Aissen's Convex Set Function

Steven Finch

September 29, 2014
Let D be a bounded open convex set in the plane and let C denote the boundary of D. For each $p \in D$ and $q \in C$, let $h_{p q}$ be the Euclidean distance from p to the support line (tangent line) to D at q. Let $d s_{q}$ denote the line element at q. It is known that $[1,2]$

$$
\begin{gathered}
\text { arclength of } C=\int_{C} d s_{q} \\
\text { area of } D=\frac{1}{2} \int_{C} h_{p q} d s_{q} \quad \text { (independent of } p \text {), } \\
r(D)=\text { inradius of } D=\max _{p \in D} \min _{q \in C} h_{p q}
\end{gathered}
$$

where r is the radius of the largest disk contained by $D[3]$. The boundary of such a disk is called an incircle; its center is called an incenter. Aissen [1, 2] studied the function

$$
B(D)=\min _{p \in D} \int_{C} h_{p q}^{-1} d s_{q}
$$

and deduced that the optimizing point p corresponds to an incenter of D if D is a triangle, parallelogram, regular polygon or ellipse. (We are careful to say "an incenter" rather than "the incenter": a suitably elongated parallelogram has infinitely incircles, all of the same radius. In contrast, the incenter for an arbitrary triangle is unique.) This is a remarkable feature of B. It is natural to wonder whether the same is true for an arbitrary convex set.

The simplest counterexample is a trapezoid with vertices $(\pm 1,1),(\pm 3,-1)$, for which the optimizing point p has x-coordinate 0 (by symmetry) but y-coordinate >0. More generally, examine the trapezoid with vertices $(\pm(\sqrt{2}-1+t), 1)$, $(\pm(\sqrt{2}+1+t),-1)$ where $t \geq 0$ is fixed. The integral within B becomes a sum of four ratios:

$$
2\left(\frac{\sqrt{2}-1+t}{1-y}+\frac{\sqrt{2}+1+t}{1+y}+\frac{2}{\sqrt{2}+t+x-y}+\frac{2}{\sqrt{2}+t-x-y}\right)
$$

[^0]each of the form sidelength/distance. As an instance, the rightmost side has equation
$$
v-\frac{1}{\sqrt{2}}=-u+\left(\frac{1}{\sqrt{2}}+t\right)
$$
in the $u v$-plane, that is, $u+v-\sqrt{2}-t=0$. The distance from the point (x, y) to the line is
$$
\frac{|x+y-\sqrt{2}-t|}{\sqrt{1^{2}+1^{2}}}=\frac{\sqrt{2}+t-x-y}{\sqrt{2}}
$$
and the sidelength is $\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$. Forming a ratio gives the final term in the sum. Differentiating the sum with respect to x, we see that $x=0$ is necessary for minimization. The derivative with respect to y is more complicated. In the special case $t=0$, each of the trapezoidal sides is tangent to the unit circle, thus $y=0$. If instead $t=2-\sqrt{2}$, then the inradius is still 1 but $y \approx 0.116257$ is the unique positive zero of the quartic $y^{4}+8 y^{3}-25 y^{2}+20 y-2$. If instead $t=3-\sqrt{2}$, we have $y \approx 0.130385$ (increasing). If instead $t=4-\sqrt{2}$, we have $y \approx 0.110399$ (decreasing). As $t \rightarrow \infty$, we have $y \rightarrow 0^{+}$. Aissen's optimizing point appears not to be associated with the trapezoidal incenter except at the extremes $t=0, t=\infty$.

Another counterexample - the half-disk $0 \leq v \leq \sqrt{1-u^{2}}$ - comes from [1, 2]. Again $x=0$ follows by symmetry. The integral within B here becomes

$$
\frac{2}{y}+\frac{2 \arcsin (y)+\pi}{\sqrt{1-y^{2}}}
$$

and is minimized when $y=0.5432763603 \ldots>1 / 2$. The value of B itself is 8.7915361561.... Such values play a role in estimating hard physical quantities like torsional rigidity P in terms of area A [4]. For the half-disk, P turns out to be known exactly and the lower bound [5]

$$
0.2975567820 \ldots=\frac{\pi}{2}-\frac{4}{\pi}=P \geq A^{2} B^{-1}=\frac{(\pi / 2)^{2}}{8.7915361561 \ldots} \approx 0.280
$$

is excellent.
Returning to geometry, let $d_{p q}$ simply be the Euclidean distance from p to q. Clearly

$$
R(D)=\text { circumradius of } D=\min _{p \in D} \max _{q \in C} d_{p q}
$$

where R is the radius of the smallest disk containing $D[3]$. The boundary of such a disk is called a circumcircle; its center is called a circumcenter. The circumcenter for an arbitrary convex set is unique. We wonder if a "dual" to Aissen's function can be defined and what its interplay with the circumcenter for various D might be.

References

[1] M. I. Aissen, On the Estimation and Computation of Torsional Rigidity, Ph.D. thesis, Stanford Univ., 1952.
[2] M. I. Aissen, A set function defined for convex plane domaines, Pacific J. Math. 8 (1958) 383-399 MR0123968 (23 \#A1289).
[3] S. R. Finch, Circumradius-inradius constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 534-537.
[4] S. R. Finch, Expected lifetimes and inradii, unpublished note (2005).
[5] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951, pp. 14-15, 71, 98-100, 254-255, 272; MR0043486 (13,270d).

[^0]: ${ }^{0}$ Copyright © 2014 by Steven R. Finch. All rights reserved.

