Bessel Function Zeroes

Steven Finch

October 23, 2003
The Bessel function $J_{\nu}(x)$ of the first kind

$$
J_{\nu}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(\nu+k+1)}\left(\frac{x}{2}\right)^{\nu+2 k}, \quad \nu>-1
$$

has infinitely many positive zeros

$$
0<j_{\nu, 1}<j_{\nu, 2}<j_{\nu, 3}<\ldots
$$

as does its derivative $J_{\nu}^{\prime}(x)$:

$$
\begin{gathered}
0<j_{\nu, 1}^{\prime}<j_{\nu, 2}^{\prime}<j_{\nu, 3}^{\prime}<\ldots, \quad \nu>0, \\
0=j_{0,1}^{\prime}<j_{0,2}^{\prime}<j_{0,3}^{\prime}<j_{0,4}^{\prime}<\ldots, \quad \nu=0 .
\end{gathered}
$$

See Tables $1 \& 2$ for the cases $\nu=0,1,2$ and Tables $3 \& 4$ for the cases $\nu=$ $1 / 2,3 / 2,5 / 2$. These appear in many physical applications that we cannot hope to survey in entirety. We will state only a few properties and several important inequalities. A starting point for research is Watson's monumental treatise [1].

Table 1 Zeroes of J_{ν} for $s=1,2,3$ and integer ν

$j_{0, s}$	$j_{1, s}$	$j_{2, s}$
$2.4048255576 \ldots$	$3.8317059702 \ldots$	$5.1356223018 \ldots$
$5.5200781102 \ldots$	$7.0155866698 \ldots$	$8.4172441403 \ldots$
$8.6537279129 \ldots$	$10.1734681350 \ldots$	$11.6198411721 \ldots$

Table 2 Zeroes of J_{ν}^{\prime} for $s=1,2,3$ and integer ν

$j_{0, s}^{\prime}$	$j_{1, s}^{\prime}$	$j_{2, s}^{\prime}$
0	$1.8411837813 \ldots$	$3.0542369282 \ldots$
$3.8317059702 \ldots$	$5.3314427735 \ldots$	$6.7061331941 \ldots$
$7.0155866698 \ldots$	$8.5363163663 \ldots$	$9.9694678230 \ldots$

[^0]Table 3 Zeroes of J_{ν} for $s=1,2,3$ and half-integer ν

$j_{1 / 2, s}$	$j_{3 / 2, s}$	$j_{5 / 2, s}$
π	$4.4934094579 \ldots$	$5.7634591968 \ldots$
2π	$7.7252518369 \ldots$	$9.0950113304 \ldots$
3π	$10.9041216594 \ldots$	$12.3229409705 \ldots$

Table 4 Zeroes of J_{ν}^{\prime} for $s=1,2,3$ and half-integer ν

$j_{1 / 2, s}^{\prime}$	$j_{3 / 2, s}^{\prime}$	$j_{5 / 2, s}^{\prime}$
$1.1655611852 \ldots$	$2.4605355721 \ldots$	$3.6327973198 \ldots$
$4.6042167772 \ldots$	$6.0292923816 \ldots$	$7.3670089715 \ldots$
$7.7898837511 \ldots$	$9.2614019262 \ldots$	$10.6635613904 \ldots$

Clearly $j_{\nu, s} \rightarrow \infty$ as $s \rightarrow \infty$ with ν fixed; in fact, $j_{\nu, s+1}-j_{\nu, s} \rightarrow \pi$. For $\nu \geq 0$, here is a straightforward lower bound [2,3]:

$$
j_{\nu, s}>\sqrt{\left(s-\frac{1}{4}\right)^{2} \pi^{2}+\nu^{2}}
$$

and, for $\nu>0$, here are more complicated bounds $[4,5,6]$:

$$
\nu+\alpha_{s} \nu^{1 / 3}<j_{\nu, s}<\nu+\alpha_{s} \nu^{1 / 3}+\frac{3 \alpha_{s}^{2}}{10} \nu^{-1 / 3}
$$

where $\alpha_{s}=2^{-1 / 3} a_{s}$ and a_{s} is the $s^{\text {th }}$ positive root of the equation

$$
J_{\frac{1}{3}}\left(\frac{2}{3} x^{3 / 2}\right)+J_{-\frac{1}{3}}\left(\frac{2}{3} x^{3 / 2}\right)=0 .
$$

