Molteni's Composition Constant

Steven Finch

February 5, 2014
This essay continues where we left off in [1]: the number of (unordered) partitions of 2^{k-1} as a sum of k powers of 2 is well-understood $[2,3,4,5,6]$. What can be said about the number $w(k)$ of (ordered) compositions of 2^{k-1} as a sum of k powers of 2 ? Clearly $w(1)=w(2)=1 ; w(3)=3$ since there are three ways to sort $\{1,1,2\}$ and $w(4)=13$ since there are twelve ways to sort $\{1,1,2,4\}$ plus $8=2+2+2+2$. A few more terms of $\{w(k)\}$ appear in $[7,8]$ but a pattern is far from clear.

The following doubly-indexed recursive formula [9]

$$
m_{k, \ell}= \begin{cases}0 & \text { if } \ell \geq k \\ 1 & \text { if } k>1 \text { and } \ell=k-1 \\ \sum_{j=1}^{2 \ell}\binom{k+\ell-1}{2 \ell-j} m_{k-\ell, j} & \text { if } 1 \leq \ell<k-1\end{cases}
$$

coupled with $w_{k}=m_{k, 1}, k>1$, makes efficient calculation of many more terms possible. It further allowed Molteni [10] to deduce the asymptotic behavior of $\{w(k)\}$:

$$
\lim _{k \rightarrow \infty}\left(\frac{w(k)}{k!}\right)^{1 / k}=1.1926743412 \ldots
$$

- a remarkable achievement! - but an exact formula for this constant seems to be unavailable. The same constant appears in a more general setting when 2^{k-1} is replaced by, for instance, a sum of two distinct powers of 2 . As an example, $w^{\prime}(3)=6$ since $10=2+8$, there are three ways to sort $\{1,1,8\}$ plus three ways to sort $\{2,4,4\}$, and such a portfolio is maximal. Replacing w by w^{\prime} in the limiting expression does not change the constant.
0.1. Euler Binary Partitions. Given $d \geq 2$ and $n \geq 0$, let $b_{d}(n)$ denote the number of integer sequences $x_{1}, x_{2}, x_{3}, \ldots$ satisfying $0 \leq x_{i} \leq d-1$ for all i for which $n=\sum_{i=0}^{\infty} x_{i} 2^{i}$. Clearly $b_{2}(n)=1$ for all $n,\left\{b_{3}(n)\right\}$ is related to Stern's sequence [11], and $b_{4}(n)=\lfloor n / 2\rfloor+1$ for all n. Define

$$
\kappa_{d}=\liminf _{n \rightarrow \infty} \frac{\ln \left(b_{d}(n)\right)}{\ln (n)}, \quad \lambda_{d}=\limsup _{n \rightarrow \infty} \frac{\ln \left(b_{d}(n)\right)}{\ln (n)}
$$

[^0]The most interesting asymptotics occur for odd d and we list several results here $[12,13,14,15,16]$:

$$
\begin{gathered}
2^{\kappa_{3}}=1, \quad 2^{\lambda_{3}}=\varphi=(1+\sqrt{5}) / 2=1.6180339887 \ldots \\
2^{\kappa_{5}}=1+\sqrt{2}=2.4142135623 \ldots, \quad 2^{\lambda_{5}}=2.5386157635 \ldots
\end{gathered}
$$

has minimal polynomial $z^{4}-2 z^{3}-2 z^{2}+2 z-1$;

$$
2^{\kappa_{7}}=3.4918910516 \ldots, \quad 2^{\lambda_{7}}=3.5115471416 \ldots
$$

have minimal polynomials $z^{5}-z^{4}-7 z^{3}-5 z^{2}-3 z-1$ and $z^{3}-4 z^{2}+2 z-1$, respectively; and

$$
2^{\kappa_{9}}=4.4944928370 \ldots, \quad 2^{\lambda_{9}}=4.5030994219 \ldots
$$

have minimal polynomials $z^{3}-4 z^{2}-2 z-1$ and $z^{8}-3 z^{7}-9 z^{6}+9 z^{5}+5 z^{4}-z^{3}-z^{2}-z+1$, respectively.
0.2. Joint Spectral Radius. The joint spectral radius [17] of two real 2×2 matrices A, B is the maximum possible exponential rate of growth of long products of $A \mathrm{~s}$ and $B \mathrm{~s}$. The set $\{A, B\}$ is said to have the finiteness property if there exists a periodic product that attains this maximal rate of growth. At one point, it was believed that every set $\{A, B\}$ satisfies the finiteness property. This was eventually disproved; the first explicit counterexample was given in [18]. It takes the form

