Cubic and Quartic Characters

Steven Finch

June 5, 2009
In this essay, we revisit Dirichlet characters [1], but focusing here on non-real cases (that is, of order exceeding 2).

Let \mathbb{Z}_{n}^{*} denote the group (under multiplication modulo n) of integers relatively prime to n, and let \mathbb{C}^{*} denote the group (under ordinary multiplication) of nonzero complex numbers. We wish to examine homomorphisms $\chi: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{C}^{*}$ satisfying certain requirements. A Dirichlet character χ is quadratic if $\chi(k)^{2}=1$ for every k in \mathbb{Z}_{n}^{*}. It is well-known that, if $\chi \neq 1$ is a primitive quadratic character modulo n, then $D=\chi(-1) n$ is a fundamental discriminant and

$$
\chi(k)=\left(\frac{D}{k}\right) \quad \text { for all } k \in \mathbb{Z}_{n}^{*}
$$

where (D / k) is the Kronecker-Jacobi-Legendre symbol. A character χ is real if and only if it is quadratic. By the correspondence with ($D /$.), quadratic characters can be said to be completely understood.

A Dirichlet character χ is cubic if $\chi(k)^{3}=1$ for every k in \mathbb{Z}_{n}^{*}. Let $\omega=(-1+$ $i \sqrt{3}) / 2$ where i is the imaginary unit. Let $a+b \omega$ be a prime in the ring $\mathbb{Z}[\omega]$ of Eisenstein-Jacobi integers with norm $a^{2}-a b+b^{2} \neq 3$. For any positive integer n in \mathbb{Z}, define the cubic residue symbol $[2,3]$

$$
\left(\frac{n}{a+b \omega}\right)_{3}
$$

to be 0 if n is divisible by $a+b \omega$; otherwise it is the unique power ω^{j} for $0 \leq j \leq 2$ such that

$$
n^{\left(a^{2}-a b+b^{2}-1\right) / 3} \equiv \omega^{j} \bmod (a+b \omega) .
$$

The only prime divisor of 9 is $1-\omega$, which has norm 3 . Hence we will need an alternative way of representing characters:

$$
f_{q}(n, k)= \begin{cases}\omega^{e} & \text { if } n \equiv k^{e} \bmod q \\ 0 & \text { otherwise }\end{cases}
$$

