiosity algorithm

In the radiosity method, we try to solve the global illumina-
tion equation, restricted to diffuse surfaces with no partici-
pating media:

B(x) = E(x)+ρ(x)
Z

S
B(y)K(x,y)dy (1)

Eq.1 expresses the fact that the radiosity at a given point
x in the scene,B(x), is equal to the radiosity emitted byx
alone,E(x), plus the radiosity reflected byx, coming from

all the other objects in the scene.K(x,y) is the kernel of the
equation, and expresses the part of radiosity emitted by point
y that reachesx.

To compute the radiosity function, we use finite element
methods. The function we want to compute,B(x), is first
projected onto a finite set of basis functionsφi :

B̃(x) = ∑
i

αiφi(x) (2)

Our goal is to compute the best approximation of the
radiosity function, given the set of basis functionsφi . We
must also find the optimal set of basis functions. A possibil-
ity is to use wavelets. Wavelets are mathematical functions
that provide a multi-resolution analysis. They allow a multi-
scale representation of the radiosity function on every object.
This multi-scale representation can be used in the resolution
algorithm6, 5, allowing us to switch between different repre-
sentations of the radiosity function, depending on the degree
of precision required. This multi-scale resolution results in a
great reduction of the complexity of the algorithm6.

There are two broad classes of resolution algorithm:gath-
eringandshooting. In gathering, each patch updates its own
radiosity function using the energy sent by all the other
patches, whereas in shooting each patch sends energy into
the scene, and all the other patches update their own radios-
ity. In both cases, the energy is carried alonglinks, that are
established by the wavelet radiosity algorithm, and used to
store the information related to the interaction. A key ele-
ment of the wavelet radiosity algorithm is therefinement or-
acle, that tells which levels of the different multi-scale rep-
resentation of radiosity should interact.

Finally, before each energy propagation, we must update
the multi-scale representation of radiosity, so that each level
contains a representation of all the energy that has been re-
ceived by the object at all the other levels. This is done dur-
ing thepush-pullphase.

2.2. Details of previous implementations

2.2.1. Refinement oracles

The refinement oracle is one of the most important parts in
hierarchical radiosity algorithms. Since it tells at which level
the interaction should be established, it has a strong influ-
ence on both the quality of the radiosity solution and the
time spent doing the computations. A poor refinement ora-
cle will give poor results, or will spend a lot of time doing
unnecessary computations.

In theory, the decision whether or not to refine a given in-
teraction could only be taken with the full knowledge of the
complete solution. However, the refinement oracle must take
the decision using only the information that is locally avail-
able: the energy to be sent, and the geometric configuration
of the sender and the receiver.

c© The Eurographics Association and Blackwell Publishers 2000.
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Given two patches in the scene, let us consider their inter-
action: patchs, with its current approximation of the radios-
ity function B̃s(y), is sending light toward patchr. Using a
combination of eq.1 and eq.2, we can express the contribu-
tion of patchs to the radiosity of patchr:

Bs→r(x) = ρ∑
i

αi

Z
s
φi(y)K(x,y)dy (3)

For the interaction between the two patches we will use
the relationship coefficients,Ci j :

Bs→r(x) = ∑
j

β jφ j (x)

β j =
Z

r
Bs→r(x)φ j (x)

β j = ρ∑
i

αi

Z
r

Z
s
φi(y)φ j (x)K(x,y)dydx

β j = ρ∑
i

αiCi j

TheseCi j coefficients express the relationship between
the basis functionsφ j (x) and φi(y). Computing theCi j re-
quires the computation of a complex integral, which cannot
be computed analytically and must be approximated, usually
using quadratures.

In most current implementations, refinement oracle esti-
mate the error on this approximation of theCi j . This error
is then multiplied by the energy of the sender, to avoid re-
fining interactions that are not carrying significant energy.
There are several ways to estimate the error on theCi j coef-
ficients: pure heuristics6, sampling theCi j at several sample
points5 and a conservative method giving an upper-bound on
the propagation of the energy10, 8.

