Electrical Capacitance

Steven Finch

August 25, 2014
We mentioned logarithmic capacity or transfinite diameter in [1]. Given a compact set A in \mathbb{R}^{2}, the measure

$$
\gamma_{0}(A)=\lim _{n \rightarrow \infty} \max _{\xi_{1}, \ldots, \xi_{n} \in A}\left(\prod_{j<k}\left|\xi_{j}-\xi_{k}\right|\right)^{\frac{2}{n(n-1)}}
$$

is invariant under rigid motions and continuous, but fails to be additive since $\gamma_{0}(A)=$ $\gamma_{0}(\partial A)[2,3,4]$. The unit interval has logarithmic capacity $1 / 4$; the unit disk, square and equilateral triangle have logarithmic capacities

$$
\text { 1, } \quad \frac{1}{4 \pi^{3 / 2}} \Gamma\left(\frac{1}{4}\right)^{2}=0.5901702995 \ldots, \quad \frac{\sqrt{3}}{8 \pi^{2}} \Gamma\left(\frac{1}{3}\right)^{3}=0.4217539346 \ldots
$$

respectively. Discussion of the geometric mean (of all pairs of points) often seems to be restricted to planar sets; we now turn to the harmonic mean and subsequently to the arithmetic mean.

Given a compact set A in \mathbb{R}^{3}, define $[5,6]$

$$
\gamma_{-1}(A)=\lim _{n \rightarrow \infty} \max _{\xi_{1}, \ldots, \xi_{n} \in A}\left(\frac{2}{n(n-1)} \sum_{j<k} \frac{1}{\left|\xi_{j}-\xi_{k}\right|}\right)^{-1}
$$

to be the Newtonian capacity or electrical capacitance or generalized transfinite diameter of order -1 . This is also the reciprocal of what is known as the optimal Riesz 1-energy [7]. The unit interval and unit circle both have electrical capacitance 0 ; one way to see the latter is to notice the inequality [8]

$$
\sum_{j<k} \frac{1}{\left|\xi_{j}-\xi_{k}\right|} \geq \frac{n}{4} \sum_{\ell=1}^{n-1} \csc \left(\frac{\ell \pi}{n}\right)
$$

(for which equality holds when ξ_{1}, \ldots, ξ_{n} are $n^{\text {th }}$ roots of unity). The unit disk has capacitance $2 / \pi$ [9] If A is the closure of a bounded, open, connected set in \mathbb{R}^{3}, then

[^0]$\gamma_{-1}(A)=\gamma_{-1}(\partial A)[10]$. The unit ball (and hence the unit sphere) has capacitance 1. Another way to see this is to invoke a formula for s-energy of the d-sphere [11] with $s=1, d=2$.

Interesting constants arise here. For example, let A be the solid formed by revolving a disk of radius 1 about a tangent line (a "torus without hole"). It follows that [12]

$$
\gamma_{-1}(A)=\frac{4}{\pi} \int_{0}^{\infty} \frac{1}{I_{0}(t)^{2}} d t=4(0.4353450662 \ldots)
$$

where $I_{0}(t)$ is the zeroth modified Bessel function. More generally, consider the surface formed by revolving an arc of a circle about its chord (a "spindle"). A definite integral involving Legendre functions of complex degree, parametrized by the included angle, is found [13]. As another example, consider the (disconnected) set consisting of two congruent parallel line segments. Its capacitance is obtained via a transcendental equation that involves elliptic integrals $[14,15,16]$. See $[10,17,18,19,20]$ for more examples.

Seemingly simple sets present formidably difficult challenges [21]. The unit cube C has attracted enormous attention $[22,23,24,25,26,27,28,29,30,31,32,33,34$, $35,36,37,38,39,40,41]$ and the best numerical estimate is $[2,9,42]$

$$
\gamma_{-1}(C)=0.6606781540 \ldots=\frac{1}{2}(1.3213563081 \ldots) .
$$

A conjectured exact expression for $\gamma_{-1}(C)$ in [43, 44] is evidently incorrect. For the unit square S and the unit equilateral triangle T, we have less precision:

$$
\begin{gathered}
\gamma_{-1}(S)=0.366789 \ldots=\frac{1}{2}(0.733579 \ldots)=\frac{2}{\pi}(0.576151 \ldots) \\
\gamma_{-1}(T)=0.2508 \ldots=\frac{2}{\pi}(0.3940 \ldots)
\end{gathered}
$$

It would be good someday to see improvements of these estimates, as well as $0.3565 \ldots=$ $(1.7465 \ldots) / \sqrt{24}$ for the unit regular tetrahedron. We wonder if formulation in [45, 46] might assist in accomplishing this.