[^0]especially in the case $q=9$. The first several cubic characters are
\[

$$
\begin{aligned}
& f_{7}(n, 5)=\left.\left(\frac{n}{2+3 \omega}\right)_{3}\right|_{n=1, \ldots, 7}=\left\{1, \omega, \omega^{2}, \omega^{2}, \omega, 1,0\right\}, \\
& f_{7}(n, 3)=\left.\left(\frac{n}{-1-3 \omega}\right)_{3}\right|_{n=1, \ldots, 7}=\left\{1, \omega^{2}, \omega, \omega, \omega^{2}, 1,0\right\} \text {, } \\
& \left.f_{9}(n, 2)\right|_{n=1, \ldots, 9}=\left\{1, \omega, 0, \omega^{2}, \omega^{2}, 0, \omega, 1,0\right\}, \\
& \left.f_{9}(n, 5)\right|_{n=1, \ldots, 9}=\left\{1, \omega^{2}, 0, \omega, \omega, 0, \omega^{2}, 1,0\right\} \text {, } \\
& f_{13}(n, 2)=\left.\left(\frac{n}{-4-3 \omega}\right)_{3}\right|_{n=1, \ldots, 13}=\left\{1, \omega, \omega, \omega^{2}, 1, \omega^{2}, \omega^{2}, 1, \omega^{2}, \omega, \omega, 1,0\right\} \text {, } \\
& f_{13}(n, 6)=\left.\left(\frac{n}{-1+3 \omega}\right)_{3}\right|_{n=1, \ldots, 13}=\left\{1, \omega^{2}, \omega^{2}, \omega, 1, \omega, \omega, 1, \omega, \omega^{2}, \omega^{2}, 1,0\right\}, \\
& f_{19}(n, 2)=\left.\left(\frac{n}{2-3 \omega}\right)_{3}\right|_{n=1, \ldots, 19}=\left\{1, \omega, \omega, \omega^{2}, \omega, \omega^{2}, 1,1, \omega^{2}, \omega^{2}, 1,1, \omega^{2}, \omega, \omega^{2}, \omega, \omega, 1,0\right\}, \\
& f_{19}(n, 10)=\left.\left(\frac{n}{5+3 \omega}\right)_{3}\right|_{n=1, \ldots, 19}=\left\{1, \omega^{2}, \omega^{2}, \omega, \omega^{2}, \omega, 1,1, \omega, \omega, 1,1, \omega, \omega^{2}, \omega, \omega^{2}, \omega^{2}, 1,0\right\}, \\
& f_{31}(n, 3)=\left.\left(\frac{n}{5+6 \omega}\right)_{3}\right|_{n=1, \ldots, 31} \\
& =\left\{1,1, \omega, 1, \omega^{2}, \omega, \omega, 1, \omega^{2}, \omega^{2}, \omega^{2}, \omega, \omega^{2}, \omega, 1,1, \omega, \omega^{2}, \omega, \omega^{2}\right. \text {, } \\
& \left.\omega^{2}, \omega^{2}, 1, \omega, \omega, \omega^{2}, 1, \omega, 1,1,0\right\}, \\
& f_{31}(n, 11)=\left.\left(\frac{n}{-1-6 \omega}\right)_{3}\right|_{n=1, \ldots, 31} \\
& =\left\{1,1, \omega^{2}, 1, \omega, \omega^{2}, \omega^{2}, 1, \omega, \omega, \omega, \omega^{2}, \omega, \omega^{2}, 1,1, \omega^{2}, \omega, \omega^{2}, \omega,\right. \\
& \left.\omega, \omega, 1, \omega^{2}, \omega^{2}, \omega, 1, \omega^{2}, 1,1,0\right\}, \\
& f_{37}(n, 2)=\left.\left(\frac{n}{-4+3 \omega}\right)_{3}\right|_{n=1, \ldots, 37} \\
& =\left\{1, \omega, \omega^{2}, \omega^{2}, \omega^{2}, 1, \omega^{2}, 1, \omega, 1,1, \omega, \omega^{2}, 1, \omega, \omega, \omega, \omega^{2}, \omega^{2}, \omega\right. \text {, } \\
& \left.\omega, \omega, 1, \omega^{2}, \omega, 1,1, \omega, 1, \omega^{2}, 1, \omega^{2}, \omega^{2}, \omega^{2}, \omega, 1,0\right\}, \\
& f_{37}(n, 5)=\left.\left(\frac{n}{-7-3 \omega}\right)_{3}\right|_{n=1, \ldots, 37} \\
& =\left\{1, \omega^{2}, \omega, \omega, \omega, 1, \omega, 1, \omega^{2}, 1,1, \omega^{2}, \omega, 1, \omega^{2}, \omega^{2}, \omega^{2}, \omega, \omega, \omega^{2},\right. \\
& \left.\omega^{2}, \omega^{2}, 1, \omega, \omega^{2}, 1,1, \omega^{2}, 1, \omega, 1, \omega, \omega, \omega, \omega^{2}, 1,0\right\} .
\end{aligned}
$$
\]