A recurrent problem with current refinement oracles is
that they concentrate on theCi j coefficients. This provides
a conservative analysis, but it can be too cautious, especially
with higher order basis functions. TheCi j coefficients are
usually bound with constant functions and hence so is the
radiosity function. Such a binding does not take into account
the capacity of higher order wavelets to model rapidly vary-
ing functions in a compact way. To take this into account,
we need to move the radiosity functioninsidethe refinement
oracle. In section3.1, we present a refinement oracle that
addresses this problem.

2.2.2. Visibility estimations

Discontinuities of the radiosity function and its deriva-
tives are only caused by changes in the visibility between
objects7. Therefore, great care must be taken when adding
visibility information to the radiosity algorithm.

As we have seen, we use a quadrature to compute the
Ci j coefficients. This quadrature requires several estimates
of the kernel functionK(x,y) and therefore of the visibil-
ity between pointsx and y. Computing a visibility sample

is much costlier than computing a kernel sample without
visibility. As a consequence, estimating the visibility be-
tween two patches is the most costly operation in wavelet
radiosity9. Several methods have been developed in order to
provide a quick estimate of visibility, sometimes at the ex-
pense of reliability.

The easiest method6, 5 assumes a constant visibility be-
tween the patches. The constant is equal to 1 for fully visible
patches, 0 for fully invisible patches, and is in]0,1[ for par-
tially visible patches. It is estimated by computing several
jittered visibility samples between the patches and averag-
ing the results.

Another method computes exact visibility between the
corners of the patches, and interpolates between these val-
ues for points located between the corners, using barycentric
coordinates.

Shadow masks16, 11 have also been used in wavelet radios-
ity computations. In theory, shadow masks allow the decou-
pling of visibility from radiosity transport, and therefore a
better compression of the radiosity transport operator, thus
reducing the memory cost.

All these methods attempt to approximate visibility by
computing less visibility samples than kernel samples, in or-
der to reduce the cost of visibility in wavelet radiosity. Ac-
cording to an experimental study of wavelet radiosity con-
ducted by Willmott13, 14 the result is a poor approximation of
the radiosity function, especially near shadow boundaries.

Another method is to compute exactly one visibility sam-
ple for each kernel sample. It has been used at least by
Gershbein4, although it is not explicitely stated in his paper.
According to our own experience, as well as Willmott ex-
tended study14, this method gives better visual results. Fur-
thermore, it gives more numerical precision. On the other
hand, it can introduce some artefacts, because the visibility
samples are forced to be in a regular pattern.

In our implementation, we used one visibility sample for
each kernel sample, because we were looking for numeri-
cal accuracy, and because the artefacts are removed by our
refinement oracle.

2.2.3. Memory usage

Since the computation of theCi j coefficients can be rather
long, they are usually stored once they have been computed,
so that they can be reused. The storage is done on the link
betweens andr.

An important problem with previous wavelet radiosity im-
plementations is the memory required for this storage. If we
use wavelet bases of the orderm, then we havemone dimen-
sional functions in the wavelet base. For two dimensions,
such as the surface of objects in our virtual scene, we have
m2 functions in the base. As a consequence, storing the inter-
action between two patches requires computing and storing
m4 Ci j coefficients.

c© The Eurographics Association and Blackwell Publishers 2000.
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Hence, the memory usage of wavelet radiosity grows with
the fourth power of the wavelet base used. Wavelets of order
3 will have a memory usage almost two orders of magnitude
higher than wavelets with 1 vanishing moment. In an exper-
imental study of wavelet radiosity, Willmott13 showed that
this memory usage was effectively prohibiting any serious
computation with higher order wavelets.

In 1998, Stamminger12 showed that it was possible to
eliminate completely the storage of the interactions in hier-
archical radiosity. His study was only made for hierarchical
radiosity, but it could be extended to wavelet radiosity, and
it would remove the worst problem of radiosity with higher
order wavelets. In section3.2, we review the consequences
of not storing links on the wavelet radiosity algorithm.