The preceding results are dimensionless, of course. Certain authors chose to express their estimates in the following manner:

$$
\begin{gathered}
\gamma_{-1}(C) \approx \frac{1}{4 \pi \varepsilon_{0}}(73.51036) \\
\gamma_{-1}(S) \approx \frac{1}{4 \pi \varepsilon_{0}}(40.811) \approx \frac{1}{\sqrt{2}} \frac{1}{4 \pi \varepsilon_{0}}(57.715)
\end{gathered}
$$

$$
\gamma_{-1}(T) \approx \frac{1}{4 \pi \varepsilon_{0}}(27.91) \approx \frac{1}{\sqrt{3}} \frac{1}{4 \pi \varepsilon_{0}}(48.33)
$$

where $4 \pi \varepsilon_{0} \approx 111.265006$ picofarads/meter and ε_{0} is the permittivity constant of free space. Such decisions are a little unfortunate for us, since the value of ε_{0} is based on physical experimentation and thus the normalization has changed somewhat with the passage of time.

Moving back to geometry, define the generalized transfinite diameter of order 1 or optimal Riesz (-1)-energy

$$
\gamma_{1}(A)=\lim _{n \rightarrow \infty} \max _{\xi_{1}, \ldots, \xi_{n} \in A}\left(\frac{2}{n(n-1)} \sum_{j<k}\left|\xi_{j}-\xi_{k}\right|\right)
$$

where A is a compact set in $\mathbb{R}^{3}[5,7]$. For lack of a convenient phrase ("sums of distances" is vague), we call $\gamma_{1}(A)$ the Euclidean capacity of A. The unit interval has Euclidean capacity $1 / 2$. The unit disk (and hence the unit circle) has Euclidean capacity $4 / \pi$; notice the inequality [8]

$$
\sum_{j<k}\left|\xi_{j}-\xi_{k}\right| \leq n \cot \left(\frac{\pi}{2 n}\right)
$$

(for which equality holds when ξ_{1}, \ldots, ξ_{n} are $n^{\text {th }}$ roots of unity). The unit ball (and hence the unit sphere) has Euclidean capacity $4 / 3$; set $s=-1, d=2$ in the formula for s-energy of the d-sphere [11]. We wrote $2 / 3$ in [47] since sums were divided by n^{2} rather than $2 /(n(n-1))$. Higher order asymptotics for the latter are conjectured in [48].

It is remarkable that no numerical results for Euclidean capacity (akin to those for Newtonian capacity) of the unit cube, square, equilateral triangle or regular tetrahedron appear yet to exist. A starting point for a literature search might be $[49,50,51,52,53,54]$.

