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This essay continues where we left off in [1]: the number of (unordered) partitions

of 2−1 as a sum of  powers of 2 is well-understood [2, 3, 4, 5, 6]. What can be said
about the number () of (ordered) compositions of 2−1 as a sum of  powers of 2?
Clearly (1) = (2) = 1; (3) = 3 since there are three ways to sort {1 1 2} and
(4) = 13 since there are twelve ways to sort {1 1 2 4} plus 8 = 2 + 2 + 2 + 2. A
few more terms of {()} appear in [7, 8] but a pattern is far from clear.

The following doubly-indexed recursive formula [9]

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if  ≥ 

1 if   1 and  =  − 1
2X
=1

µ
 + − 1
2− 

¶
− if 1 ≤    − 1

coupled with  = 1,   1, makes efficient calculation of many more terms

possible. It further allowedMolteni [10] to deduce the asymptotic behavior of {()}:

lim
→∞

µ
()

!

¶1
= 11926743412

— a remarkable achievement! — but an exact formula for this constant seems to

be unavailable. The same constant appears in a more general setting when 2−1 is
replaced by, for instance, a sum of two distinct powers of 2. As an example, 0(3) = 6
since 10 = 2+8, there are three ways to sort {1 1 8} plus three ways to sort {2 4 4},
and such a portfolio is maximal. Replacing  by 0 in the limiting expression does
not change the constant.

0.1. Euler Binary Partitions. Given  ≥ 2 and  ≥ 0, let () denote the

number of integer sequences 1, 2, 3, . . . satisfying 0 ≤  ≤ −1 for all  for which
 =

P∞
=0 2

. Clearly 2() = 1 for all , {3()} is related to Stern’s sequence
[11], and 4() = b2c+ 1 for all . Define

 = liminf
→∞

ln(())

ln()
  = limsup

→∞

ln(())

ln()

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The most interesting asymptotics occur for odd  and we list several results here

[12, 13, 14, 15, 16]:

23 = 1 23 =  =
¡
1 +
√
5
¢
2 = 16180339887;

25 = 1 +
√
2 = 24142135623 25 = 25386157635

has minimal polynomial 4 − 23 − 22 + 2 − 1;
27 = 34918910516 27 = 35115471416

have minimal polynomials 5−4−73−52−3−1 and 3−42+2−1, respectively;
and

29 = 44944928370 29 = 45030994219

have minimal polynomials 3−42−2−1 and 8−37−96+95+54−3−2−+1,
respectively.

0.2. Joint Spectral Radius. The joint spectral radius [17] of two real 2 × 2
matrices ,  is the maximum possible exponential rate of growth of long products

of s and s. The set {} is said to have the finiteness property if there exists
a periodic product that attains this maximal rate of growth. At one point, it was

believed that every set {} satisfies the finiteness property. This was eventually
disproved; the first explicit counterexample was given in [18]. It takes the form

 =

µ
1 1

0 1

¶
  = 

µ
1 0

1 1

¶
where the constant  requires elaboration. Define

+1 = −1 − −2 0 = 1 1 = 2 2 = 2

and

+1 =  + −1 0 = 0 1 = 1

(the latter is the Fibonacci sequence). It follows that

 = lim
→∞

Ã
+1



+1

!(−1)
=

∞Y
=1

µ
1− −1

+1

¶(−1)+1
= 07493265463

converges unconditionally. No uniqueness claims have been made about ; we are

simply attracted by its intricate construction. The authors of [18] wondered whether

 is irrational, tying it to the Fibonacci substitution 0 → 01, 1 → 0 [19] and to

the quantity 12 =
¡
3−√5¢ 2. They conjectured that ̃ is irrational, where ̃

(unspecified but distinct from ) is tied to the substitution 0 → 001, 1 → 0 and to

the quantity 1− 1√2. We hope to report more about ̃ later.
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