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad B=c\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

where the constant c requires elaboration. Define

$$
e_{n+1}=e_{n} e_{n-1}-e_{n-2}, \quad e_{0}=1, \quad e_{1}=2, \quad e_{2}=2
$$

and

$$
f_{n+1}=f_{n}+f_{n-1}, \quad f_{0}=0, \quad f_{1}=1
$$

(the latter is the Fibonacci sequence). It follows that

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty}\left(\frac{e_{n}^{f_{n+1}}}{e_{n+1}^{f_{n}}}\right)^{(-1)^{n}}=\prod_{n=1}^{\infty}\left(1-\frac{e_{n-1}}{e_{n+1} e_{n}}\right)^{(-1)^{n} f_{n+1}} \\
& =0.7493265463 \ldots
\end{aligned}
$$

converges unconditionally. No uniqueness claims have been made about c; we are simply attracted by its intricate construction. The authors of [18] wondered whether c is irrational, tying it to the Fibonacci substitution $0 \rightarrow 01,1 \rightarrow 0$ [19] and to the quantity $1 / \varphi^{2}=(3-\sqrt{5}) / 2$. They conjectured that \tilde{c} is irrational, where \tilde{c} (unspecified but distinct from c) is tied to the substitution $0 \rightarrow 001,1 \rightarrow 0$ and to the quantity $1-1 / \sqrt{2}$. We hope to report more about \tilde{c} later.

References

[1] S. R. Finch, Kalmár's composition constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 292-295.
[2] D. W. Boyd, The asymptotic number of solutions of a Diophantine equation from coding theory, J. Combin. Theory Ser. A 18 (1975) 210-215; MR0360437 (50 \#12887).
[3] J. Komlós, W. Moser and T. Nemetz, On the asymptotic number of prefix codes, Mitteilungen aus dem Math. Seminar Giessen, Heft 165, Coxeter-Festschrift, Teil III, 1984, pp. 35-48.
[4] P. Flajolet and H. Prodinger, Level number sequences for trees, Discrete Math. 65 (1987) 149-156; MR0893076 (88e:05030).
[5] S. Lehr, J. Shallit and J. Tromp, On the vector space of the automatic reals, Theoret. Comput. Sci. 163 (1996) 193-210; MR1407021 (97i:03037).
[6] C. Elsholtz, C. Heuberger and H. Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, IEEE Trans. Inform. Theory 59 (2013) 1065-1075; arXiv:1108.5964; MR3015716.
[7] G. Molteni, Cancellation in a short exponential sum, J. Number Theory 130 (2010) 2011-2027; MR2653211 (2011e:11135).
[8] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002572, A007178, A007657, and A022405.
[9] A. Giorgilli and G. Molteni, Representation of a 2-power as sum of $k 2$-powers: a recursive formula, J. Number Theory 133 (2013) 1251-1261; MR3003997.
[10] G. Molteni, Representation of a 2-power as sum of $k 2$-powers: the asymptotic behavior, Internat. J. Number Theory 8 (2012) 1923-1963; MR2978848.
[11] S. R. Finch, Lyapunov exponents. IV, unpublished note (2008).
[12] B. Reznick, Some binary partition functions, Analytic Number Theory, Proc. 1989 Allerton Park conf., ed. B.C. Berndt. H.G. Diamond, H. Halberstam, and A. Hildebrand, Birkhäuser, 1990, pp. 451-477; MR1084197 (91k:11092).
[13] V. Yu. Protasov, Asymptotics of the partition function (in Russian), Mat. Sbornik, v. 191 (2000) n. 3, 65-98; Engl. trans. in Sbornik Math. 191 (2000) 381-414; MR1773255 (2001h:11134).
[14] V. Yu. Protasov, On the problem of the asymptotics of the partition function (in Russian), Mat. Zametki, v. 76 (2004) n. 1, 151-156; Engl. transl. in Math. Notes 76 (2004) 144-149; MR2099853 (2006a:11132).
[15] V. Yu. Protasov, R. M. Jungers and V. D. Blondel, Joint spectral characteristics of matrices: a conic programming approach, SIAM J. Matrix Anal. Appl. 31 (2009/10) 2146-2162; MR2678961 (2011g:15020).
[16] N. Guglielmi and V. Yu. Protasov, Exact computation of joint spectral characteristics of linear operators, Found. Comput. Math. 13 (2013) 37-97; MR3009529.
[17] R. Jungers, The Joint Spectral Radius. Theory and Applications, Lect. Notes in Control and Info. Sci. 385, Springer-Verlag, 2009; MR2507938 (2011c:15001).
[18] K. G. Hare, I. D. Morris, N. Sidorov and J. Theys, An explicit counterexample to the Lagarias-Wang finiteness conjecture, Adv. Math. 226 (2011) 4667-4701; MR2775881 (2012b:15016).
[19] S. R. Finch, Substitution dynamics, unpublished note (2014).

[^0]: ${ }^{0}$ Copyright © 2014 by Steven R. Finch. All rights reserved.

