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Let  be a real ×  matrix and

kk = sup
kk=1

kk

denote its Euclidean operator norm (often called the 2-norm). If  is nonsingular,

then its condition number () is defined by

() = kk
°°−1°° = 1()

()

where 1 ≥ 1 ≥    ≥  ≥ 0 are the singular values of . The s constitute

lengths of the semi-axes of the hyperellipsoid  = { : kk = 1} in -dimensional

space; thus  measures elongation of  at its extreme [1]. The role that  plays

in numerical analysis cannot be overstated: real matrices with large  are called

ill-conditioned whereas matrices with small  are called well-conditioned. In a

nutshell,  quantifies the sensitivity of  to pertubations in  and  when solving the

linear system  = .

It remains to understand meaning of “large” versus “small” in this context. Let

the entries of  be independent normally distributed random variables with mean 0

and variance 1. Edelman [2] proved that the condition number  satisfies

E (ln()) = ln() + + (1)

as →∞, where

 = −1
2
̃+ ln(2) = 15370894353 = ln(46510334182)
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and  is the Euler-Mascheroni constant [3]. Therefore random dense matrices are

well-conditioned, in the sense that  grows only linearly with .

Let  be the same as before except all superdiagonal entries are zero and all

diagonal elements are one. That is,  is a unit lower triangular matrix, all of whose

subdiagonal entries are independent (0 1). Viswanath & Trefethen [4] proved that
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almost surely as  → ∞. Therefore random unit lower triangular matrices are ill-

conditioned, in the sense that  grows exponentially with . Such behavior is in

striking contrast to the linear growth for random dense matrices.

Similar conclusions follow if we replace the normal distribution by, say, the Cauchy

distribution with density function

1


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for −∞    ∞. An exact limiting expression for E (ln()) analogous to that
in [2] is unknown, although Monte Carlo simulation suggests that a constant  indeed

exists and is close to 70. For random unit lower triangular matrices, we have [4]
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almost surely as →∞, where  is Catalan’s constant [5]. An interesting variation
arises if we allow the diagonal entries of the latter to be independent Cauchy as well

(rather than fixed at unity):
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almost surely as →∞, where (3) is Apéry’s constant [6].
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We can extend our discussion to complex matrices. Let the real and imaginary

parts of entries of  be independent normally distributed random variables with mean

0 and variance 1. From [2], we have

E (ln()) = ln() + + (1)

as →∞, where

 = −1
2
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If we replace the normal distribution by the Cauchy distribution, then simulation

suggests that  indeed exists and is close to 64.

Finally, let real/imaginary parts of entries of unit lower triangular  be indepen-

dent normal with mean 0 and variance 12 (different scaling than previously). From

[4], we have
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almost surely as →∞, where Ei is the exponential integral [7]. Numerical values
when replacing the normal distribution here by the Cauchy distribution (for some

choice of scaling) remain open. Other choices of densities are possible (symmetric

strictly stable distributions, for example) and corresponding constants would be good

to see someday.
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