A Dirichlet character χ is quartic (biquadratic) if $\chi(k)^{4}=1$ for every k in \mathbb{Z}_{n}^{*}. Let $a+b i$ be a prime in the ring $\mathbb{Z}[i]$ of Gaussian integers with norm $a^{2}+b^{2} \neq 2$. For any positive integer n in \mathbb{Z}, define the quartic (biquadratic) residue symbol [2, 3]

$$
\left(\frac{n}{a+b i}\right)_{4}
$$

to be 0 if n is divisible by $a+b i$; otherwise it is the unique power i^{j} for $0 \leq j \leq 3$ such that

$$
n^{\left(a^{2}+b^{2}-1\right) / 4} \equiv i^{j} \bmod (a+b i)
$$

The only prime divisor of 16 is $1+i$, which has norm 2 . We will again need alternative ways of representing characters:

$$
\begin{gathered}
f_{q}(n, k)= \begin{cases}i^{e} & \text { if } n \equiv k^{e} \bmod q, \\
0 & \text { otherwise },\end{cases} \\
g_{q}(n, k)= \begin{cases}i^{e} & \text { if } n \equiv k^{e} \bmod q \text { or } q-n \equiv k^{e} \bmod q, \\
0 & \text { otherwise },\end{cases} \\
h_{q}(n, k, \ell, m)= \begin{cases}i^{e} & \text { if } n \equiv k^{e} \bmod q \text { or } n \equiv \ell^{e} \bmod q, \\
(-1)^{e+1} & \text { if } q-n \equiv m^{e} \bmod q \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

especially in the cases $q=15,16,20$ and 35 . The first several non-real quartic characters are

$$
\begin{gathered}
f_{5}(n, 2)=\left.\left(\frac{n}{-1-2 i}\right)\right|_{n=1, \ldots, 5}=\{1, i,-i,-1,0\}, \\
f_{5}(n, 3)=\left.\left(\frac{n}{-1+2 i}\right)_{4}\right|_{n=1, \ldots, 5}=\{1,-i, i,-1,0\}, \\
f_{13}(n, 2)=\left.\left(\frac{n}{3-2 i}\right)_{4}\right|_{n=1, \ldots, 13}=\{1, i, 1,-1, i, i,-i,-i, 1,-1,-i,-1,0\}, \\
f_{13}(n, 7)=\left.\left(\frac{n}{3+2 i}\right)\right|_{n=1, \ldots, 13}=\{1,-i, 1,-1,-i,-i, i, i, 1,-1, i,-1,0\}, \\
\left.g_{15}(n, 2)\right|_{n=1, \ldots, 15}=\{1, i, 0,-1,0,0,-i,-i, 0,0,-1,0, i, 1,0\}, \\
\left.g_{15}(n, 8)\right|_{n=1, \ldots, 15}=\{1,-i, 0,-1,0,0, i, i, 0,0,-1,0,-i, 1,0\}, \\
\left.g_{16}(n, 3)\right|_{n=1, \ldots, 16}=\{1,0, i, 0,-i, 0,-1,0,-1,0,-i, 0, i, 0,1,0\}, \\
\left.g_{16}(n, 5)\right|_{n=1, \ldots, 16}=\{1,0,-i, 0, i, 0,-1,0,-1,0, i, 0,-i, 0,1,0\}, \\
\left.h_{16}(n, 3,5,9)\right|_{n=1, \ldots, 16}=\{1,0, i, 0, i, 0,1,0,-1,0,-i, 0,-i, 0,-1,0\},
\end{gathered}
$$

