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Let Z denote the cyclic group (under addition) of integers modulo . Given

 ∈ Z+ and  ∈ Z, define  to be
P

=1 . The order of  ∈ Z is the least
  0 such that  = 0. Clearly ord() divides  and, for each divisor  of , there

are precisely () elements in Z of order . Define the average order in Z to be
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Let F∗ denote the cyclic group (under multiplication) of nonzero elements of F,
the field of size . It is well-known that  must be a prime power. The order of  ∈ F∗
is the least   0 such that  = 1 and the average order in F∗ is

( − 1) = 1
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We examine two cases: the first when  is actually a prime [2, 3]:X
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is Stephens’ constant [4, 5],
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and the second when  = 2 for some  ≥ 1 [2, 3]:X
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In the preceding formulas,  and  are multiplicative functions with
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and () is the order of the element 2 in Z∗, the group (under multiplication) of
integers relatively prime to  [6]. If we replace  by , the following emerge [1, 4]:X
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where
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is Artin’s constant [5],
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and  is the Möbius mu function. Also, we have extreme results [1, 7]:
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The study of the average order () in Z∗ was initiated in [8]. We have extreme
results
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where () is the reduced totient or Carmichael function [9]:
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Observe that () is the size of the largest cyclic subgroup of Z∗. A mean result

[8, 9]:
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There is a set  of positive integers of asymptotic density 1 such that, for  ∈ ,

() =


(ln())
ln(ln(ln()))+10+(1)

and

10 = −1 +
X


ln()

(− 1)2 = 02269688056;

it is not known whether  = Z+ is possible.
A different study of periodicity properties of {}∞=0 for each  ∈ Z (including

Z∗ and more) has also been undertaken [10, 11]. The constants 3 and 9 moreover
appear in theorems proved [12, 13, 14] assuming the Generalized Riemann Hypothesis.
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