Cyclic Group Orders

Steven Finch

April 28, 2006
Let \mathbb{Z}_{n} denote the cyclic group (under addition) of integers modulo n. Given $m \in \mathbb{Z}^{+}$and $x \in \mathbb{Z}_{n}$, define $m x$ to be $\sum_{k=1}^{m} x$. The order of $x \in \mathbb{Z}_{n}$ is the least $m>0$ such that $m x=0$. Clearly ord (x) divides n and, for each divisor d of n, there are precisely $\varphi(d)$ elements in \mathbb{Z}_{n} of order d. Define the average order in \mathbb{Z}_{n} to be [1]

$$
\alpha(n)=\frac{1}{n} \sum_{x \in \mathbb{Z}_{n}} \operatorname{ord}(x)=\frac{1}{n} \sum_{d \mid n} d \varphi(d) .
$$

Asymptotically, we have

$$
\sum_{n \leq N} \alpha(n) \sim \frac{\zeta(3)}{2 \zeta(2)} N^{2}=\frac{3 \zeta(3)}{\pi^{2}} N^{2}=(0.3653814847 \ldots) N^{2}
$$

as $N \rightarrow \infty$. Variations of this result include $[1,2]$

$$
\begin{gathered}
\sum_{n \leq N} \frac{\alpha(n)}{n} \sim \frac{\zeta(3)}{\zeta(2)} N=\frac{6 \zeta(3)}{\pi^{2}} N=(0.7307629694 \ldots) N \\
\sum_{n \leq N} \frac{\alpha(n)}{\varphi(n)} \sim \frac{\zeta(3) \zeta(4)}{\zeta(8)} N=\frac{105 \zeta(3)}{\pi^{4}} N=(1.2957309578 \ldots) N, \\
\sum_{n \leq N} \frac{n}{\alpha(n)} \sim C_{1} N, \quad \sum_{n \leq N} \frac{\varphi(n)}{\alpha(n)} \sim C_{2} N
\end{gathered}
$$

where

$$
\begin{gathered}
C_{1}=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\left(1+\frac{1}{p}\right) \sum_{k=1}^{\infty} \frac{1}{p^{k}+p^{-k-1}}\right)=1.4438675 \ldots \\
C_{2}=\prod_{p}\left(1-\frac{1}{p}\right)\left(1+\left(1-\frac{1}{p^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{p^{k}+p^{-k-1}}\right)=0.8014696934 \ldots,
\end{gathered}
$$

[^0]Let \mathbb{F}_{q}^{*} denote the cyclic group (under multiplication) of nonzero elements of \mathbb{F}_{q}, the field of size q. It is well-known that q must be a prime power. The order of $x \in \mathbb{F}_{q}^{*}$ is the least $m>0$ such that $x^{m}=1$ and the average order in \mathbb{F}_{q}^{*} is

$$
\alpha(q-1)=\frac{1}{q-1} \sum_{x \in \mathbb{F}_{q}^{*}} \operatorname{ord}(x)=\frac{1}{q-1} \sum_{d \mid q-1} d \varphi(d)
$$

We examine two cases: the first when q is actually a prime $[2,3]$:

$$
\sum_{q \leq Q} \frac{\alpha(q-1)}{q-1} \sim C_{3} \frac{Q}{\ln (Q)}, \quad \sum_{q \leq Q} \frac{\alpha(q-1)}{\varphi(q-1)} \sim C_{4} \frac{Q}{\ln (Q)}
$$

where

$$
C_{3}=\prod_{p}\left(1-\frac{p}{p^{3}-1}\right)=0.5759599688 \ldots
$$

is Stephens' constant $[4,5]$,

$$
C_{4}=\prod_{p}\left(1+\frac{p+1}{(p-1)^{2}\left(p^{2}+p+1\right)}\right)=1.5664205124 \ldots
$$

and the second when $q=2^{k}$ for some $k \geq 1[2,3]$:

$$
\sum_{k \leq K} \frac{\alpha\left(2^{k}-1\right)}{2^{k}-1} \sim C_{5} K, \quad \sum_{k \leq K} \frac{\alpha\left(2^{k}-1\right)}{\varphi\left(2^{k}-1\right)} \sim C_{6} K
$$

where

$$
C_{5}=\sum_{\substack{n \geq 1, n \text { odd }}} \frac{f(n)}{t(n)}=0.786125 \ldots, \quad C_{6}=\sum_{\substack{n \geq 1, n \text { odd }}} \frac{g(n)}{t(n)}=1.102488 \ldots
$$