For example, $a_{1}=2.3381074104 \ldots$ and thus the coefficients of $\nu^{1 / 3}$ and $\nu^{-1 / 3}$ for $s=1$ are $1.8557570814 \ldots$ and $1.0331503036 \ldots$, respectively. (The left hand side of the equation is the same as $3 \operatorname{Ai}(-x) / \sqrt{x}$, where Ai is the Airy function.) These bounds are asymptotically precise; more terms in the asymptotic expansion of $j_{\nu, s}$ as $\nu \rightarrow \infty$, for any fixed s, can be obtained $[7,8,9,10]$. Related work includes [11, 12, 13, 14, 15].

Similarly we have

$$
\nu+\alpha_{s}^{\prime} \nu^{1 / 3}<j_{\nu, s}^{\prime}<\nu+\alpha_{s}^{\prime} \nu^{1 / 3}+\frac{3 \alpha_{s}^{\prime 3}-1}{10 \alpha_{s}^{\prime}} \nu^{-1 / 3}
$$

where $\alpha_{s}^{\prime}=2^{-1 / 3} a_{s}^{\prime}$ and a_{s}^{\prime} is the $s^{\text {th }}$ positive root of the equation

$$
J_{\frac{2}{3}}\left(\frac{2}{3} x^{3 / 2}\right)-J_{-\frac{2}{3}}\left(\frac{2}{3} x^{3 / 2}\right)=0 .
$$

For example, $a_{1}^{\prime}=1.0187929716 \ldots$ and thus the coefficients of $\nu^{1 / 3}$ and $\nu^{-1 / 3}$ for $s=1$ are $0.8086165174 \ldots$ and $0.0724901862 \ldots$, respectively. (The left hand side of the equation is the same as $3 \mathrm{Ai}^{\prime}(-x) / x$.) The zeroes of J_{ν} and J_{ν}^{\prime} are interlaced:

$$
\ldots<j_{\nu, s}^{\prime}<j_{\nu, s}<j_{\nu, s+1}^{\prime}<j_{\nu, s+1}<\ldots
$$

and further satisfy [16]

$$
j_{\nu, s+1}^{\prime}>\sqrt{j_{\nu, s} j_{\nu, s+1}} .
$$

Let $n \geq 0$ be an integer. Every Bessel function $J_{n+1 / 2}(x)$ is elementary; for example, $\sqrt{x} J_{1 / 2}(x)$ can be simplified to $\sqrt{2 / \pi} \sin (x)$. Consequently $j_{3 / 2, s}$ is the $s^{\text {th }}$ positive root of the equation

$$
\sin (x)-x \cos (x)=0, \quad \text { that is, } \quad \tan (x)=x
$$

and $j_{1 / 2, s}^{\prime}$ is the $s^{\text {th }}$ positive root of the equation

$$
\sin (x)-2 x \cos (x)=0, \text { that is, } \tan (x)=2 x .
$$

Siegel $[1,17,18]$ proved that $J_{\nu}(\xi)$ is transcendental whenever ν is rational and ξ is algebraic. It follows immediately that every zero $j_{\nu, s}$ is transcendental. Further, if μ is rational and $\nu-\mu \neq 0$ is an integer, then $J_{\nu}(x)$ and $J_{\mu}(x)$ can never have common zeroes (other than $x=0$) [19, 20, 21, 22].

