Bohr's Inequality

Steven Finch

December 5, 2004
This essay complements an earlier one [1] on uncertainty inequalities. Let $B_{n, r}$ denote the open n-dimensional ball of radius r centered at the origin. Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable and that its Fourier transform:

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f(x) d x
$$

satisfies $\hat{f}(\xi)=0$ for all $\xi \in B_{n, r}$. Note that, to be consistent with the partial differential equations literature, we omit the factor 2π from the exponent (compare with [1]). Assume also that both f and its gradient ∇f are continuous and bounded on \mathbb{R}^{n}. In the case $n=1$, Bohr $[2,3,4]$ proved that

$$
r \sup _{x \in \mathbb{R}}|f(x)| \leq \frac{\pi}{2} \sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| .
$$

The constant $\pi / 2$ is clearly best possible, for examine the periodic function $f(x)=$ $-r|x|+\pi / 2$ for $|x| \leq \pi / r$ (of period $2 \pi / r$). See [0.1] for more discussion of this example. In the case $n=2$, Rüssmann [5] and Hörmander \& Bernhardsson [6] calculated that the best constant in the inequality

$$
r \sup _{x \in \mathbb{R}^{2}}|f(x)| \leq C \sup _{x \in \mathbb{R}^{2}}\|\nabla f(x)\|
$$

is $C=2.9038872827 \ldots$ (the indicated vector norm is Euclidean). They succeeded in reducing the computation of C to the following one-dimensional optimization problem:

$$
C=\min \int_{0}^{\infty}|g(y)| d y
$$

where the minimum is taken over all integrable functions $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $g(0)=1, g(y)=g(-y)$ for all y, and $\hat{g}(\eta)=0$ for all $|\eta| \geq 1$. In fact, g can be extended to an entire analytic function of exponential type 1 on the complex plane; the zeroes of g are all real and simple.

[^0]The constants $\pi / 2$ and C also appear in connection with solving the linear operator equation $P X-X Q=Y$, where $P: \mathbb{H} \rightarrow \mathbb{H}, Q: \mathbb{K} \rightarrow \mathbb{K}$ and $Y: \mathbb{H} \rightarrow \mathbb{K}$ are bounded operators on Hilbert spaces \mathbb{H} and \mathbb{K}. If the spectra $\sigma(P), \sigma(Q)$ of P, Q are disjoint subsets of \mathbb{C}, then the equation $P X-X Q=Y$ possesses a unique solution X. Let $\delta=\inf _{\lambda \in \overline{\sigma(P), ~} \mu \in \overline{\sigma(Q)}}|\lambda-\mu|$, the separation between closed sets containing the spectra. The norm of the transformation $Y \mapsto X$ can be bounded by $(\pi / 2) / \delta$ if P, Q are self-adjoint and C / δ if instead P, Q are normal. Bhatia, Davis \& Koosis $[7,8,9]$ wrote that there is "no substantial evidence" for expecting these two constants to be best possible here, but added that they cannot be far off. A related problem involves perturbation bounds for spectral subspaces.

What can be said if higher-order derivatives of f are continuous and bounded on \mathbb{R}^{n} ? In the case $n=1$, Favard [10] proved that

$$
r^{m} \sup _{x \in \mathbb{R}}|f(x)| \leq K_{m} \sup _{x \in \mathbb{R}}\left|f^{(m)}(x)\right|
$$

for each positive integer m, where the constants [11]

$$
1=K_{0}<K_{2}=\frac{\pi^{2}}{8}<K_{4}<\ldots<\frac{4}{\pi}<\ldots<K_{5}<K_{3}=\frac{\pi^{3}}{24}<K_{1}=\frac{\pi}{2}
$$

are all best possible. This is called the Bohr-Favard inequality. The case $n \geq 2$ remains open.

What can be said if we assume instead that $\hat{f}(\xi)=0$ for all $\xi \notin \bar{B}_{n, r}$? (That is, we assume the support of f is completely contained within the closed r-ball, the opposite of before.) In the case $n=1$, Bernstein [12, 13] proved that

$$
\sup _{x \in \mathbb{R}}\left|f^{(m)}(x)\right| \leq r^{m} \sup _{x \in \mathbb{R}}|f(x)|
$$

for each positive integer m, where the constant 1 is best possible. Such functions f are said to be band-limited and, like g, can be extended to an entire function of exponential type r. The generalization

$$
\sup _{x \in \mathbb{R}^{n}}\|\nabla f(x)\| \leq r \sup _{x \in \mathbb{R}^{n}}|f(x)|
$$

for $n \geq 2$ (when $m=1$) and higher-order analogs (when $m>1$) were apparently first found by Nikolskii $[14,15]$.
0.1. Tempered Distributions. Let f denote the periodic triangular wave function mentioned earlier. It is not true that f is integrable on \mathbb{R} : strictly speaking, its Fourier transform is undefined (although signal processing engineers would describe \hat{f}
as a weighted sequence of equidistant Dirac impulses at $\xi= \pm r, \pm 2 r, \pm 3 r, \ldots)$. We can circumvent this difficulty by defining a family of rapidly decreasing test functions

$$
\varphi_{k}(x)=e^{-x^{2} / k^{2}}, \quad k=1,2,3, \ldots
$$

and then taking

$$
\hat{f}(\xi)=\lim _{k \rightarrow \infty} \int_{-\infty}^{\infty} e^{-i \xi x} \varphi_{k}(x) f(x) d x
$$

What allows us, however, to conclude that \hat{f} is independent of the choice of test functions $\left\{\varphi_{k}\right\}_{k=1}^{\infty}, \varphi_{k} \rightarrow 1$ as $k \rightarrow \infty$?