$$
\begin{aligned}
& \left.h_{16}(n, 11,13,9)\right|_{n=1, \ldots, 16}=\{1,0,-i, 0,-i, 0,1,0,-1,0, i, 0, i, 0,-1,0\} \text {, } \\
& f_{17}(n, 3)=\left.\left(\frac{n}{1-4 i}\right)_{4}\right|_{n=1, \ldots, 17}=\{1,-1, i, 1, i,-i,-i,-1,-1,-i,-i, i, 1, i,-1,1,0\} \text {, } \\
& f_{17}(n, 6)=\left.\left(\frac{n}{1+4 i}\right)_{4}\right|_{n=1, \ldots, 17}=\{1,-1,-i, 1,-i, i, i,-1,-1, i, i,-i, 1,-i,-1,1,0\}, \\
& \left.g_{20}(n, 3)\right|_{n=1, \ldots, 20}=\{1,0, i, 0,0,0,-i, 0,-1,0,-1,0,-i, 0,0,0, i, 0,1,0\}, \\
& \left.g_{20}(n, 7)\right|_{n=1, \ldots, 20}=\{1,0,-i, 0,0,0, i, 0,-1,0,-1,0, i, 0,0,0,-i, 0,1,0\} \text {, } \\
& f_{29}(n, 2)=\left.\left(\frac{n}{-5-2 i}\right)_{4}\right|_{n=1, \ldots, 29} \\
& =\{1, i, i,-1,-1,-1,1,-i,-1,-i, i,-i,-1, i,-i, 1, i,-i, i, 1, \\
& i,-1,1,1,1,-i,-i,-1,0\} \text {, } \\
& f_{29}(n, 8)=\left.\left(\frac{n}{-5+2 i}\right)_{4}\right|_{n=1, \ldots, 29} \\
& =\{1,-i,-i,-1,-1,-1,1, i,-1, i,-i, i,-1,-i, i, 1,-i, i,-i, 1, \\
& -i,-1,1,1,1, i, i,-1,0\} \text {, } \\
& \left.g_{35}(n, 2)\right|_{n=1, \ldots, 35}=\{1, i, i,-1,0,-1,0,-i,-1,0,1,-i, i, 0,0,1,-i,-i, 1,0, \\
& 0, i,-i, 1,0,-1,-i, 0,-1,0,-1, i, i, 1,0\}, \\
& \left.g_{35}(n, 18)\right|_{n=1, \ldots, 35}=\{1,-i,-i,-1,0,-1,0, i,-1,0,1, i,-i, 0,0,1, i, i, 1,0, \\
& 0,-i, i, 1,0,-1, i, 0,-1,0,-1,-i,-i, 1,0\}, \\
& f_{37}(n, 2)=\left.\left(\frac{n}{-1+6 i}\right)_{4}\right|_{n=1, \ldots, 37} \\
& =\{1, i,-1,-1,-i,-i, 1,-i, 1,1,-1,1,-i, i, i, 1,-i, i,-i, i, \\
& -1,-i,-i, i,-1,1,-1,-1, i,-1, i, i, 1,1,-i,-1,0\}, \\
& f_{37}(n, 5)=\left.\left(\frac{n}{-1-6 i}\right)_{4}\right|_{n=1, \ldots, 37} \\
& =\{1,-i,-1,-1, i, i, 1, i, 1,1,-1,1, i,-i,-i, 1, i,-i, i,-i, \\
& -1, i, i,-i,-1,1,-1,-1,-i,-1,-i,-i, 1,1, i,-1,0\} .
\end{aligned}
$$

We mention that [4]
\# Dirichlet characters of $=$ \# solutions x in \mathbb{Z}_{n}^{*} of order ℓ and modulus $n=$ the equation $x^{\ell}=1$
and thus, by Möbius inversion,
$\begin{aligned} & \text { \# primitive quadratic Dirichlet } \\ & \text { characters of modulus } \leq N\end{aligned} \sim \frac{6}{\pi^{2}} N$,
\quad \# primitive cubic Dirichlet
characters of modulus $\leq N$
\# primitive quartic Dirichlet
characters of modulus $\leq N$$\sim B N \ln (N)$,
as $N \rightarrow \infty$, where $[5,6,7]$

$$
\begin{aligned}
A & =\frac{11 \sqrt{3}}{18 \pi} \prod_{p \equiv 1 \bmod 3}\left(1-\frac{2}{p(p+1)}\right)=0.3170565167 \ldots \\
B & =\frac{7}{\pi} \frac{1}{16 K^{2}} \prod_{p \equiv 1 \bmod 4}\left(1-\frac{5 p-3}{p^{2}(p+1)}\right)=0.1908767211 \ldots
\end{aligned}
$$

and K is the Landau-Ramanujan constant [8]. No one appears to have examined B before.