Series of the form [1, 23]

$$
\sum_{s=1}^{\infty} \frac{1}{j_{\nu, s}^{2}}=\frac{1}{4(\nu+1)}, \quad \sum_{s=1}^{\infty} \frac{1}{j_{\nu, s}^{4}}=\frac{1}{16(\nu+1)^{2}(v+2)}
$$

possess well-known special cases. If $\nu=1 / 2$, then $j_{\nu, s}=\pi s$ and

$$
\sum_{s=1}^{\infty} \frac{1}{s^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{s=1}^{\infty} \frac{1}{s^{4}}=\frac{\pi^{4}}{90}
$$

as given in [24]. We also have

$$
\sum_{s=1}^{\infty} \frac{1}{j_{0, s}^{2}}=\frac{1}{4}, \quad \sum_{s=1}^{\infty} \frac{1}{j_{3 / 2, s}^{2}}=\frac{1}{10}
$$

and the latter series appears in [25]. Other identities can be found in [26, 27].
We need three more tables before continuing. Define

$$
P_{\nu}(x)=\frac{d}{d x}\left(x^{1-\nu} J_{\nu}(x)\right)=x^{-\nu}\left((1-\nu) J_{\nu}(x)+x J_{\nu}^{\prime}(x)\right)
$$

$$
Q_{\nu}(x)=J_{\nu}(x) I_{\nu+1}(x)+I_{\nu}(x) J_{\nu+1}(x)
$$

where $I_{\nu}(x)$ is the modified Bessel function of the first kind:

$$
I_{\nu}(x)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(\nu+k+1)}\left(\frac{x}{2}\right)^{\nu+2 k}=i^{-\nu} J_{\nu}(i x) .
$$

Let $p_{\nu, s}$ and $q_{\nu, 1}$ denote the $s^{\text {th }}$ smallest positive zeroes of $P_{\nu}(x)$ and $Q_{\nu}(x)$. It is clear that $p_{1, s}=j_{1, s}^{\prime}$ for all s. See Tables $5 \& 6$.

Table 5 Zeroes of P_{ν} for $s=1,2,3$

$p_{1, s}$	$p_{3 / 2, s}$	$p_{2, s}$
$1.8411837813 \ldots$	$2.0815759778 \ldots$	$2.2999103302 \ldots$
$5.3314427735 \ldots$	$5.9403699905 \ldots$	$6.5414028262 \ldots$
$8.5363163663 \ldots$	$9.2058401429 \ldots$	$9.8647278383 \ldots$

Table 6 Zeroes of Q_{ν} for $s=1,2,3$

$q_{0, s}$	$q_{1 / 2, s}$	$q_{1, s}$
$3.1962206165 \ldots$	$3.9266023120 \ldots$	$4.6108998790 \ldots$
$6.3064370476 \ldots$	$7.0685827456 \ldots$	$7.7992738008 \ldots$
$9.4394991378 \ldots$	$10.2101761228 \ldots$	$10.958067191 \ldots$

Finally, we offer an application. Table 7 gives the vibration modes of an idealized timpani (or kettledrum). In contrast, the frequency ratios for overtones of an idealized guitar string are all integers [28].

Table 7 Frequency ratios for the first five overtones of a fixed circular membrane

ν	s	$j_{\nu, s} / \pi$	$j_{\nu, s} / j_{0,1}$
0	1	$0.7654797495 \ldots$	1
1	1	$1.2196698912 \ldots$	$1.5933405056 \ldots$
2	1	$1.6347193503 \ldots$	$2.1355487866 \ldots$
0	2	$1.7570954350 \ldots$	$2.2954172674 \ldots$
3	1	$2.0308686069 \ldots$	$2.6530664045 \ldots$
1	2	$2.2331305943 \ldots$	$2.9172954551 \ldots$

0.1. Membrane and Plate Inequalities. Let $n \geq 2$. Let $\Omega \subseteq \mathbb{R}^{n}$ be a connected bounded open set of volume $|\Omega|$, and assume that its boundary $\partial \Omega$ is smooth. Define the Laplacian and bi-Laplacian (biharmonic) operators

$$
\triangle f=\sum_{k=1}^{n} \frac{\partial^{2} f}{\partial^{2} x_{k}}, \quad \triangle^{2} f=\triangle(\triangle f)
$$

for smooth functions $f: \Omega \rightarrow \mathbb{R}$. We will briefly consider four famous eigenvalue problems (i.e., isoperimetric inequalities) that occur in structural dynamics for which Bessel function zeroes play a role $[29,30]$.

