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Preface of the Reprint of the 3rd edition 

The book is in such high demand that the publisher decided to reprint the 3rd edition published 
in 1997. 

January 1997 Springer-Verlag 

Preface 

Tn 1957 one of the two Editors translated the Handbook of Mathematics by I. N. Bronshtein 
and K. A. Semendyayev from Russian into German. In comparison with the original, there were 
two additional sections "Calculus of v .. riation" and "Integral equations". Over the years this 
book has become a standard work also in German speaking countries. For nearly two decades 
it was an indispensable help for many students, teachers and practitioners of mathematics, although 
in contents and form it hardly changed at all. 

During the same period some newer branches of mathematics have undergone a stormy develop­
ment. Others have gained considerably in importance or have changed rapidly under the influence 
of practical needs, not least owing to the development of electronic calculating techniques. Even 
school mathematics did not stand still in the intervening years, so that new points of view emerged 
in the more elementary parts of the Handbook. 

When all these factors were taken into account, a new edition had to incorporate the following 
points. New topics had to be included, for example, functional analysis, a section on the foundations 
of mathematics with the title "Sets, relations, functions·· (with due regard to the basic concepts 
of mathematical logic), measure theory and the Lebesgue-Stieltjes integral, tensor calculus, mathe­
matical methods of operational research (linear, non-linear, and dynamical optimization, graph 
theory. game theory, etc.), numerical methods and computational techniques. 

Some sections had to be enlarged substantially or put on new foundations, for example, prob­
ability theory and mathematical statistics, or Fourier analysis and the Laplace transformation. 

Several essential supplements were needed, among them a section on matrices within the frame­
work of algebra. 

In addition. most sections had to be thoroughly revised to keep up with present-day demands. 
It goes without saying that such a huge task could not be carried out by a single person in a 

reasonable time. The problem had to be tackled by a collective of authors. An agreement was 
reached between the publishe1s of the original Russian edition and the publishers of the German 
translation to the effect that the revised version should be a joint undertaking and the preparation 
should be entrusted to a collective of authors working in close collaboration with the Soviet authors. 
This team was recruited largely from the scientific personnel of the section Mathematics at the 
Karl Marx University of Leipzig. 

The editors and authors endeavoured to preserve the diction and presentation of the original, 
in spite of the incorporation of new material. Nevertheless, it was inevitable that the presentation 



vi 

as a whole exhibits less homogeneity than the original book. This is· due partly to factual matters 
such as the widely diverging contents of the individaal sections or the varying degree of difficulty 
of the topics. 

At the same time, the editors and authors believe that the Handbook can meet the diverse require­
ments of the numerous potential users, by the level of sophistication appropriate to the theme 
at hand. 

The editors and authors wish to express their thanks to all who have contributed by their advice 
and helpful criticism to shaping the ultimate form of the new version of the work. Our special 
thanks are due to the group of advisors at the Technical University of Karl Marx-Stadt under the 
direction of Professor Schneider, who drew our attention to the diverse mathematical needs of 
students and graduates in technical disciplines. 

Leipzig, December 1978 The Editors 
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