Boolean Decision Functions

Steven Finch

April 22, 2015
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be the Boolean function that decides whether a given $(n+1)$-bit odd integer is square-free. More precisely,

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } 2 \xi+1 \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$

where the string $x_{1} x_{2}, \ldots x_{n}$ is the integer ξ written in binary (with leading zeroes added as necessary). Let x denote the vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. There are many ways of characterizing the computational complexity of f; we focus on a single combinatorial method related to what is called the average sensitivity of f. The influence of x_{i} on f, denoted by $I_{i}(f)$, is the probability that flipping the $i^{\text {th }}$ component of the input vector, selected at random from $\{0,1\}^{n}$, will flip the output. That is,

$$
I_{i}(f)=2^{-n} \sum_{x \in\{0,1\}^{n}}\left|f(x)-f\left(x^{(i)}\right)\right|
$$

where $x^{(i)}=\left(x_{1}, x_{2}, \ldots, x_{i}+1, \ldots, x_{n}\right)$ modulo 2. Bernasconi, Damm \& Shparlinski [1, 2] proved that

$$
I_{i}(f)=2 \gamma_{\mathrm{int}}+o(n)
$$

as $n \rightarrow \infty$, where

$$
\gamma_{\mathrm{int}}=\frac{8}{\pi^{2}}-2 \prod_{p}\left(1-\frac{2}{p^{2}}\right)=0.1653012713 \ldots=\frac{0.3306025426 \ldots}{2}
$$

In words, an odd integer changes from square-free to square-full or vice versa with probability $\approx 33 \%$ if one of its bits is flipped. The infinite product is familiar - called the Feller-Tornier constant in [3] - and its appearance here is quite interesting.

We turn attention from integers to polynomials with coefficients in the finite field \mathbb{Z}_{2}. Let $g:\{0,1\}^{n} \rightarrow\{0,1\}$ decide whether a given binary polynomial with constant coefficient unity

$$
\eta(x)=y_{n} x^{n}+y_{n-1} x^{n-1}+\cdots+y_{1} x+1
$$

[^0]is square-free. More precisely,
\[

g\left(y_{1}, y_{2}, ···, y_{n}\right)= $$
\begin{cases}1 & \text { if } \eta(x) \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$
\]

and we again abbreviate the vector as y. The influence $I_{i}(g)$ of y_{i} on g is defined similarly. Clearly the polynomial corresponding to the vector $y^{(i)}$ is $\eta(x)+x^{i}$ modulo 2. Allender, Bernasconi, Damm, von zur Gathen, Saks \& Shparlinski [4] proved that

$$
I_{i}(g)=2 \gamma_{\mathrm{poly}}+O\left(2^{-n / 4}\right)
$$

as $n \rightarrow \infty$, where

$$
\gamma_{\mathrm{poly}}=\frac{2}{3}-2 \prod_{k=1}^{\infty}\left(1-\frac{1}{2^{2 k-1}}\right)^{a_{k}}=0.2735795624 \ldots=\frac{0.5471591248 \ldots}{2}
$$

The sequence $\left\{a_{k}\right\}_{k=1}^{\infty}=\{2,1,2,3,6,9,18,30, \ldots\}$ counts all irreducible polynomials over \mathbb{Z}_{2} of degree k and satisfies [5]

$$
2^{k}=\sum_{d \backslash k} d a_{k}
$$

equivalently,

$$
a_{k}=\frac{1}{k} \sum_{d \mid k} \mu\left(\frac{k}{d}\right) 2^{d}
$$

where μ is the Möbius mu function [6]. Note that the error term is tighter for $I_{i}(g)$ than that for for $I_{i}(f)$.

A fascinating unanswered question arises if we replace square-freeness by primality (for odd integers) and irreducibility (for binary polynomials). What are the influence I_{i} asymptotics in this new scenario? Formulas analogous to the preceding would be good to see someday.

With regard to integers, a positive proportion of primes become composite when any one of their bits is changed $[7,8,9]$. As a consequence, it is not possible to establish whether an arbitrary integer is prime without examining all of its bits. With regard to polynomials, it is curious that [10]

$$
\prod_{k=1}^{\infty}\left(1-\frac{1}{2^{2 k}}\right)^{a_{k}}=\frac{1}{2}
$$

is trivial while a slight modification yields the unrecognizable constant $\gamma_{\text {poly }}$.

References

[1] A. Bernasconi, C. Damm and I. Shparlinski, On the average sensitivity of testing square-free numbers, Computing and Combinatorics (COCOON), Proc. 1999 Tokyo conf., ed. T. Asano, H. Imai, D. T. Lee, S.-I. Nakano and T. Tokuyama, Lect. Notes in Comp. Sci. 1627, Springer-Verlag, 1999, pp. 291-299; MR1730345 (2000i:11192).
[2] A. Bernasconi, C. Damm and I. Shparlinski, The average sensitivity of squarefreeness, Comput. Complexity 9 (2000) 39-51; MR1791089 (2001k:11179).
[3] S. R. Finch, Meissel-Mertens constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 94-98.
[4] E. Allender, A. Bernasconi, C. Damm, J. von zur Gathen, M. Saks and I. Shparlinski, Complexity of some arithmetic problems for binary polynomials, Comput. Complexity 12 (2003) 23-47; MR2054893 (2005b:68119).
[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A001037, A059966, and A060477.
[6] S. R. Finch, Artin's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 104-109.
[7] F. Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comp. 29 (1975) 79-81; MR0376583 (51 \#12758).
[8] Z.-W. Sun, On integers not of the form $\pm p^{a} \pm q^{b}$, Proc. Amer. Math. Soc. 128 (2000) 997-1002; MR1695111 (2000i:11157).
[9] T. Tao, A remark on primality testing and decimal expansions, J. Aust. Math. Soc. 91 (2011) 405-413; arXiv:0802.3361; MR2900615.
[10] E. R. Berlekamp, Algebraic Coding Theory, rev. ed., Aegean Park Press, 1984, pp. 70-86; MR0238597 (38 \#6873).

[^0]: ${ }^{0}$ Copyright © 2015 by Steven R. Finch. All rights reserved.