The fixed (fastened) membrane problem involves the Laplacian with Dirichlet boundary conditions:

$$
\begin{gathered}
-\triangle u=\lambda u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega .
\end{gathered}
$$

We seek the smallest eigenvalue $\lambda_{1}(\Omega)$, that is, the fundamental frequency of vibration. When is $\lambda_{1}(\Omega)$ minimal? The Rayleigh-Faber-Krahn inequality provides that [31]

$$
\lambda_{1}(\Omega) \geq\left(\frac{\omega_{n}}{|\Omega|}\right)^{2 / n} j_{\frac{n}{2}-1,1}^{2}
$$

with equality if and only if Ω is a ball. Here $\omega_{n}=\pi^{n / 2} / \Gamma(n / 2+1)$ is the volume of the unit ball in \mathbb{R}^{n}. Only the case $n=2$ was mentioned in [32]. For example, $j_{0,1}^{2}=5.7831859629 \ldots$

The free membrane problem involves the Laplacian with Neumann boundary conditions:

$$
\begin{aligned}
& -\Delta v=\mu v \quad \text { in } \Omega \\
& \frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

where $\partial v / \partial n$ denotes the outward normal derivative of v. Since $\mu_{1}(\Omega)=0$, we seek the next-to-smallest eigenvalue $\mu_{2}(\Omega)$. When is $\mu_{2}(\Omega)$ maximal? The SzegöWeinberger inequality provides that [33, 34, 35, 36]

$$
\mu_{2}(\Omega) \leq\left(\frac{\omega_{n}}{|\Omega|}\right)^{2 / n} p_{\frac{n}{2}, 1}^{2}
$$

with equality if and only if Ω is a ball.
The clamped plate problem involves the bi-Laplacian with the following boundary conditions:

$$
\begin{array}{cc}
\triangle^{2} w=\Lambda w & \text { in } \Omega \\
w=\frac{\partial w}{\partial n}=0 & \text { on } \partial \Omega
\end{array}
$$

We seek the smallest eigenvalue $\Lambda_{1}(\Omega)$. When is $\Lambda_{1}(\Omega)$ minimal? The Nadirashvili-Ashbaugh-Benguria inequality provides that [37, 38, 39]

$$
\Lambda_{1}(\Omega) \geq\left(\frac{\omega_{n}}{|\Omega|}\right)^{4 / n} q_{\frac{n}{2}-1,1}^{4}
$$

with equality if and only if Ω is a ball. This has been rigorously proved only for $2 \leq n \leq 3$, but it is known to be true for $n \geq 4$ up to a constant factor $\rightarrow 1$ as $n \rightarrow \infty$. Only the case $n=2$ was mentioned in [32].

The buckling load problem involves both the Laplacian and bi-Laplacian with the following boundary conditions:

$$
\begin{aligned}
& \triangle^{2} z=-M \triangle z \quad \text { in } \Omega \\
& z=\frac{\partial z}{\partial n}=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

We seek the smallest eigenvalue $M_{1}(\Omega)$. When is $M_{1}(\Omega)$ minimal? Pólya \& Szegö [39, 40] conjectured that

$$
M_{1}(\Omega) \geq\left(\frac{\omega_{n}}{|\Omega|}\right)^{2 / n} j_{\frac{n}{2}, 1}^{2}
$$

with equality if and only if Ω is a ball, but this is only known to be true up to a constant factor $\rightarrow 1$ as $n \rightarrow \infty$.

We return to the original Dirichlet problem to state one more idea. The Payne-Pólya-Weinberger conjecture, proved by Ashbaugh \& Benguria [41, 42, 43], involves the maximal ratio of the two smallest eigenvalues $\lambda_{1}(\Omega)$ and $\lambda_{2}(\Omega)$:

$$
\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)} \leq \frac{j_{\frac{n}{2}, 1}^{2}}{j_{\frac{n}{2}-1,1}^{2}}
$$

with equality if and only if Ω is a ball. For example, when $n=2$, the right hand side is $2.5387339670 \ldots$ What can be said about the maximal ratios of two arbitrary eigenvalues? [44]
0.2. Other Best Constants. Bessel function zeroes occur in best constants associated with Nash's inequality [45], uncertainty inequalities [46], and with an improved version of Hardy's inequality [47, 48, 49, 50, 51]. We hope to include more examples here later.