Now define the Dirichlet L-series associated to $\chi \neq 1$:

$$
L_{\chi}(z)=\sum_{n=1}^{\infty} \chi(n) n^{-z}=\prod_{p}\left(1-\chi(p) p^{-z}\right)^{-1}, \quad \operatorname{Re}(z)>1
$$

which can be made into an entire function. Special values are more complicated for cubic/quartic characters than for quadratic characters [1]. For example, if $\chi=$ $(\cdot /(2+3 \omega))_{3}$, then

$$
L_{\chi}(1)=7^{-2 / 3}(-2-3 \omega)^{1 / 3}\left(\omega^{2} \ln \left(y_{1}\right)+\omega \ln \left(y_{2}\right)+\ln \left(y_{3}\right)\right)
$$

where $y_{1}<y_{2}<y_{3}$ are the (real) zeroes of $y^{3}-7 y^{2}+14 y-7$; if $\chi=f_{9}(\cdot, 2)$, then

$$
L_{\chi}(1)=-\frac{2}{3} \omega^{1 / 3}\left(\omega^{2} \ln \left(\sin \left(\frac{2 \pi}{9}\right)\right)+\omega \ln \left(\cos \left(\frac{\pi}{18}\right)\right)+\ln \left(\sin \left(\frac{\pi}{9}\right)\right)\right) .
$$

As more examples, if $\chi=(\cdot /(-1-2 i))_{4}$, then

$$
L_{\chi}(1)=2^{1 / 2} 5^{-5 / 4}(3+4 i)^{1 / 4} \pi ;
$$

if $\chi=g_{16}(\cdot, 3)$, then

$$
L_{\chi}(1)=-\frac{1}{2} i^{1 / 4}\left(i \ln \left(\cot \left(\frac{3 \pi}{16}\right)\right)+\ln \left(\tan \left(\frac{\pi}{16}\right)\right)\right) ;
$$

if $\chi=h_{16}(\cdot, 3,5,9)$, then

$$
L_{\chi}(1)=8^{-1 / 2} i^{1 / 4} \pi
$$

See a general treatment of quartic cases in [9].
The elaborate formulas for moments of $L_{\chi}(1 / 2)$ over primitive quadratic characters χ do not yet appear to have precise analogs for primitive cubic characters. Baier \& Young [10] proved that

$$
\sum_{q \leq Q} \sum_{\chi}\left|L_{\chi}(1 / 2)\right|^{2}=O\left(Q^{6 / 5+\varepsilon}\right)
$$

as $Q \rightarrow \infty$, for any $\varepsilon>0$, where the big- O constant depends on ε. The inner summation is over all primitive cubic characters modulo q. As a consequence, $L_{\chi}(1 / 2) \neq 0$ for infinitely many such χ.
0.1. Cubic Twists. Given an elliptic curve E over \mathbb{Q} with L-series

$$
L_{E}(z)=\sum_{n=1}^{\infty} c_{n} n^{-z}
$$

the L-series obtained via twisting $L_{E}(z)$ by a cubic character χ is

$$
L_{E, \chi}(z)=\sum_{n=1}^{\infty} \chi(n) c_{n} n^{-z}
$$

Of course, while each $c_{n} \in \mathbb{Z}$, the coefficients $\chi(n) c_{n} \in \mathbb{Z}[\omega]$ need not be real. This generalizes the sense of quadratic twists discussed in [11]; we refer to a paper of David, Fearnley \& Kisilevsky [6] for more information on such L-series.