3. A novel approach to higher order wavelets in the
radiosity algorithm

Since experimental studies conducted with previous imple-
mentations of wavelet radiosity have shown that higher or-
der wavelets are behaving more poorly than Haar wavelets,
we need to review the key points of our implementation that
differ from previous implementations: the refinement oracle
and getting rid of interaction storage, along with the conse-
quences it has on the algorithm.

All the elements described in this section have been im-
plemented and tested thanks to our radiosity testbed soft-
ware, Candela15.

3.1. The refinement oracle

Instead of estimating the errors on the propagation coef-
ficients, we estimate the error on the propagated energy
directly. Our refinement oracle is quite similar to that of
Bekaert2, 3.

To estimate the errors on the radiosity function, we use
control points on the receiver. These control points are lo-
cated so that they provide meaningful information: they are
different from quadrature points, and their number depends
on the size of the receiver. Some of the control points are
located on the boundary of the receiver, in order to ensure
continuity with neighbouring patches.

Our refinement oracle is summed up in fig.1. The radios-
ity values at the control pointsBs→Pi are computed by direct
integration of eq.3 at pointx = Pi , using a quadrature. To
take the norm of the errors at the control points, we can use
any norm, such as theL1 norm, theL2 norm, theL∞ norm.
We have found that all these norms are giving similar results
for refinement.

3.2. Not using links and the consequences

In order to reduce the memory footprint of the radiosity algo-
rithm, we have chosen not to store links, as in Stamminger12.

for each interactions→ r :
compute the radiosity function on the receiver:Bs→r(x)
for each control pointPi

compute the radiosity at this control point directly:Bs→Pi

compare with interpolated value,
store the difference:
δi = |Bs→r (Pi)−Bs→Pi |

end for
take theLn norm of the differences:
δB = ‖δi‖n

compare with refinement threshold
end for

Figure 1: Our refinement oracle

Not storing links is some kind of a trade-off between mem-
ory and time: by not storing links, we are saving memory.
However, the information that has not been stored will prob-
ably have to be recomputed at some stage in the algorithm,
which will cost time.

Not storing links also has consequences on the structure of
the algorithm itself. The main consequence is on the choice
between gathering and shooting.

Gathering sends energy from all the patches to all the other
patches at each iteration. All the links are used during a
given iteration.

Shooting sends the unshot energy from one patch to all the
other patches. At a given point in time, only the links from
the shooting patch to all the patches are being used. The
shooting patch is then send to the bottom of the shooting
queue, and the links will not be re-used until it gets back
to the top of the shooting queue.

Therefore, if we chose not to store links, it makes more
sense to use shooting than to use gathering. But the reverse
is also true: if you use shooting instead of gathering, it also
makes more sense not to store links.

in gathering, the optimal link distribution for one iteration
can be computed by refining the link distribution from
the previous distribution, because the radiosity gathered
at one point can only grow with subsequent iterations.

in shooting, the energy carried along the links is only
the unshot energy at the shooting patch. Its distribution
changes completely for each use of the patch. As a conse-
quence, the optimal link distribution has no relation with
the links computed for previous iterations.

4. Comparison of several wavelet bases

In this section, we present our experimental comparison of
different wavelet bases. We start with a description of the
experimentation protocol in section4.1. We then present the
results of our experiments in section4.2. Discussion of these
results and comparison with previous studies follows in sec-
tion 4.3.

c© The Eurographics Association and Blackwell Publishers 2000.
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4.1. The experimentation protocol

4.1.1. The wavelet bases

We wanted to use our implementation of wavelet radiosity
for a comparison of several wavelet bases. We have used the
first three multi-wavelets bases :M1 (Haar),M2 andM3.

We use theMn multi-wavelets as they were previously
defined1, 5: the smoothing functions forMn are defined by
tensorial products of the firstn Legendre polynomials.

We have not used flatlets bases (Fn), because although
they haven vanishing moments, they are only piecewise con-
stant, and therefore do not provide a better approximation
than Haar wavelets with further refinement.