Here is a little background. The space of all infinitely differentiable functions φ such that $\varphi^{(j)}(x)=O\left(|x|^{-n}\right)$ as $x \rightarrow \pm \infty$, for any $j \geq 0$ and $n \geq 1$, is called the Schwarz space \mathcal{S}. A tempered distribution is a continuous linear functional T on \mathcal{S} and its (generalized) Fourier transform is defined by

$$
\hat{T}(\varphi)=T(\hat{\varphi})
$$

this induces an automorphism $\mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$ of the dual space \mathcal{S}^{\prime} of \mathcal{S}. Consider now the example

$$
F(\varphi)=\int_{-\infty}^{\infty} \varphi(x) f(x) d x
$$

where f is the periodic triangular wave, and let $f_{k}=\varphi_{k} f$. Clearly

$$
\hat{F}(\varphi)=\int_{-\infty}^{\infty} \hat{\varphi}(x) f(x) d x=\int_{-\infty}^{\infty} \hat{\varphi}(x)\left(\lim _{k \rightarrow \infty} f_{k}(x)\right) d x
$$

while

$$
\lim _{k \rightarrow \infty} \int_{-\infty}^{\infty} \varphi(\xi) \hat{f}_{k}(\xi) d \xi=\lim _{k \rightarrow \infty} \int_{-\infty}^{\infty} \hat{\varphi}(x) f_{k}(x) d x
$$

follows by interchanging the order of integration. Since $\left|\hat{\varphi} f_{k}\right| \leq|\hat{\varphi} f|$ and $\hat{\varphi} f$ is integrable on \mathbb{R}, the limit may be brought inside the integral by Lebesgue's dominated convergence theorem. Hence, just as f and F are regarded as the same, we may identify \hat{f} and \hat{F}.

References

[1] S. R. Finch, Uncertainty inequalities, unpublished note (2003).
[2] H. Bohr, Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms, Prace Matematyczno-Fizyczne 43 (1935) 273-288; Collected Mathematical Works, v. II, ed. E. Følner and B. Jessen, Dansk Matematisk Forening, 1952, C36, pp. 1-16.
[3] B. Sz.-Nagy, Über die Ungleichung von H. Bohr, Math. Nachr. 9 (1953) 255-259; MR0054765 (14,976d).
[4] L. Hörmander, A new proof and a generalization of an inequality of Bohr, Math. Scand. 2 (1954). 33-45; MR0064906 (16,354e).
[5] H. Rüssmann, On an inequality for trigonometric polynomials in several variables, Analysis, et cetera, ed. P. H. Rabinowitz and E. Zehnder, Academic Press, 1990, pp. 545-562; MR1039361 (91f:42001).
[6] L. Hörmander and B. Bernhardsson, An extension of Bohr's inequality, Boundary Value Problems for Partial Differential Equations and Applications, ed. J.-L. Lions and C. Baiocchi, Masson, 1993, pp. 179-194; MR1260445 (95e:46052).
[7] R. Bhatia, C. Davis and P. Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989) 138-150; MR0976316 (91a:42006).
[8] R. Bhatia, Matrix Analysis, Springer-Verlag, 1997, pp. 163, 203-225, 229, 250; MR1477662 (98i:15003).
[9] R. Bhatia and P. Rosenthal, How and why to solve the operator equation $A X-$ XB $=$, Bull. London Math. Soc. 29 (1997) 1-21; MR1416400 (97k:47016).
[10] J. Favard, Application de la formule sommatoire d'Euler à la démonstration de quelques propriétés extrémales des intégrale des fonctions périodiques ou presquepériodiques, Matematisk Tidsskrift B (Kobenhavn) (1936) 81-94.
[11] S. R. Finch, Achieser-Krein-Favard constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 255-257.
[12] S. N. Bernstein, Sur une propri'et'e des fonctions enti'eres, C. R. Acad. Sci. Paris 176 (1923) 1603-1605.
[13] R. P. Boas, Entire Functions, Academic Press, 1954, pp. 206-207; MR0068627 $(16,914 f)$.
[14] S. M. Nikolskii, Inequalities for entire functions of finite order and their application in the theory of differentiable functions of several variables (in Russian), Trudy Mat. Inst. Steklov., v. 38, Izdat. Akad. Nauk SSSR, 1951, pp. 244-278; MR0048565 (14,32e).
[15] S. M. Nikolskii, Approximation of Functions of Several Variables and Imbedding Theorems (in Russian), Izdat. Nauka, 1969; Engl. transl., Springer-Verlag, 1975; $2^{\text {nd }}$ ed., Nauka, 1977; MR0310616 (46 \#9714), MR0374877 (51 \#11073) and MR0506247 (81f:46046).

[^0]: ${ }^{0}$ Copyright (c) 2004 by Steven R. Finch. All rights reserved.

