Minkowski-Alkauskas Constant

Steven Finch

May 6, 2008
In addition to examining [1]

$$
?\left(0+\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots\right)=\sum_{k=1}^{\infty}(-1)^{k-1} 2^{-\left(a_{1}+a_{2}+\cdots+a_{k}-1\right)},
$$

we study [2]

$$
F\left(a_{0}+\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots\right)=\sum_{k=1}^{\infty}(-1)^{k-1} 2^{-\left(a_{0}+a_{1}+a_{2}+\cdots+a_{k}\right)} .
$$

The former is the original Minkowski question mark function, a self-map of $[0,1]$; the latter is defined on the nonnegative real line with $2 F(x)=?(x)$ for all $x \in[0,1]$. In particular,

$$
\begin{array}{rlll}
F(0)=0, & F\left(\frac{1}{2}\right)=\frac{1}{4}, & F(1)=\frac{1}{2}, & F(\sqrt{2})=\frac{3}{5}, \\
F\left(\frac{1+\sqrt{5}}{2}\right)=\frac{2}{3}, & F(2)=\frac{3}{4}, & F(3)=\frac{7}{8}, & \lim _{x \rightarrow \infty} F(x)=1^{-} .
\end{array}
$$

The distribution F is continuous, strictly increasing, singular, and uniquely determined by the functional equation

$$
2 F(x)= \begin{cases}F(x-1)+1 & \text { if } x \geq 1 \\ F\left(\frac{x}{1-x}\right) & \text { if } 0 \leq x<1\end{cases}
$$

Define moments

$$
M_{\ell}=\int_{0}^{\infty} x^{\ell} d F(x), \quad m_{\ell}=\int_{0}^{1} x^{\ell} d ?(x)
$$

then $m_{1}=M_{1}-1=1 / 2$ follows easily. Similar closed-form expressions for

$$
m_{2}=M_{2}-4=0.2909264764 \ldots
$$

[^0]$$
m_{4}=M_{4}-24 m_{2}-100=0.1269922584 \ldots
$$
presently do not exist, although progress has recently been made [3]. It is known that
\[

$$
\begin{gathered}
2 m_{3}=3 m_{2}-1 / 2=2(0.1863897146 \ldots), \\
2 M_{3}=9 m_{2}+69 / 2, \quad 2 m_{5}=5 m_{4}-5 m_{2}+1
\end{gathered}
$$
\]

and analogous relations hold for higher-order moments. Hence calculating m_{2}, m_{4}, \ldots to high precision is important for understanding m_{3}, m_{5}, \ldots.

Alkauskas [4] proved the following asymptotic formula:

$$
\begin{aligned}
m_{\ell} & \sim \sqrt[4]{4 \pi^{2} \ln (2)} \cdot c \cdot\left(e^{-2 \sqrt{\ln (2)}}\right)^{\sqrt{\ell}} \ell^{1 / 4} \\
& \sim(2.3562298899 \ldots)(0.1891699952 \ldots)^{\sqrt{\ell}} \ell^{1 / 4}
\end{aligned}
$$

as $\ell \rightarrow \infty$, where

$$
c=\int_{0}^{1} 2^{x}(1-F(x)) d x=1.0301995633 \ldots
$$

This is a fascinating result, especially because m_{2}, m_{4}, \ldots remain so mysterious! One would not have expected an asymptotic formula for m_{ℓ} as such to be possible.
0.1. Addendum. An infinite series for m_{ℓ} that does not explicitly involve continued fractions was unveiled in [5]:

$$
\frac{1}{(\ell-1)!} \sum_{n=0}^{\infty} \int \ldots \int_{[0, \infty)^{n+1}} x_{0}^{\ell} \cdot \frac{\left(x_{0} x_{n}\right)^{-1 / 2} \cdot \prod_{j=0}^{n-1} I_{1}\left(2 \sqrt{x_{j} x_{j+1}}\right)}{\prod_{j=0}^{n} e^{x_{j}}\left(2 e^{x_{j}}-1\right)} d x_{0} \ldots d x_{n}
$$

where $I_{1}(z)$ is the modified Bessel function of the first kind. Unfortunately this does not improve upon numerical accuracy found in [3]. Does a simpler formula exist (even if only for $\ell=2$ or $\ell=4)$?

Integrals of the form

$$
\int_{0}^{1} \cos (2 \pi k x) d ?(x)
$$

are evaluated to high precision in [6]; another sample calculation is

$$
\pi \int_{0}^{1}(?(x)-x) \cot (\pi x) d x=-0.4559592037 \ldots
$$

which corresponds to the value of an associated zeta function at unity.

References

[1] S. R. Finch, Minkowski-Bower constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 441-443.
[2] G. Alkauskas, The moments of Minkowski question mark function: the dyadic period function, Glasgow Math. J. 52 (2010) 41-64; arXiv:0801.0051; MR2587817 (2011d:11007).
[3] G. Alkauskas, The Minkowski question mark function: explicit series for the dyadic period function and moments, Math. Comp. 79 (2010) 383418; addenda/corrigenda 80 (2011) 2445-2454; arXiv:0805.1717; MR2552232 (2010k:11006) and MR2813370 (2012d:11009).
[4] G. Alkauskas, An asymptotic formula for the moments of the Minkowski question mark function in the interval [0, 1], Lithuanian Math. J. 48 (2008) 357-367; arXiv:0802.2721; MR2470798 (2009i:11115).
[5] G. Alkauskas, Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function, Ramanujan J. 25 (2011) 359-367; arXiv:0912.1039; MR2819722.
[6] G. Alkauskas, Fourier-Stieltjes coefficients of the Minkowski question mark function, Analytic and Probabilistic Methods in Number Theory, Proc. 2011 Palanga conf., ed. A. Laurinčikas, E. Manstavičius and G. Stepanauskas, TEV, 2012, pp. 19-33; arXiv:1008.4014; MR3025455.

[^0]: ${ }^{0}$ Copyright © 2008 by Steven R. Finch. All rights reserved.

