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This essay complements an earlier one [1] on uncertainty inequalities. Let B, ,
denote the open n-dimensional ball of radius r centered at the origin. Assume that
f:R™ — R is integrable and that its Fourier transform:

&) = [ (@) da

RTL

satisfies f(g) = 0 for all £ € B,,. Note that, to be consistent with the partial
differential equations literature, we omit the factor 27 from the exponent (compare
with [1]). Assume also that both f and its gradient V f are continuous and bounded
on R™. In the case n = 1, Bohr |2, 3, 4] proved that

s
roup | ()] < 5 sup | (2)]
zeR zeR

The constant 7/2 is clearly best possible, for examine the periodic function f(z) =
—r|x| + 7/2 for |z| < 7/r (of period 27 /r). See [0.1] for more discussion of this
example. In the case n = 2, Riissmann [5] and Hérmander & Bernhardsson [6]
calculated that the best constant in the inequality

rsup |f(z)] < Csup V()]

zcR2 xcR2

is C = 2.9038872827... (the indicated vector norm is Euclidean). They succeeded in
reducing the computation of C to the following one-dimensional optimization prob-
lem:

C= min/ l9(v)| dy
0

where the minimum is taken over all integrable functions ¢ : R — R satisfying
9(0) =1, g(y) = g(—y) for all y, and g(n) = 0 for all |n| > 1. In fact, g can be
extended to an entire analytic function of exponential type 1 on the complex plane;
the zeroes of g are all real and simple.
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The constants 7/2 and C also appear in connection with solving the linear oper-
ator equation PX — XQ =Y, where P:H —H, @ : K —>Kand Y : H — K are
bounded operators on Hilbert spaces H and K . If the spectra o(P), 0(Q) of P, Q) are
disjoint subsets of C, then the equation PX — X () = Y possesses a unique solution
X. Let 6 = ianem,uem |A — 1], the separation between closed sets containing the
spectra. The norm of the transformation Y +— X can be bounded by (7/2)/6 if P, @
are self-adjoint and C/¢ if instead P, () are normal. Bhatia, Davis & Koosis (7, 8, 9]
wrote that there is “no substantial evidence” for expecting these two constants to be
best possible here, but added that they cannot be far off. A related problem involves
perturbation bounds for spectral subspaces.

What can be said if higher-order derivatives of f are continuous and bounded on
R"? In the case n = 1, Favard [10] proved that

™ sup | f(x)] < Kpsup | (2)|
zeR zeR

for each positive integer m, where the constants [11]

2 3
1:K0<K2:7T—<K4<...<é<...<K5<K3:7T—<K1:E
8 T 24 2
are all best possible. This is called the Bohr-Favard inequality. The case n > 2
remains open.
What can be said if we assume instead that f(f) =0 for all £ ¢ B,,? (That
is, we assume the support of f is completely contained within the closed r-ball, the
opposite of before.) In the case n = 1, Bernstein [12, 13] proved that

sup | /0™ (z)] < ™ sup|f ()

zeR
for each positive integer m, where the constant 1 is best possible. Such functions f

are said to be band-limited and, like g, can be extended to an entire function of
exponential type r. The generalization

sup [ V/(2)] < 7 sup | (a)

reR?

for n > 2 (when m = 1) and higher-order analogs (when m > 1) were apparently first
found by Nikolskii [14, 15].

0.1. Tempered Distributions. Let f denote the periodic triangular wave func-
tion mentioned earlier. It is not true that f is integrable on R: strictly speaking, its
Fourier transform is undefined (although signal processing engineers would describe f
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as a weighted sequence of equidistant Dirac impulses at £ = +r, +2r, £3r, ...). We
can circumvent this difficulty by defining a family of rapidly decreasing test functions

or(z) —e M k=1,23,...

and then taking

~

O = lim [ ¢ %) f(a)do.
What allows us, however, to conclude that f is independent of the choice of test
functions {@x}32, wxr — 1 as k — oco?

Here is a little background. The space of all infinitely differentiable functions ¢
such that ) (z) = O(Jz|™) as © — Zoo, for any j > 0 and n > 1, is called the
Schwarz space S. A tempered distribution is a continuous linear functional 7’
on S and its (generalized) Fourier transform is defined by

this induces an automorphism &’ — &’ of the dual space &’ of S. Consider now the
example

— 00

where f is the periodic triangular wave, and let f; = ¢ f. Clearly

P = [ o) fwyds = [ o) (tim i) do

while
lim [ () fu(€)dé = lim [ p(x) fi(x)da

follows by interchanging the order of integration. Since | fi| < |¢ f] and @ f is
integrable on R, the limit may be brought inside the integral by Lebesgue’s dominated
convergence theorem. Hence, just as f and F' are regarded as the same, we may

identify f and F.
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