4.1.2. The test scenes

Our tests have been conducted on several test scenes, rang-
ing from simple scenes, such as the blocker (see fig.2(a))
to moderately complex scenes, such as the class room (see
fig. 2(d)). All our test scenes are depicted on fig.2, with their
number of input polygons.

4.1.3. Displaying the results

All the figures in this paper are depicting the exact results of
the computations, without any post-processing of any kind:
the radiosity function is displayed exactly as it has been com-
puted. Specifically, there has been no attempt to ensure con-
tinuity of the radiosity function, except in the refinement or-
acle. Similarly, we haven’t balanced or anchored the com-
puted mesh. So, for example, in fig.4(c), the continuity of
the radiosity function is due only to the refinement oracle
depicted in section3.1.

M3 wavelets can result in quadrically varying functions,
which can not be displayed on our graphics engines. To dis-
play these functions, we subdivide each patch into four sub-
patches, on which we compute four linearly varying func-
tions approximating the quadrically varying radiosity func-
tion.

4.1.4. Computing the error

In order to compute the computational error, we have com-
puted a reference solution, usingM2 wavelets, with a very
small refinement threshold. Furthermore, the minimal patch
area in the reference solution was 16 times smaller than
the minimal patch area in the computed solutions. We also
checked that with all the wavelet bases, the computed solu-
tions did converge to the reference solution.

We have measured the energetic difference between this
reference solution and the computed solutions. In order to
have comparable results on all our test scenes, this differ-
ence is divided by the total energy of the scene. It is this
ratio of the energetic difference over the total energy that we
call global error. Thus, a global error of 10−1 means there is

an energetic difference of 10 % between the energetic distri-
butions of the computed solution and the reference solution.

According to our experiments, this measure of global er-
ror is consistent, and gives comparable visual results on all
the test scenes. For example, a global error of 10−1 will
always give a poor result (see fig.3(a)), a global error of
10−2 will give a better result, but still with visible artefacts
at shadow boundaries (see fig.3(b)), and a global error of
10−3 will always give a correct result (see fig.3(c)). In our
experience, (see fig.3) the global error must be lower than
5.10−3 in order to get visually acceptable results.

As it has been pointed out12, we have also found that this
global error is closely correlated to the refinement threshold
on each interaction (thelocal error).

4.1.5. Experimentation details

In all our experiments, we have used the same computer, a
SGI Octane working at 225 MHz, with 256 Mb of RAM.

4.2. Results

4.2.1. Visual comparison of our three wavelet bases

The first test to conduct is whether higher order wavelets are
giving a better visual impression. In previous tests13, higher
order wavelets were unable to provide a correct approxima-
tion of the radiosity function, especially near shadow bound-
aries. Shadow boundaries are very important because they
have a large impact on the visual perception of the scene.

Our first experiment focuses solely on this problem. We
have computed direct illumination from an area light source
to a planar receiver, with an occluder partially blocking the
exchange of light. All wavelet bases were used with the same
computation time (66 s).

Fig. 4 shows the radiosity function computed for each
wavelet base, along with the mesh used for the computation.
Two elements appear clearly: higher order wavelets are pro-
viding a much more compact representation of the radios-
ity function, even near shadow boundaries, and the radiosity
function computed withM2 andM3 wavelets is smoother
than the function computed with Haar wavelets.

Haar wavelets are usually not displayed as such, but us-
ing some sort of post-processing, such as Gouraud shad-
ing. Fig.5 shows the result of applying Gouraud shading to
fig. 4(a). As you can see, although it can hide some of the dis-
continuities, Gouraud shading can also introduce some new
artefacts.