We close with remarks about the multiplicities of the zeroes. It appears that, for fixed $\nu>0$, the positive zeroes $j_{\nu, s}^{\prime \prime}$ of the second derivative $J_{\nu}^{\prime \prime}(x)$ are all simple, like those of $J_{\nu}(x)$ and $J_{\nu}^{\prime}(x)$. This is no longer true when considering positive zeroes $j_{\nu, s}^{\prime \prime \prime}$ of the third derivative $J_{\nu}^{\prime \prime \prime}(x)$: there exists a value $\nu_{0}=0.755378 \ldots$ for which $J_{\nu_{0}}^{\prime \prime \prime}$ has a double zero $x_{0}=0.959621 \ldots[52,53]$. Related papers include [54, 55, 56, 57, 58, 59, $60,61,62,63,64]$, the latter of which are more concerned with the strictly increasing behavior of $j_{\nu, s}^{\prime \prime}$ as a function of ν for fixed s (rather than of s for fixed ν).

References

[1] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1944; MR1349110 (96i:33010).
[2] H. W. Hethcote, Bounds for zeros of some special functions, Proc. Amer. Math. Soc. 25 (1970) 72-74; MR0255909 (41 \#569).
[3] R. C. McCann, Lower bounds for the zeros of Bessel functions, Proc. Amer. Math. Soc. 64 (1977) 101-103; MR0442316 (56 \#700).
[4] T. Lang and R. Wong, "Best possible" upper bounds for the first two positive zeros of the Bessel function $J_{\nu}(x)$: the infinite case, J. Comput. Appl. Math. 71 (1996) 311-329; MR1399899 (97h:33016).
[5] L. Lorch and R. Uberti, "Best possible" upper bounds for the first positive zeros of Bessel functions - the finite part, J. Comput. Appl. Math. 75 (1996) 249-258; MR1426265 (98b:33010).
[6] C. K. Qu and R. Wong, "Best possible" upper and lower bounds for the zeros of the Bessel function $J_{\nu}(x)$, Trans. Amer. Math. Soc. 351 (1999) 2833-2859; MR1466955 (99j:33006).
[7] F. Tricomi, Sulle funzioni di Bellel di ordine e argomento pressochè uguali, Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 83 (1949) 3-20; MR0034478 (11,594a).
[8] F. W. J. Olver, A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order, Proc. Cambridge Philos. Soc. 47 (1951) 699-712; MR0043551 (13,283c).
[9] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972, pp. 371, 447; MR1225604 (94b:00012).
[10] Á. Elbert and A. Laforgia, Asymptotic expansion for zeros of Bessel functions and of their derivatives for large order, Atti Sem. Mat. Fis. Univ. Modena Suppl. 46 (1998) 685-695; MR1645747 (99h:33012).
[11] L. G. Chambers, An upper bound for the first zero of Bessel functions, Math. Comp. 38 (1982) 589-591; MR0645673 (83h:33011).
[12] R. Piessens, A series expansion for the first positive zero of the Bessel functions, Math. Comp. 42 (1984) 195-197; MR0725995 (84m:33014).
[13] M. E. H. Ismail, and M. E. Muldoon, On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions, J. Math. Anal. Appl. 135 (1988) 187-207; MR0960813 (89i:33011).
[14] L. Lorch, Some inequalities for the first positive zeros of Bessel functions, SIAM J. Math. Anal. 24 (1993) 814-823; MR1215440 (95a:33010).
[15] Á. Elbert and P. D. Siafarikas, On the square of the first zero of the Bessel function $J_{n}(z)$, Canad. Math. Bull. 42 (1999) 56-67; MR1695874 (2000f:33004).
[16] J. Segura, On a conjecture regarding the extrema of Bessel functions and its generalization, J. Math. Anal. Appl. 280 (2003) 54-62; MR1972191.
[17] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys.-Math. Klasse (1929) n. 1, 1-70; also in Gesammelte Abhandlungen, v. 1, ed. K. Chandrasekharan and H. Maass, Springer-Verlag, 1966, pp. 209-266.
[18] C. L. Siegel, Transcendental Numbers, Chelsea 1965, pp. 59, 71-72; MR0032684 (11,330c).