In the preceding formulas, f and g are multiplicative functions with

$$
f\left(p^{r}\right)=-\frac{p-1}{p^{2 r}}, \quad g\left(p^{r}\right)= \begin{cases}\frac{1}{p(p-1)} & \text { if } r=1 \\ -\frac{1}{p^{2 r-1}} & \text { if } r \geq 2\end{cases}
$$

and $t(n)$ is the order of the element 2 in \mathbb{Z}_{n}^{*}, the group (under multiplication) of integers relatively prime to $n[6]$. If we replace α by φ, the following emerge [1, 4]:

$$
\sum_{q \leq Q} \frac{\varphi(q-1)}{q-1} \sim C_{7} \frac{Q}{\ln (Q)}, \quad \sum_{k \leq K} \frac{\varphi\left(2^{k}-1\right)}{2^{k}-1} \sim C_{8} K
$$

where

$$
C_{7}=\prod_{p}\left(1-\frac{1}{p(p-1)}\right)=0.3739558136 \ldots
$$

is Artin's constant [5],

$$
C_{8}=\sum_{\substack{n \geq 1, n \text { odd }}} \frac{\mu(n)}{n t(n)}=0.73192 \ldots
$$

and μ is the Möbius mu function. Also, we have extreme results [1, 7]:

$$
1=\liminf _{n \rightarrow \infty} \frac{\alpha(n)}{\varphi(n)}<\limsup _{n \rightarrow \infty} \frac{\alpha(n)}{\varphi(n)}=\frac{\zeta(2) \zeta(3)}{\zeta(6)}=\frac{315}{2 \pi^{4}} \zeta(3)=1.9435964368 \ldots
$$

The study of the average order $\xi(n)$ in \mathbb{Z}_{n}^{*} was initiated in [8]. We have extreme results

$$
\liminf _{n \rightarrow \infty} \frac{\xi(n) \ln (\ln (n))}{\lambda(n)}=\frac{e^{-\gamma} \pi^{2}}{6}, \quad \limsup _{n \rightarrow \infty} \frac{\xi(n)}{\lambda(n)}=1
$$

where $\lambda(n)$ is the reduced totient or Carmichael function [9]:
$\lambda(n)= \begin{cases}\varphi(n) & \text { if } n=1,2,4 \text { or } q^{j}, \text { where } q \text { is an odd prime and } j \geq 1, \\ \varphi(n) / 2 & \text { if } n=2^{k}, \text { where } k \geq 3, \\ \operatorname{lcm}\left\{\lambda\left(p_{j}^{e_{j}}\right): 1 \leq j \leq l\right\} & \text { if } n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{l}^{e_{l}}, \text { where } 2 \leq p_{1}<p_{2}<\ldots \text { and } l \geq 2 .\end{cases}$
Observe that $\lambda(n)$ is the size of the largest cyclic subgroup of \mathbb{Z}_{n}^{*}. A mean result $[8,9]$:

$$
\frac{1}{N} \sum_{n \leq N} \xi(n)=\frac{N}{\ln (N)} \exp \left[\frac{C_{9} \ln (\ln (N))}{\ln (\ln (\ln (N)))}(1+o(1))\right]
$$

holds as $N \rightarrow \infty$, where

$$
C_{9}=e^{-\gamma} \prod_{p}\left(1-\frac{1}{(p-1)^{2}(p+1)}\right)=0.3453720641 \ldots
$$

There is a set S of positive integers of asymptotic density 1 such that, for $n \in S$,

$$
\xi(n)=\frac{n}{(\ln (n))^{\ln (\ln (\ln (n)))+C_{10}+o(1)}}
$$

and

$$
C_{10}=-1+\sum_{p} \frac{\ln (p)}{(p-1)^{2}}=0.2269688056 \ldots
$$

it is not known whether $S=\mathbb{Z}^{+}$is possible.
A different study of periodicity properties of $\left\{x^{k}\right\}_{k=0}^{\infty}$ for each $x \in \mathbb{Z}_{n}$ (including \mathbb{Z}_{n}^{*} and more) has also been undertaken $[10,11]$. The constants C_{3} and C_{9} moreover appear in theorems proved $[12,13,14]$ assuming the Generalized Riemann Hypothesis.

References

[1] J. von zur Gathen, A. Knopfmacher, F. Luca, L. G. Lucht and I. E. Shparlinski, Average order in cyclic groups, J. Théor. Nombres Bordeaux 16 (2004) 107-123; MR2145575 (2006d:11111).
[2] K.-H. Indlekofer, S. Wehmeier and L. G. Lucht, Mean behaviour and distribution properties of multiplicative functions, Comput. Math. Appl. 48 (2004) 1947-1971; MR2116969 (2005m:11168).
[3] F. Luca, Some mean values related to average multiplicative orders of elements in finite fields, Ramanujan J. 9 (2005) 33-44; MR2166376.
[4] P. J. Stephens, An average result for Artin's conjecture, Mathematika 16 (1969) 178-188; MR0498449 (58 \#16565).
[5] S. R. Finch, Artin's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 104-109.
[6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002326.
[7] S. R. Finch, Euler totient constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 115-118.
[8] F. Luca and I. E. Shparlinski, Average multiplicative orders of elements modulo n, Acta Arith. 109 (2003) 387-411; MR2009051 (2004i:11113).
[9] P. Erdös, C. Pomerance and E. Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991) 363-385; MR1121092 (92g:11093).
[10] S. Finch and P. Sebah, Squares and cubes modulo n, math.NT/0604465.
[11] S. Finch, Idempotents and nilpotents modulo n, math.NT/0605019.
[12] P. Kurlberg and C. Pomerance, On a problem of Arnold: The average multiplicative order of a given integer, Algebra Number Theory 7 (2013) 981-999; arXiv:1108.5209; MR3095233.
[13] S. Kim, Average results on the order of a modulo p, arXiv:1509.01752.
[14] S. Kim, An average result on the order of a modulo n, arXiv:1509.03768.

[^0]: ${ }^{0}$ Copyright © 2006 by Steven R. Finch. All rights reserved.