Judging from fig.4, higher order wavelets are better for
radiosity computations than lower order wavelets. This is
only a qualitative results and must be confirmed by quanti-
tative studies; that is the object of the coming sections (4.2.2
and4.2.3).

c© The Eurographics Association and Blackwell Publishers 2000.
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(a) Blocker (3) (b) Tube (5) (c) Dining room (402) (d) Classroom (3153)

Figure 2: Our test scenes, with their number of input polygons

(a) 10−1 (b) 10−2 (c) 10−3

Figure 3: Visual comparison of results for different values of global error

(a) Haar (b)M2 (c)M3

Figure 4: Visual comparison of results for our three wavelet bases

c© The Eurographics Association and Blackwell Publishers 2000.
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Figure 5: Applying Gouraud shading to Haar wavelets
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Figure 6: Global error with respect to computation time (in s)
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4.2.2. Computation time

Fig. 6 shows the relationship between global error and com-
putation time for our four test scenes and our three wavelet
bases.

The most important point that can be extracted from
these experimental data is that with our implementation,
higher order wavelets are performingbetter than lower or-
der wavelets. They obtain results of higher quality, and they
are faster: to get a visually acceptable result on the classroom
scene (global error below 5.10−3),M3 wavelets use 104 s
(see fig.6(d)). In the same computation time, Haar wavelets
only reach a global error level of 10−2. This test scene is
our hardest test scene, with lots of shadow boundaries. It is
on such test scenes that higher order wavelets were behaving
poorly with previous experimentations13.

The advantage of higher order wavelets is more significant
on high precision computations and on complex scenes. The
more precision you need on your computations, the faster
they are, compared to lower order wavelets.

On the contrary, for quick approximations,M2 wavelets
are performing better thanM3 wavelets. The same applies
to Haar wavelets compared toM2 wavelets, for very quick
and crude approximations.

Each wavelet base has anarea of competence, where it
outperforms all the other wavelet bases: Haar wavelets are
the most efficient base for global error above 10−1 — which
corresponds to a simulation with many artefacts still visible
(see fig.3(a)).M2 wavelets are better than all the other bases
for global error between 10−1 and (roughly) 5.10−3, and
M3 wavelets are the best for global error below 5.10−3.

4.2.3. Memory use

The key problem with higher order wavelets in previous
studies13 was their high memory use, that effectively prohib-
ited any real computation. We have computed the memory
footprint of our implementation of wavelets for our four test
scenes and our three wavelet bases. Fig.7 shows the memory
used by the algorithm as a function of the global error.

As you can see, for high precision computations (global
error below 5.10−3), higher order wavelets actually have a
lower memory use than low order wavelets. The effect is
even more obvious on our more complex scenes (see fig.7(c)
and7(d)).

On the other hand, for low precision computations, this hi-
erarchy is reversed, and Haar andM2 wavelets have a lower
memory use. Once again, each wavelet base has an area
of competence, where it outperforms all the other wavelet
bases. For very crude approximations, Haar wavelets are the
most efficient with respect to memory use, then, for moder-
ately good approximations,M2 wavelets are the most effi-
cient, untilM3 takes over for really good approximations.

A very impressive result is the way the memory cost of

a given wavelet base degrades quickly if we try to bring the
global error level below a certain threshold. This effect ap-
pears very clearly on fig.7(c) and7(d). There seems to be
a maximum degree of precision for each wavelet base, and
the wavelet base can only conduct global illumination simu-
lations below this degree. Be aware, however, that the degra-
dation is made more impressive on fig.7 by the fact that
we are using a logarithmic scale for global error and a non-
logarithmic scale for memory use. Furthermore, the degrada-
tion is quite small when it is compared to the total memory
used: between 10 % and 20 %. Since the effect appears in a
similar way for all the wavelet bases used in the test we think
it could be a general effect, and apply to all wavelet bases.

Please note that the fact that higher order wavelets have a
lower memory use than lower order wavelets is actually quite
logical. Higher order wavelets are providing a more power-
ful tool for approximating complex functions, with a higher
dimensional space for the approximation. Furthermore, they
have more vanishing moments, so their representation of a
given complex function is more compact and requires less
coefficients. Our experiments are therefore bringing practi-
cal results in connection with theoretical expectations.

The fact that lower order wavelets are more compact for
low precision computations was also to be expected from
theory. Low precision computations are, by nature, not tak-
ing into account all the complexity of the radiosity function.
As a consequence, they provide a very simple function, that
is also easy to approximate, especially for simple wavelet
bases.