[19] T. C. Benton and H. D. Knoble, Common zeros of two Bessel functions, Math. Comp. 32 (1978) 533-535; MR0481160 (58 \#1303).
[20] T. C. Benton, Common zeros of two Bessel functions. II. Approximations and tables, Math. Comp. 41 (1983) 203-217; MR0701635 (85a:33010).
[21] E. N. Petropoulou, P. D. Siafarikas and I. D. Stabolas, On the common zeros of Bessel functions, J. Comput. Appl. Math. 153 (2003) 387-393; MR1985709.
[22] J. Haletky, The spacing of zeros of Bessel functions, unpublished note (1999).
[23] I. N. Sneddon, On some infinite series involving the zeros of Bessel functions of the first kind, Proc. Glasgow Math. Assoc. 4 (1960) 144-156; MR0120400 (22 \#11154).
[24] S. R. Finch, Apéry's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[25] S. R. Finch, Du Bois Reymond's constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 237-240.
[26] X. A. Lin and O. P. Agrawal, A new identity involving positive roots of Bessel functions of the first kind, J. Franklin Inst. B 332 (1995) 333-336; MR1368354 (97a:33005).
[27] E. A. Skelton, A new identity for the infinite product of zeros of Bessel functions of the first kind or their derivatives, J. Math. Anal. Appl. 267 (2002) 338-344; MR1886832 (2003g:33007).
[28] P. M. Morse, Vibration and Sound, $2^{\text {nd }}$ ed., McGraw-Hill, 1948.
[29] M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, Spectral Theory and Geometry, Proc. 1998 Edinburgh conf., ed. E. B. Davies and Yu. Safarov, Cambridge Univ. Press, 1999, pp. 95-139; math.SP/0008087; MR1736867 (2001a:35131).
[30] G. Talenti, On isoperimetric theorems of mathematical physics, Handbook of Convex Geometry, ed. P. M. Gruber and J. M. Wills, Elsevier, 1993, pp. 11311147; MR1243005 (94i:49002).
[31] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta et Commentationes Universitatis Tartuensis (Dorpatensis) A9 (1926) 1-44; Engl. transl. in Edgar Krahn 1894-1961: A Centenary Volume, ed. U. Lumiste and J. Peetre, IOS Press, 1994, pp. 139-174.
[32] S. R. Finch, Sobolev isoperimetric constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 219-225.
[33] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954) 343-356; MR0061749 (15,877c).
[34] H. F. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956) 633-636; MR0079286 (18,63c).
[35] M. S. Ashbaugh and R. D. Benguria, Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions, SIAM J. Math. Anal. 24 (1993) 557-570; MR1215424 (94b:35191).
[36] L. Lorch and P. Szego, Bounds and monotonicities for the zeros of derivatives of ultraspherical Bessel functions, SIAM J. Math. Anal. 25 (1994) 549-554; MR1266576 (95b:33034).
[37] N. S. Nadirashvili, Rayleigh's conjecture on the principal frequency of the clamped plate, Arch. Rational Mech. Anal. 129 (1995) 1-10; MR1328469 (97j:35113).
[38] M. S. Ashbaugh and R. D. Benguria, On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J. 78 (1995) 1-17; MR1328749 (97j:35111).
[39] M. S. Ashbaugh and R. S. Laugesen, Fundamental tones and buckling loads of clamped plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996) 383-402; MR1433428 (97j:35112).
[40] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, 1951; MR0043486 (13,270d).
[41] M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Pólya-Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991) 19-29; MR1085824 (91m:35173).
[42] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Annals of Math. 135 (1992) 601-628; MR1166646 (93d:35105).
[43] M. S. Ashbaugh and R. D. Benguria, A second proof of the Payne-PólyaWeinberger conjecture, Comm. Math. Phys. 147 (1992) 181-190; MR1171765 (93k:33002).
