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The former is the original Minkowski question mark function, a self-map of [0, 1]; the
latter is defined on the nonnegative real line with 2F (x) =?(x) for all x ∈ [0, 1]. In
particular,
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The distribution F is continuous, strictly increasing, singular, and uniquely deter-
mined by the functional equation

2F (x) =

⎧⎨⎩ F (x− 1) + 1 if x ≥ 1,
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if 0 ≤ x < 1.

Define moments

M =
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x dF (x), m =
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x d?(x)

then m1 =M1 − 1 = 1/2 follows easily. Similar closed-form expressions for

m2 =M2 − 4 = 0.2909264764...,
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m4 =M4 − 24m2 − 100 = 0.1269922584...
presently do not exist, although progress has recently been made [3]. It is known that

2m3 = 3m2 − 1/2 = 2(0.1863897146...),
2M3 = 9m2 + 69/2, 2m5 = 5m4 − 5m2 + 1

and analogous relations hold for higher-order moments. Hence calculating m2, m4,
. . . to high precision is important for understanding m3, m5, . . . .
Alkauskas [4] proved the following asymptotic formula:
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as →∞, where
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2x(1− F (x))dx = 1.0301995633....

This is a fascinating result, especially because m2, m4, . . . remain so mysterious! One
would not have expected an asymptotic formula for m as such to be possible.

0.1. Addendum. An infinite series for m that does not explicitly involve con-
tinued fractions was unveiled in [5]:
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where I1(z) is the modified Bessel function of the first kind. Unfortunately this does
not improve upon numerical accuracy found in [3]. Does a simpler formula exist (even
if only for = 2 or = 4)?
Integrals of the form

1Z
0

cos(2πkx) d?(x)

are evaluated to high precision in [6]; another sample calculation is

π

1Z
0

(?(x)− x) cot(πx) dx = −0.4559592037...

which corresponds to the value of an associated zeta function at unity.
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