4.3. Discussion and comparison with previous studies

Despite the fact that we are reaching opposite conclusions,
we would like to point out that our study is actually consis-
tent with the previous study by Willmott13, 14.

In Willmott’s study, higher order wavelets were carry-
ing a strong memory cost, due to link storage. As a conse-
quence, radiosity computations with higher order wavelets
were restricted to low precision computations. According to
our experiments, for low precision computations, lower or-
der wavelets are indeed providing a faster approximation,
with a lower memory use.

Our study can therefore be seen as an extension of Will-
mott’s study to high precision computations. Such high pre-
cision computations were made possible only by getting rid
of links12. Once you have eliminated link storage, the mem-
ory cost of the radiosity algorithm is almost reduced to the
cost of mesh storage. The refinement oracle (see section3.1)
ensures that the mesh produced is close to optimal with re-
spect to the radiosity on the surfaces.

Also, by concentrating the oracle on the mesh instead of
the interactions, we are able to exploit the power of wavelet
bases functions to efficiently approximate functions. This re-
sults in a coarser mesh, both at places where the radiosity
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Figure 7: Memory requirements (in kB) with respect to global error

function has slow variations, such as an evenly lit wall, and
at place with rapid variations, such as shadow boundaries.

5. Conclusion and future work

We have presented an implementation of wavelets bases
in the radiosity algorithm. With this implementation, we
have conducted experimentations on several wavelet bases.
Our experiments show that for high precision computa-
tions, higher order wavelets are providing a better approx-
imation of the radiosity function, faster, and with a lower
cost in memory. Please note that our implementation is not
putting any disadvantage on lower order wavelets; for Haar
wavelets, our refinement oracle only uses a few tests and the
visibility estimation only requires one visibility test. Simi-
larly, the benefit of not storing links is independant of the
wavelet base.

Although in this paper we have only conducted tests on
relatively small test scenes (up to 3000 input polygons), our
implementation (Candela15) enables us to use higher order
wavelets on arbitrarily large scenes. Fig.8* shows a radios-
ity computation withM2 wavelets made with our imple-
mentation on a scene with 144255 input polygons. The com-
putations took 3 hours, and required approximately 2 Gb of
memory on 32 processors of a SGI Origin 2000. The com-
plete solution had approximately 1.5 million patches.

The optimal choice for radiosity computations depends
on the degree of precision required. Lower order wavelets
are better for low precision computations, and higher order
wavelets are better for high precision computations. Each
wavelet base corresponds to a certain degree of precision,
where it outperforms all the other wavelet bases, both for
the computation time and the memory footprint. Although
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our computations have been limited to Haar,M2 andM3
wavelets, we think that this effect applies to all the other
wavelet bases, such asM4,M5... and that for even more
precise computations,M4 would outperformM3, and so
on.

However, for moderately precise computations,M2
wavelets are quite sufficient. The precision level that corre-
sponds, in our experience, to visually acceptable results is at
the boundary between the areas of competence ofM2 and
M3, soM2 wavelets can be used.M2 wavelets also have
a distinct advantage over all the other wavelet bases: they
result in linearly varying functions that can be displayed di-
rectly on current graphics hardware (using Gouraud shad-
ing), as opposed to constant, quadric or cubic functions.

In our future work, we want to explore the possibility to
use several different wavelet bases in the resolution process.
In this approach, it would be possible to use Haar wavelets
for interactions that do not require a lot of precision, such as
interactions that do not carry a lot of energy, andM2, and
perhapsM3,M4..., wavelets for interactions that require a
high precision representation. We think that this approach
could be especially interesting with shooting since the first
interactions will carry a lot of energy, while later interactions
will only carry a small quantity of energy.

We also want to explore the possibility to use higher order
wavelets on non-planar objects. Since they have a better abil-
ity to model rapidly varying radiosity functions, they seem
to be the ideal choice for curved surfaces, such as spheres or
cylinders.
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Figure 8: Radiosity computation on a large scene (withM2 wavelets)
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