References

[1] S. R. Finch, Integer Chebyshev constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 268-272.
[2] T. Ransford, Computation of logarithmic capacity, Comput. Methods Funct. Theory 10 (2010) 555-578; MR2791324 (2012c:65047).
[3] W. K. Hayman, Subharmonic Functions. v. II, Academic Press, 1989, pp. 429436; MR1049148 (91f:31001).
[4] P. Pyrih, Logarithmic capacity is not subadditive - a fine topology approach, Comment. Math. Univ. Carolin. 33 (1992) 67-72; MR1173748 (93g:31002).
[5] G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math. 165 (1931) 4-49.
[6] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand Co., 1967, pp. 37-39; MR0225986 (37 \#1576).
[7] J. S. Brauchart, Optimal discrete Riesz energy and discrepancy, Unif. Distrib. Theory 6 (2011) 207-220; MR2904048.
[8] L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hungar. 7 (1956) 397-401; MR0107212 (21 \#5937).
[9] Q. Rajon, T. Ransford and J. Rostand, Computation of capacity via quadratic programming, J. Math. Pures Appl. 94 (2010) 398-413; MR2719894 (2011h:31011).
[10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, 1972, pp. 160-177; MR0350027 (50 \#2520).
[11] J. S. Brauchart and P. J. Grabner, Distributing many points on spheres: minimal energy and designs, J. Complexity 31 (2015) 293-326; arXiv:1407.8282; MR3325677.
[12] C. J. Bouwkamp, A simple method of calculating electrostatic capacity, Physica 24 (1958) 538-542; MR0074301 (17,563c).
[13] V. P. Pyati, Capacitance of a spindle, Proc. IEEE 61 (1973) 505-506.
[14] I. B. Simonenko and A. A. Čekulaeva, The capacity of a condenser that consists of infinite bands (in Russian), Izvestija Vysših Učebnyh Zavedeniŭ. Èlektromehanika 4 (1972) 362-365; MR0304684 (46 \#3816).
[15] D. Karp, Capacity of a condenser whose plates are circular arcs, Complex Var. Theory Appl. 50 (2005) 103-122; arXiv:math/0604033; MR2122748 (2005j:31001).
[16] V. N. Dubinin and D. Karp, Capacities of certain plane condensers and sets under simple geometric transformations, Complex Var. Elliptic Equ. 53 (2008) 607-622; MR2421820 (2010e:31001).
[17] E. J. Routh, A Treatise on Analytical Statics, v. II, Cambridge Univ. Press, 1922, pp. 219-224.
[18] W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, 1950, pp. 111-123.
[19] C. Snow, Formulas for Computing Capacitance and Inductance, National Bureau of Standards circular \#544, US Government Printing Office, 1954.
[20] Y. Y. Jossel, E. S. Kochanov and M. G. Strunskij, The Calculation of Electrical Capacitance, Energija, 1969 (in Russian); English transl. at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0727198.
[21] G. Pólya, Estimating electrostatic capacity, Amer. Math. Monthly 54 (1947) 201-206; MR0020175 (8,514a).
[22] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, 1951, pp. 76-78; MR0043486 (13,270d).
[23] D. K. Reitan and T. J. Higgins, Calculation of the electrical capacitance of a cube, J. Appl. Phys. 22 (1951) 223-226; MR0040505 (12,704g).
[24] D. K. Reitan and T. J. Higgins, Accurate determination of the capacitance of a thin rectangular plate, AIEE Trans. Part I. Communication and Electronics 75 (1957) 761-766.
[25] B. Noble, The numerical solution of the singular integral equation for the charge distribution on a flat rectangular lamina, Symposium on the Numerical Treatment of Ordinary Differential Equations, Integral and Integro-Differential Equations, Rome, 1960, Birkhäuser, 1960, pp. 530-543; MR0129149 (23 \#B2186).
[26] B. Noble, Some applications of the numerical solution of integral equations to boundary value problems, Conference on Applications of Numerical Analysis, Dundee, 1971, Lect. Notes in Math. 228, Springer-Verlag, 1971, pp. 137-154; MR0353711 (50 \#6194).
[27] D. Greenspan and E. Silverman, Approximate solution of the exterior Dirichlet problem and the calculation of electrostatic capacity, Riv. Mat. Univ. Parma 7 (1966) 305-314; MR0233522 (38 \#1843).
[28] D. Greenspan. Resolution of classical capacity problems by means of a digital computer, Canad. J. Phys. 44 (1966) 2605-2614.
