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This essay complements an earlier one [1] on uncertainty inequalities. Let Bn,r

denote the open n-dimensional ball of radius r centered at the origin. Assume that
f : R n → R is integrable and that its Fourier transform:

f̂(ξ) =
∫

R n

e−iξ·xf(x) dx

satisfies f̂ (ξ) = 0 for all ξ ∈ Bn,r. Note that, to be consistent with the partial
differential equations literature, we omit the factor 2π from the exponent (compare
with [1]). Assume also that both f and its gradient ∇f are continuous and bounded
on R

n. In the case n = 1, Bohr [2, 3, 4] proved that

r sup
x∈R

|f(x)| ≤
π

2
sup
x∈R

|f ′(x)|.

The constant π/2 is clearly best possible, for examine the periodic function f (x) =
−r|x| + π/2 for |x| ≤ π/r (of period 2π/r). See [0.1] for more discussion of this
example. In the case n = 2, Rüssmann [5] and Hörmander & Bernhardsson [6]
calculated that the best constant in the inequality

r sup
x∈R 2

|f(x)| ≤ C sup
x∈R 2

‖∇f (x)‖

is C = 2.9038872827... (the indicated vector norm is Euclidean). They succeeded in
reducing the computation of C to the following one-dimensional optimization prob-
lem:

C = min

∞∫

0

|g(y)| dy

where the minimum is taken over all integrable functions g : R → R satisfying
g(0) = 1, g(y) = g(−y) for all y, and ĝ(η) = 0 for all |η| ≥ 1. In fact, g can be
extended to an entire analytic function of exponential type 1 on the complex plane;
the zeroes of g are all real and simple.
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The constants π/2 and C also appear in connection with solving the linear oper-
ator equation PX −XQ = Y , where P : H → H , Q : K → K and Y : H → K are
bounded operators on Hilbert spaces H and K . If the spectra σ(P ), σ(Q) of P , Q are
disjoint subsets of C , then the equation PX −XQ = Y possesses a unique solution
X. Let δ = inf

λ∈σ(P ),µ∈σ(Q) |λ − µ|, the separation between closed sets containing the

spectra. The norm of the transformation Y �→ X can be bounded by (π/2)/δ if P , Q
are self-adjoint and C/δ if instead P , Q are normal. Bhatia, Davis & Koosis [7, 8, 9]
wrote that there is “no substantial evidence” for expecting these two constants to be
best possible here, but added that they cannot be far off. A related problem involves
perturbation bounds for spectral subspaces.

What can be said if higher-order derivatives of f are continuous and bounded on
R
n? In the case n = 1, Favard [10] proved that

rm sup
x∈R

|f(x)| ≤ Km sup
x∈R

|f (m)(x)|

for each positive integer m, where the constants [11]

1 = K0 < K2 =
π2

8
< K4 < . . . <

4

π
< . . . < K5 < K3 =

π3

24
< K1 =

π

2

are all best possible. This is called the Bohr-Favard inequality. The case n ≥ 2
remains open.

What can be said if we assume instead that f̂(ξ) = 0 for all ξ /∈ B̄n,r? (That
is, we assume the support of f is completely contained within the closed r-ball, the
opposite of before.) In the case n = 1, Bernstein [12, 13] proved that

sup
x∈R

|f (m)(x)| ≤ rm sup
x∈R

|f(x)|

for each positive integer m, where the constant 1 is best possible. Such functions f
are said to be band-limited and, like g, can be extended to an entire function of
exponential type r. The generalization

sup
x∈R n

‖∇f (x)‖ ≤ r sup
x∈R n

|f(x)|

for n ≥ 2 (when m = 1) and higher-order analogs (when m > 1) were apparently first
found by Nikolskii [14, 15].

0.1. Tempered Distributions. Let f denote the periodic triangular wave func-
tion mentioned earlier. It is not true that f is integrable on R : strictly speaking, its
Fourier transform is undefined (although signal processing engineers would describe f̂
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as a weighted sequence of equidistant Dirac impulses at ξ = ±r, ±2r, ±3r, . . .). We
can circumvent this difficulty by defining a family of rapidly decreasing test functions

ϕk(x) = e−x
2/k2 , k = 1, 2, 3, . . .

and then taking

f̂(ξ) = lim
k→∞

∞∫

−∞

e−iξxϕk(x) f (x) dx.

What allows us, however, to conclude that f̂ is independent of the choice of test
functions {ϕk}

∞

k=1, ϕk → 1 as k →∞?
Here is a little background. The space of all infinitely differentiable functions ϕ

such that ϕ(j)(x) = O(|x|−n) as x → ±∞, for any j ≥ 0 and n ≥ 1, is called the
Schwarz space S. A tempered distribution is a continuous linear functional T
on S and its (generalized) Fourier transform is defined by

T̂ (ϕ) = T (ϕ̂);

this induces an automorphism S ′ → S ′ of the dual space S ′ of S. Consider now the
example

F (ϕ) =

∞∫

−∞

ϕ(x) f(x) dx,

where f is the periodic triangular wave, and let fk = ϕk f . Clearly

F̂ (ϕ) =

∞∫

−∞

ϕ̂(x) f(x) dx =

∞∫

−∞

ϕ̂(x)
(
lim
k→∞

fk(x)
)
dx

while

lim
k→∞

∞∫
−∞

ϕ(ξ) f̂k(ξ) dξ = lim
k→∞

∞∫
−∞

ϕ̂(x) fk(x) dx

follows by interchanging the order of integration. Since |ϕ̂ fk| ≤ |ϕ̂ f | and ϕ̂ f is
integrable on R , the limit may be brought inside the integral by Lebesgue’s dominated
convergence theorem. Hence, just as f and F are regarded as the same, we may
identify f̂ and F̂ .
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