There is a different sense of cubic twists that interests us - it is important for the study of the family of elliptic curves F_{d} given by $x^{3}+y^{3}=d$ - and features the cubic residue symbol $(d / \cdot)_{3}$ in an intriguing way. We mentioned the problem of evaluating $L_{F_{d}}(1)$ for cube-free $d>2$ in [11] but did not give details. By definition [12],

$$
\begin{aligned}
L_{F_{d}}(z) & =\sum_{\substack{a, b \in \mathbb{Z} \\
a \equiv 1 \bmod 3 \\
b \equiv 0 \bmod 3}}\left(a+b \omega^{2}\right)\left(\frac{d}{a+b \omega}\right)_{3}\left(a^{2}-a b+b^{2}\right)^{-z} \\
& =\sum_{\substack{a, b \in \mathbb{Z} \\
a \equiv 1 \bmod 3 \\
b \equiv 0 \bmod 3}}(a+b \omega)\left(\frac{d}{a+b \omega^{2}}\right)_{3}\left(a^{2}-a b+b^{2}\right)^{-z} \\
& =\prod_{p \equiv 2 \bmod 3}\left(1+p^{1-2 z}\right)^{-1} \cdot \prod_{p \equiv 1 \bmod 3}\left(1-c_{p} p^{-z}+p^{1-2 z}\right)^{-1}
\end{aligned}
$$

where

$$
c_{p}=\left(h+k \omega^{2}\right)\left(\frac{d}{h+k \omega}\right)_{3}+(h+k \omega)\left(\frac{d}{h+k \omega^{2}}\right)_{3}
$$

and $p=(h+k \omega)\left(h+k \omega^{2}\right), h \equiv 1 \bmod 3, k \equiv 0 \bmod 3$. To extend to composite indices, use the usual recurrence $c_{p^{j}}=c_{p^{j-1}} c_{p}-p c_{p^{j-2}}$ for $j \geq 2, c_{1}=1$ and $c_{m n}=c_{m} c_{n}$ for coprime integers m, n.

For $d=1$ and $p \equiv 1 \bmod 3$, it is known that $c_{p}=\gamma_{p}$, where γ_{p} is the unique integer $\alpha \equiv 2 \bmod 3$ such that $\alpha^{2}+3 \beta^{2}=4 p$ for some integer $\beta \equiv 0 \bmod 3$. Now, for $d>1$ and $p \equiv 1 \bmod 3, p \nmid d$, it can be shown that c_{p} is the unique integer $\alpha \equiv 2 \bmod 3$ such that three conditions:

- $\alpha^{2}+3 \beta^{2}=4 p$ for some integer β
- $\alpha \equiv d^{(p-1) / 3} \gamma_{p} \bmod p$
- $|\alpha|<2 \sqrt{p}$
are simultaneously satisfied [13].
Sextic twists are required to study Bachet's equation $y^{2}=x^{3}+n$ for arbitrary n (the Fermat cubic problem is a special case with $n=-432 d^{2}$ and d cube-free). Such residue symbols are beyond us. Here is a formula for L-series coefficients c_{p} in this more general setting: when $p=3, p \mid n$ or $p \equiv 2 \bmod 3$, we have $c_{p}=0$; otherwise [14]

$$
c_{p}=\left(\frac{n}{p}\right) \cdot \begin{cases}2 a-b & \text { if }(4 n)^{(p-1) / 3} \equiv 1 \bmod p \\ -a-b & \text { if }(4 n)^{(p-1) / 3} b \equiv-a \bmod p \\ 2 b-a & \text { if }(4 n)^{(p-1) / 3} a \equiv-b \bmod p\end{cases}
$$

where $p=a^{2}-a b+b^{2}$ with $a \equiv 1 \bmod 3, b \equiv 0 \bmod 3$ and (\cdot / \cdot) is the Kronecker-Jacobi-Legendre symbol. The sequence of integers for which $y^{2}=x^{3}+n$ has zero rank [15]:

$$
\ldots,-12,-10,-9,-8,-6,-5,-3,-1,1,4,6,7,13,14,16,20, \ldots
$$

deserves close attention!
0.2. Quartic Twists. Quartic twists are required to study $y^{2}=x^{3}-n x$ for arbitrary n (the congruent number problem is a special case with $n=d^{2}$ and d
square-free [11]). Analogous to the expression for $L_{F_{d}}(z)$,