[29] E. E. Okon and R. F. Harrington, A method of computing the capacitance of flat discs of arbitrary shape, Electromagnetics 1 (1981) 229-241.
[30] E. F. Kuester, Explicit approximation for the static capacitance of a microstrip patch of arbitrary shape, J. Electromagnetic Waves Appl. 2 (1988) 103-135.
[31] C. S. Brown, Capacity of the regular polyhedra, Comput. Math. Appl. 20 (1990) 43-56; MR1051753 (91f:65198).
[32] H. J. Wintle, The capacitance of the regular tetrahdron and equilateral triangle, J. Electrostatics 26 (1991) 115-200.
[33] H. J. Wintle, Maxwell and the boundary element method: A historical puzzle, IEEE Electrical Insulation Magazine 14 (1998) 23-25.
[34] H. J. Wintle, The capacitance of the cube and square plate by random walk methods, J. Electrostatics 62 (2004) 51-62.
[35] E. Goto, Y. Shi and N. Yoshida, Extrapolated surface charge method for capacity calculation of polygons and polyhedra, J. Comput. Phys. 100 (1992) 105-115.
[36] F. H. Read, Improved extrapolation technique in the boundary element method to find the capacitances of the unit square and cube, J. Comput. Phys. 133 (1997) $1-5$.
[37] F. H. Read, Capacitances and singularities of the unit triangle, square, tetrahedron and cube, COMPEL 23 (2004) 572-578.
[38] E.-W. Bai and K. E. Lonngren, On the capacitance of a cube, Computers and Electrical Engineering 28 (2002) 317-321.
[39] M. Mascagni and N. A. Simonov, The random walk on the boundary method for calculating capacitance, J. Comput. Phys. 195 (2004) 465-473.
[40] S. Ghosh and A. Chakrabarty, Estimation of capacitance of different conducting bodies by the method of rectangular subareas, J. Electrostatics 66 (2008) 142146.
[41] C.-O. Hwang, M. Mascagni, and T. Won, Monte Carlo methods for computing the capacitance of the unit cube, Math. Comput. Simulation 80 (2010) 10891095; MR2610070.
[42] J. Helsing and K.-M. Perfekt, On the polarizability and capacitance of the cube, Appl. Comput. Harmon. Anal. 34 (2013) 445-468; arXiv:1203.5997; MR3027912.
[43] J. B. Hubbard and J. F. Douglas, Hydrodynamic friction of arbitrarily shaped Brownian particles, Phys. Rev. E (1993) R2983-R2986.
[44] J. F. Douglas, H.-X. Zhou and J. B. Hubbard, Hydrodynamic friction and the capacitance of arbitrarily shaped objects, Phys. Rev. E (1994) 5319-5331.
[45] S. S. Vinogradov, P. D. Smith and E. D. Vinogradova, Canonical Problems in Scattering and Potential Theory. v. I, Canonical Structures in Potential Theory, Chapman \& Hall/CRC, 2001, pp. 291-309; MR1851593 (2002f:78009).
[46] A. G. Ramm, A variational principle and its application to estimating the electrical capacitance of a perfect conductor, Amer. Math. Monthly 120 (2013) 747-751; MR3096484.
[47] S. R. Finch, Tammes' constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 508-511.
[48] J. S. Brauchart, D. P. Hardin and E. B. Saff, The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere, Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, ed. J. Arvesú and G. López Lagomasino, Amer. Math. Soc., 2012, pp. 31-61; arXiv:1202.4037; MR2964138.
[49] E. Hille, Some geometric extremal problems, J. Austral. Math. Soc. 6 (1966) 122-128; MR0198349 (33 \#6507).
[50] R. Alexander and K. B. Stolarsky, Extremal problems of distance geometry related to energy integrals, Trans. Amer. Math. Soc. 193 (1974) 1-31; MR0350629 (50 \#3121).
[51] B. Meyer, Inequalities for the generalized transfinite diameter, Rocky Mountain J. Math. 11 (1981) 267-270; MR0619675 (82g:31011).
[52] E. Alarcon and K. B. Stolarsky, Local diameters of compact planar sets, J. Geom. 55 (1996) 5-22; MR1377433 (96m:52003).
[53] X. Hou and J. Shao, Spherical distribution of 5 points with maximal distance sum, Discrete Comput. Geom. 46 (2011) 156-174; arXiv:0906.0937; MR2794362 (2012e:52005).
[54] R. Nerattini, J. S. Brauchart and M. K.-H. Kiessling, "Magic" numbers in Smale's 7th problem, arXiv:1307.2834.

[^0]: ${ }^{0}$ Copyright © 2014 by Steven R. Finch. All rights reserved.

