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We intend here to collect infinite series, each involving unusual combinations or

variations of well-known arithmetic functions. For simplicity’s sake, results are often

quoted not with full generality but only to illustrate a special case.

Let () denote the sum of all distinct divisors of , () denote the quotient of

 with its greatest square divisor, and () denote the number of positive integers

 ≤  satisfying gcd( ) = 1. These multiplicative functions are called sum-of-

divisors, square-free part, and Euler totient, respectively. It can be shown that the

following series are convergent:
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where the product is over all primes . The former was considered by Silverman [1]

while studying the number of generators possessing large order in the group Z∗ . With
regard to the latter, more precise asymptotics can be given [2]:X
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Let () denote the number of distinct divisors of , and () denote the number

of distinct prime factors of . The divisor function () is multiplicative; in contrast,

() is additive. It can be shown that [3, 4]X
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where  is the Meissel-Merten constant [5] and  is the Euler-Mascheroni constant

[6].
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The lag-one autocorrelation of () is evident via [9]X
≤

()(+ 1) ∼ 6

2
 ln()2;

a variation of this includes [10]
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Let () denote the number of representations of  as a sum of two squares, counting

order and sign (note that ()4 is multiplicative). We have [11]
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where () = (−4) is 0 when  is even and (−1)(−1)2 when  is odd. Also, if ()
denotes the Ramanujan tau function [12], then [13, 14, 15]X

≤
()2(+ 1) ∼

Y


µ
1− 1


+

2 − 2 cos(2) + 1
2(+ 1)

¶
12 ln()2

where 2 cos() = ()−112. Other autocorrelation results include [9]X
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and the latter product is known as the Feller-Tornier constant [16].

Logarithms of arithmetic functions provide some interesting constants [17, 18, 19,

20, 21]:
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P0

is interpreted as summation over all  avoiding division by zero. The constant

exp(1 +2) appeared in [22] as well.

Let () denote the number of non-isomorphic abelian groups of order  and  ()

denote the number of unrestricted partitions of . It can be shown that [23, 24]
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While [5]
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and () is Dickman’s function [34].

Other constants emerge when arithmetic functions are evaluated not at , but at

quadratic functions of . For example [20, 35, 36, 37, 38, 39, 40],X
≤

(2 + 1) ∼ 3
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is a modified Feller-Tornier constant that appeared in [42]. As another example

[43, 44, 45, 46],X
≤

(2 + 2) ∼ 

2
2 ln()

X
≤

(2 + 2) ∼  4

where

 =
2

3

∞X
=1

()

3

=
8

9

Y
≡1
mod 4

µ
1 +

2+ 1

(+ 1)(2 − 1)
¶ Y

≡3
mod 4

µ
1 +

1

(− 1)(2 + 1)
¶

= 103666099

and () denotes the number of solutions of 2+2 = 0 in Z, counting order [47, 48].
The average prime factor of  may reasonably be defined in two ways: as an mean

of distinct prime factors ()() or as a mean of all prime factors ()Ω() (with

multiplicity). It can be shown that [49]X
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for constants 0     . Infinite product expressions for  ,  are possible but

remain undiscovered (as far as is known).
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Let +() denote the largest prime factor of  and −() denote the smallest
prime factor of . Also let +(1) = −(1) = 1. It follows that [50]X
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(whose sum over  ≤  is ∼ 2 ln(), where 2 =
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0.1. Addendum. The following result [58]
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where 5 = 1−1, 6 = −2 and 7 = −3 (a sign error in [59] has been corrected
to give 5). A numerical estimate 1 + 3 = 04457089175 is provided in [62, 63],

hence 3 = 05542910824.; also 1 = 06394076513 and 2 = −15800584938.
The Dedekind totient  enjoys close parallels with the Euler totient :
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The first of the three products appears in [65] with regard to cube roots of nullity mod

, and in [66] with regard to strongly carefree couples. Asymptotics for
P

≤ ()

were found by Chowla [67], where  is any positive integer. His formula naturally

carries over to
P

≤ (). It is known that the Riemann hypothesis is true if and
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for all  ≥ 3, where 1 = 2, 2 = 3, 3 = 5, . . . is the sequence of all primes. A

related inequality, due to Robin, appears in [70].
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where  = 06243299885 is the Golomb-Dickman constant [34]. A simple, precise

estimate of X
≤

1

ln(+())

evidently has not yet been found.

Let () denote the smallest prime not dividing  and () denote the smallest

integer  1 not dividing . Their respective average values are [74, 75, 76]

lim
→∞

1



X
3≤≤

() =
X


(− 1) Q


 = 29200509773

lim
→∞

1



X
3≤≤

() =
X
≥2

µ
1

lcm{1 2      − 1} −
1

lcm{1 2     }
¶
 = 27877804561

Compare these to the quadratic nonresidue constants at the end of [5].

Let Z be the additive group of residue classes modulo . The number of sub-
groups of Z is () and each subgroup is cyclic. The number () of subgroups

of Z × Z satisfies [77, 78, 79, 80]
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The expressions for 0, 0 are complicated and not helpful for numerical evaluation;

1 is the first Stieltjes constant [81]. In particular,X
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Of related interest are series
P

≤ () and
P

≤ (), where () is the num-

ber of squares dividing  [82, 83]. More examples appear in [84, 85]; cases when

the underlying Dirichlet series is a product of zeta function expressions give rise to

asymptotic expansions with exact coefficients (found via residues).

Recall the earlier series
P

≤ ()() with growth rate 2 ln()−12; a related
series X

≤

()

()
∼ (36174)

appears without comment in [86], with cryptic reference to [87]. It would be good

to learn more about this result.

Let +
2 () denote the second largest prime factor of  if it exists, otherwise set

+
2 () =∞. The asymptotic behavior of +

2 () is completely different from that of
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but the growth rate is faster. A well-known constant
P
12 = 04522474200 from

[5] appears in [90], stemming (almost surely) from the reciprocal sum of a uniformly

drawn prime factor of , for each . The growth rate  ln(ln()) is faster still.

Here is a comparatively neglected topic: for a random integer  between 1 and

 , since

lim
→∞P

¡
+() ≤ 

¢
= 

µ
1



¶
for 0   ≤ 1, the median value of  satisfies (1) = 12, that is,  = 1

√
 =

06065306597. The mode (peak of density) is 12; see Figure 1. Define the second-

order Dickman function 2() by [88]

02() + 2(− 1) = (− 1) for   1 2() = 1 for 0 ≤  ≤ 1

then the corresponding median value satisfies 2(1) = 12, that is,  = 02117211464

[91]. An early approximation (024) appeared long ago [92]; medians are more robust

estimators of centrality than means (being less sensitive to data outliers). The mode

here is 02350396459...; see Figure 2. Likewise, the third-order Dickman function

3() is [88]

03() + 3(− 1) = 2(− 1) for   1 3() = 1 for 0 ≤  ≤ 1

and the corresponding median value satisfies 3(1) = 12, that is,  = 00758437231

[91]. We hope to report on [93, 94] later.
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