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We mentioned logarithmic capacity or transfinite diameter in [1]. Given a

compact set  in R2, the measure
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is invariant under rigid motions and continuous, but fails to be additive since 0() =

0() [2, 3, 4]. The unit interval has logarithmic capacity 14; the unit disk, square

and equilateral triangle have logarithmic capacities

1
1

432
Γ

µ
1

4

¶2
= 05901702995

√
3

82
Γ

µ
1

3

¶3
= 04217539346

respectively. Discussion of the geometric mean (of all pairs of points) often seems to

be restricted to planar sets; we now turn to the harmonic mean and subsequently to

the arithmetic mean.

Given a compact set  in R3, define [5, 6]
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to be the Newtonian capacity or electrical capacitance or generalized trans-

finite diameter of order −1. This is also the reciprocal of what is known as the

optimal Riesz 1-energy [7]. The unit interval and unit circle both have electrical

capacitance 0; one way to see the latter is to notice the inequality [8]
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(for which equality holds when 1      are 

th roots of unity). The unit disk has

capacitance 2 [9] If  is the closure of a bounded, open, connected set in R3, then
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−1() = −1() [10]. The unit ball (and hence the unit sphere) has capacitance 1.
Another way to see this is to invoke a formula for -energy of the -sphere [11] with

 = 1,  = 2.

Interesting constants arise here. For example, let  be the solid formed by

revolving a disk of radius 1 about a tangent line (a “torus without hole”). It follows

that [12]
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4
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where 0() is the zeroth modified Bessel function. More generally, consider the

surface formed by revolving an arc of a circle about its chord (a “spindle”). A definite

integral involving Legendre functions of complex degree, parametrized by the included

angle, is found [13]. As another example, consider the (disconnected) set consisting of

two congruent parallel line segments. Its capacitance is obtained via a transcendental

equation that involves elliptic integrals [14, 15, 16]. See [10, 17, 18, 19, 20] for more

examples.

Seemingly simple sets present formidably difficult challenges [21]. The unit cube

 has attracted enormous attention [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41] and the best numerical estimate is [2, 9, 42]

−1() = 06606781540 =
1

2
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A conjectured exact expression for −1() in [43, 44] is evidently incorrect. For the
unit square  and the unit equilateral triangle  , we have less precision:

−1() = 0366789 =
1

2
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2
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It would be good someday to see improvements of these estimates, as well as 03565 =

(17465)
√
24 for the unit regular tetrahedron. We wonder if formulation in [45, 46]

might assist in accomplishing this.

The preceding results are dimensionless, of course. Certain authors chose to

express their estimates in the following manner:
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where 40 ≈ 111265006 picofarads/meter and 0 is the permittivity constant of free
space. Such decisions are a little unfortunate for us, since the value of 0 is based

on physical experimentation and thus the normalization has changed somewhat with

the passage of time.

Moving back to geometry, define the generalized transfinite diameter of order

1 or optimal Riesz (−1)-energy
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→∞
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where  is a compact set in R3 [5, 7]. For lack of a convenient phrase (“sums of

distances” is vague), we call 1() the Euclidean capacity of . The unit interval

has Euclidean capacity 12. The unit disk (and hence the unit circle) has Euclidean

capacity 4; notice the inequality [8]X
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(for which equality holds when 1      are 

th roots of unity). The unit ball (and

hence the unit sphere) has Euclidean capacity 43; set  = −1,  = 2 in the formula
for -energy of the -sphere [11]. We wrote 23 in [47] since sums were divided by

2 rather than 2((− 1)). Higher order asymptotics for the latter are conjectured
in [48].

It is remarkable that no numerical results for Euclidean capacity (akin to those

for Newtonian capacity) of the unit cube, square, equilateral triangle or regular

tetrahedron appear yet to exist. A starting point for a literature search might

be [49, 50, 51, 52, 53, 54].
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