[44] M. Levitin and R. Yagudin, Range of the first three eigenvalues of the planar Dirichlet Laplacian, London Math. Soc. J. Comput. Math. 6 (2003) 1-17; math.SP/0203231; MR1971489.
[45] S. R. Finch, Nash's inequality, unpublished note (2003).
[46] S. R. Finch, Uncertainty inequalities, unpublished note (2003).
[47] S. R. Finch, Copson-de Bruijn constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 217-219.
[48] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997) 443-469; MR1605678 (99a:35081).
[49] S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal. 192 (2002) 186-233; MR1918494 (2003f:46045).
[50] F. Gazzola, H.-C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004) 2149-2168; MR2048513.
[51] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved L^{p} Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004) 2169-2196; math.AP/0302326; MR2048514.
[52] L. Lorch and P. Szego, Monotonicity of the zeros of the third derivative of Bessel functions, Methods Appl. Anal. 2 (1995) 103-111; MR1337456 (96g:33006).
[53] L. Lorch, The zeros of the third derivative of Bessel functions of order less than one, Methods Appl. Anal. 2 (1995) 147-159; MR1350893 (96k:33005).
[54] M. K. Kerimov and S. L. Skorokhodov, Calculation of multiple zeros of derivatives of cylindrical Bessel functions $J_{\nu}(z)$ and $Y_{\nu}(z)$ (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 25 (1985) 1749-1760, 1918; Engl. transl. in USSR Comput. Math. Math. Phys., v. 25 (1985) n. 6, 101-107; MR0821711 (87f:33018).
[55] M. K. Kerimov and S. L. Skorokhodov, Multiple zeros of derivatives of cylindrical Bessel functions (in Russian), Doklady Akad. Nauk SSSR 288 (1986) 285-288; Engl. transl. in Soviet Math. Dokl. 33 (1986) 650-653; MR0843438 (87j:33011).
[56] M. K. Kerimov and S. L. Skorokhodov, Some asymptotic formulas for cylindrical Bessel functions (in Russian), Zh. Vychisl. Mat. Mat. Fiz. 30 (1990) 1775-1784; Engl. transl. in USSR Comput. Math. Math. Phys., v. 30 (1990) n. 6, 126-133; MR1099143 (92f:33006).
[57] L. Lorch and P. Szego, On the points of inflection of Bessel functions of positive order. I, Canad. J. Math. 42 (1990) 933-948; corrigenda 42 (1990) 1132; MR1081004 (92i:33002a) and MR1099462 (92i:33002b).
[58] R. Wong and T. Lang, On the points of inflection of Bessel functions of positive order. II, Canad. J. Math. 43 (1991) 628-651; MR1118013 (92f:33008).
[59] A. McD. Mercer, The zeros of $a z^{2} J_{\nu}^{\prime \prime}(z)+b z J_{\nu}^{\prime}(z)+c J_{\nu}(z)$ as functions of order, Internat. J. Math. Math. Sci. 15 (1992) 319-322; MR1155524 (93a:33010).
[60] L. Lorch and P. Szego, Further on the points of inflection of Bessel functions, Canad. Math. Bull. 39 (1996) 216-218; MR1390358 (97i:33002).
[61] C. G. Kokologiannaki and P. D. Siafarikas, An alternative proof of the monotonicity of $j_{\nu, 1}^{\prime \prime}$, Boll. Unione Mat. Ital. A 7 (1993) 373-376; errata corrige 9 (1995) 415; MR1249113 (94j:33001) and MR1336247.
[62] E. K. Ifantis, C. G. Kokologiannaki and C. B. Kouris, On the positive zeros of the second derivative of Bessel functions, J. Comput. Appl. Math. 34 (1991) 21-31; MR1095193 (92i:33001).
[63] L. Lorch, M. E. Muldoon and P. Szego, Inflection points of Bessel functions of negative order, Canad. J. Math. 43 (1991) 1309-1322; MR1145591 (93a:33009).
[64] R. Wong and T. Lang, Asymptotic behaviour of the inflection points of Bessel functions, Proc. Roy. Soc. London Ser. A 431 (1990) 509-518; MR1086356 (92i:33003).

[^0]: ${ }^{0}$ Copyright (C) 2003 by Steven R. Finch. All rights reserved.