$$
\begin{aligned}
L_{E_{n}}(z) & =\sum_{\substack{a, b \in \mathbb{Z} \\
a \equiv 1 \bmod 4 \\
b \equiv 0 \bmod 2}}(a-b i)\left(\frac{-n}{a+b i}\right)_{4}\left(a^{2}+b^{2}\right)^{-z} \\
& =\sum_{\substack{a, b \in \mathbb{Z} \\
a \equiv 1 \bmod 4 \\
b \equiv 0 \bmod 2}}(a+b i)\left(\frac{-n}{a-b i}\right)_{4}\left(a^{2}+b^{2}\right)^{-z}
\end{aligned}
$$

Here also is the corresponding formula for L-series coefficients c_{p} : when $p=2, p \mid n$ or $p \equiv 3 \bmod 4$, we have $c_{p}=0$; otherwise [14]

$$
c_{p}=2\left(\frac{2}{p}\right) \cdot \begin{cases}-a & \text { if } n^{(p-1) / 4} \equiv 1 \bmod p \\ a & \text { if } n^{(p-1) / 4} \equiv-1 \bmod p \\ -b & \text { if } n^{(p-1) / 4} b \equiv-a \bmod p \\ b & \text { if } n^{(p-1) / 4} b \equiv a \bmod p\end{cases}
$$

where $p=a^{2}+b^{2}$ with $a \equiv 3 \bmod 4, b \equiv 0 \bmod 2$. Again, the sequence of integers for which $y^{2}=x^{3}-n x$ has zero rank [15]:

$$
\ldots,-12,-11,-10,-7,-6,-4,-2,-1,1,3,4,8,9,11,13,18, \ldots
$$

is worthy of deeper study.
As a quintic follow-on to $[5,7]$, we merely mention [16].

References

[1] S. R. Finch, Quadratic Dirichlet L-series, unpublished note (2005).
[2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 55-62, 138-139, 229; MR0434929 (55 \#7892).
[3] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley, 1998, pp. 234-251; MR1625181 (99d:11092).
[4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A060594, A114643, A060839, A160498, A073103 and A160499.
[5] S. Finch and P. Sebah, Squares and cubes modulo n, arXiv:math/0604465.
[6] C. David, J. Fearnley and H. Kisilevsky, On the vanishing of twisted Lfunctions of elliptic curves, Experiment. Math. 13 (2004) 185-198; MR2068892 (2005e:11082).
[7] S. Finch, Quartic and octic characters modulo n, arXiv:0907.4894.
[8] S. R. Finch, Landau-Ramanujan constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 98-104.
[9] K. Hardy and K. S. Williams, Evaluation of the infinite series $\sum_{\substack{n=1 \\(n / p)=1}}^{\infty}\left(\frac{n}{p}\right)_{4} n^{-1}$, Proc. Amer. Math. Soc. 109 (1990) 597-603; MR1019275 (90k:11114).
[10] S. Baier and M. P. Young, Mean values with cubic characters, J. Number Theory 130 (2010) 879-903; arXiv:0804.2233; MR2600408.
[11] S. R. Finch, Elliptic curves over \mathbb{Q}, unpublished note (2005).
[12] N. M. Stephens, The diophantine equation $X^{2}+Y^{2}=D Z^{2}$ and the conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 231 (1968) 121-162; MR0229651 (37 \#5225).
[13] D. Zagier and G. Kramarz, Numerical investigations related to the L-series of certain elliptic curves, J. Indian Math. Soc. 52 (1987) 51-69; MR0989230 (90d:11072).
[14] H. Cohen, Number Theory. v. 1, Tools and Diophantine Equations, SpringerVerlag, 2007, pp. 566-570; MR2312337 (2008e:11001).
[15] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002150, A002151, A002156 and A002158.
[16] S. Finch and P. Sebah, Residue of a mod 5 Euler product, arXiv:0912.3677.

[^0]: ${ }^{0}$ Copyright © 2009 by Steven R. Finch. All rights reserved.

